cls_flow.c 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * net/sched/cls_flow.c		Generic flow classifier
 *
 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/pkt_cls.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
22
#include <linux/if_vlan.h>
23
#include <linux/slab.h>
24
#include <linux/module.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

#include <net/pkt_cls.h>
#include <net/ip.h>
#include <net/route.h>
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#include <net/netfilter/nf_conntrack.h>
#endif

struct flow_head {
	struct list_head	filters;
};

struct flow_filter {
	struct list_head	list;
	struct tcf_exts		exts;
	struct tcf_ematch_tree	ematches;
41 42
	struct timer_list	perturb_timer;
	u32			perturb_period;
43 44 45 46 47 48 49 50 51 52 53
	u32			handle;

	u32			nkeys;
	u32			keymask;
	u32			mode;
	u32			mask;
	u32			xor;
	u32			rshift;
	u32			addend;
	u32			divisor;
	u32			baseclass;
54
	u32			hashrnd;
55 56 57 58 59 60 61 62 63 64 65 66 67 68
};

static const struct tcf_ext_map flow_ext_map = {
	.action	= TCA_FLOW_ACT,
	.police	= TCA_FLOW_POLICE,
};

static inline u32 addr_fold(void *addr)
{
	unsigned long a = (unsigned long)addr;

	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
}

69
static u32 flow_get_src(const struct sk_buff *skb, int nhoff)
70
{
71 72
	__be32 *data = NULL, hdata;

73
	switch (skb->protocol) {
74
	case htons(ETH_P_IP):
75 76 77 78
		data = skb_header_pointer(skb,
					  nhoff + offsetof(struct iphdr,
							   saddr),
					  4, &hdata);
79
		break;
80
	case htons(ETH_P_IPV6):
81 82 83 84
		data = skb_header_pointer(skb,
					 nhoff + offsetof(struct ipv6hdr,
							  saddr.s6_addr32[3]),
					 4, &hdata);
85
		break;
86
	}
87

88 89
	if (data)
		return ntohl(*data);
90
	return addr_fold(skb->sk);
91 92
}

93
static u32 flow_get_dst(const struct sk_buff *skb, int nhoff)
94
{
95 96
	__be32 *data = NULL, hdata;

97
	switch (skb->protocol) {
98
	case htons(ETH_P_IP):
99 100 101 102
		data = skb_header_pointer(skb,
					  nhoff + offsetof(struct iphdr,
							   daddr),
					  4, &hdata);
103
		break;
104
	case htons(ETH_P_IPV6):
105 106 107 108
		data = skb_header_pointer(skb,
					 nhoff + offsetof(struct ipv6hdr,
							  daddr.s6_addr32[3]),
					 4, &hdata);
109
		break;
110
	}
111

112 113
	if (data)
		return ntohl(*data);
114
	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
115 116
}

117
static u32 flow_get_proto(const struct sk_buff *skb, int nhoff)
118
{
119 120
	__u8 *data = NULL, hdata;

121
	switch (skb->protocol) {
122
	case htons(ETH_P_IP):
123 124 125 126 127
		data = skb_header_pointer(skb,
					  nhoff + offsetof(struct iphdr,
							   protocol),
					  1, &hdata);
		break;
128
	case htons(ETH_P_IPV6):
129 130 131 132 133
		data = skb_header_pointer(skb,
					 nhoff + offsetof(struct ipv6hdr,
							  nexthdr),
					 1, &hdata);
		break;
134
	}
135 136 137
	if (data)
		return *data;
	return 0;
138 139
}

140 141 142
/* helper function to get either src or dst port */
static __be16 *flow_get_proto_common(const struct sk_buff *skb, int nhoff,
				     __be16 *_port, int dst)
143
{
144 145 146
	__be16 *port = NULL;
	int poff;

147
	switch (skb->protocol) {
148
	case htons(ETH_P_IP): {
149
		struct iphdr *iph, _iph;
150

151 152
		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
		if (!iph)
153
			break;
154
		if (ip_is_fragment(iph))
155 156
			break;
		poff = proto_ports_offset(iph->protocol);
157 158 159 160
		if (poff >= 0)
			port = skb_header_pointer(skb,
					nhoff + iph->ihl * 4 + poff + dst,
					sizeof(*_port), _port);
161 162
		break;
	}
163
	case htons(ETH_P_IPV6): {
164
		struct ipv6hdr *iph, _iph;
165

166 167
		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
		if (!iph)
168
			break;
169
		poff = proto_ports_offset(iph->nexthdr);
170 171 172 173
		if (poff >= 0)
			port = skb_header_pointer(skb,
					nhoff + sizeof(*iph) + poff + dst,
					sizeof(*_port), _port);
174 175 176 177
		break;
	}
	}

178
	return port;
179 180
}

181
static u32 flow_get_proto_src(const struct sk_buff *skb, int nhoff)
182
{
183
	__be16 _port, *port = flow_get_proto_common(skb, nhoff, &_port, 0);
184

185 186
	if (port)
		return ntohs(*port);
187

188 189 190 191 192 193 194 195 196
	return addr_fold(skb->sk);
}

static u32 flow_get_proto_dst(const struct sk_buff *skb, int nhoff)
{
	__be16 _port, *port = flow_get_proto_common(skb, nhoff, &_port, 2);

	if (port)
		return ntohs(*port);
197

198
	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
199 200 201 202
}

static u32 flow_get_iif(const struct sk_buff *skb)
{
203
	return skb->skb_iif;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
}

static u32 flow_get_priority(const struct sk_buff *skb)
{
	return skb->priority;
}

static u32 flow_get_mark(const struct sk_buff *skb)
{
	return skb->mark;
}

static u32 flow_get_nfct(const struct sk_buff *skb)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	return addr_fold(skb->nfct);
#else
	return 0;
#endif
}

#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#define CTTUPLE(skb, member)						\
({									\
	enum ip_conntrack_info ctinfo;					\
229
	const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);		\
230 231 232 233 234 235 236 237 238 239 240 241
	if (ct == NULL)							\
		goto fallback;						\
	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
})
#else
#define CTTUPLE(skb, member)						\
({									\
	goto fallback;							\
	0;								\
})
#endif

242
static u32 flow_get_nfct_src(const struct sk_buff *skb, int nhoff)
243 244
{
	switch (skb->protocol) {
245
	case htons(ETH_P_IP):
246
		return ntohl(CTTUPLE(skb, src.u3.ip));
247
	case htons(ETH_P_IPV6):
248 249 250
		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
	}
fallback:
251
	return flow_get_src(skb, nhoff);
252 253
}

254
static u32 flow_get_nfct_dst(const struct sk_buff *skb, int nhoff)
255 256
{
	switch (skb->protocol) {
257
	case htons(ETH_P_IP):
258
		return ntohl(CTTUPLE(skb, dst.u3.ip));
259
	case htons(ETH_P_IPV6):
260 261 262
		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
	}
fallback:
263
	return flow_get_dst(skb, nhoff);
264 265
}

266
static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, int nhoff)
267 268 269
{
	return ntohs(CTTUPLE(skb, src.u.all));
fallback:
270
	return flow_get_proto_src(skb, nhoff);
271 272
}

273
static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, int nhoff)
274 275 276
{
	return ntohs(CTTUPLE(skb, dst.u.all));
fallback:
277
	return flow_get_proto_dst(skb, nhoff);
278 279 280 281
}

static u32 flow_get_rtclassid(const struct sk_buff *skb)
{
282
#ifdef CONFIG_IP_ROUTE_CLASSID
E
Eric Dumazet 已提交
283 284
	if (skb_dst(skb))
		return skb_dst(skb)->tclassid;
285 286 287 288 289 290 291
#endif
	return 0;
}

static u32 flow_get_skuid(const struct sk_buff *skb)
{
	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
D
David Howells 已提交
292
		return skb->sk->sk_socket->file->f_cred->fsuid;
293 294 295 296 297 298
	return 0;
}

static u32 flow_get_skgid(const struct sk_buff *skb)
{
	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
D
David Howells 已提交
299
		return skb->sk->sk_socket->file->f_cred->fsgid;
300 301 302
	return 0;
}

303 304 305 306 307 308 309 310 311
static u32 flow_get_vlan_tag(const struct sk_buff *skb)
{
	u16 uninitialized_var(tag);

	if (vlan_get_tag(skb, &tag) < 0)
		return 0;
	return tag & VLAN_VID_MASK;
}

312 313 314 315 316
static u32 flow_get_rxhash(struct sk_buff *skb)
{
	return skb_get_rxhash(skb);
}

317
static u32 flow_key_get(struct sk_buff *skb, int key)
318
{
319 320
	int nhoff = skb_network_offset(skb);

321 322
	switch (key) {
	case FLOW_KEY_SRC:
323
		return flow_get_src(skb, nhoff);
324
	case FLOW_KEY_DST:
325
		return flow_get_dst(skb, nhoff);
326
	case FLOW_KEY_PROTO:
327
		return flow_get_proto(skb, nhoff);
328
	case FLOW_KEY_PROTO_SRC:
329
		return flow_get_proto_src(skb, nhoff);
330
	case FLOW_KEY_PROTO_DST:
331
		return flow_get_proto_dst(skb, nhoff);
332 333 334 335 336 337 338 339 340
	case FLOW_KEY_IIF:
		return flow_get_iif(skb);
	case FLOW_KEY_PRIORITY:
		return flow_get_priority(skb);
	case FLOW_KEY_MARK:
		return flow_get_mark(skb);
	case FLOW_KEY_NFCT:
		return flow_get_nfct(skb);
	case FLOW_KEY_NFCT_SRC:
341
		return flow_get_nfct_src(skb, nhoff);
342
	case FLOW_KEY_NFCT_DST:
343
		return flow_get_nfct_dst(skb, nhoff);
344
	case FLOW_KEY_NFCT_PROTO_SRC:
345
		return flow_get_nfct_proto_src(skb, nhoff);
346
	case FLOW_KEY_NFCT_PROTO_DST:
347
		return flow_get_nfct_proto_dst(skb, nhoff);
348 349 350 351 352 353
	case FLOW_KEY_RTCLASSID:
		return flow_get_rtclassid(skb);
	case FLOW_KEY_SKUID:
		return flow_get_skuid(skb);
	case FLOW_KEY_SKGID:
		return flow_get_skgid(skb);
354 355
	case FLOW_KEY_VLAN_TAG:
		return flow_get_vlan_tag(skb);
356 357
	case FLOW_KEY_RXHASH:
		return flow_get_rxhash(skb);
358 359 360 361 362 363
	default:
		WARN_ON(1);
		return 0;
	}
}

364
static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
			 struct tcf_result *res)
{
	struct flow_head *head = tp->root;
	struct flow_filter *f;
	u32 keymask;
	u32 classid;
	unsigned int n, key;
	int r;

	list_for_each_entry(f, &head->filters, list) {
		u32 keys[f->nkeys];

		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
			continue;

		keymask = f->keymask;

		for (n = 0; n < f->nkeys; n++) {
			key = ffs(keymask) - 1;
			keymask &= ~(1 << key);
			keys[n] = flow_key_get(skb, key);
		}

		if (f->mode == FLOW_MODE_HASH)
389
			classid = jhash2(keys, f->nkeys, f->hashrnd);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
		else {
			classid = keys[0];
			classid = (classid & f->mask) ^ f->xor;
			classid = (classid >> f->rshift) + f->addend;
		}

		if (f->divisor)
			classid %= f->divisor;

		res->class   = 0;
		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);

		r = tcf_exts_exec(skb, &f->exts, res);
		if (r < 0)
			continue;
		return r;
	}
	return -1;
}

410 411 412 413 414 415 416 417 418
static void flow_perturbation(unsigned long arg)
{
	struct flow_filter *f = (struct flow_filter *)arg;

	get_random_bytes(&f->hashrnd, 4);
	if (f->perturb_period)
		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
}

419 420 421 422 423 424 425 426 427 428 429 430
static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
431
	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
432 433 434 435 436 437 438 439 440 441 442 443 444
};

static int flow_change(struct tcf_proto *tp, unsigned long base,
		       u32 handle, struct nlattr **tca,
		       unsigned long *arg)
{
	struct flow_head *head = tp->root;
	struct flow_filter *f;
	struct nlattr *opt = tca[TCA_OPTIONS];
	struct nlattr *tb[TCA_FLOW_MAX + 1];
	struct tcf_exts e;
	struct tcf_ematch_tree t;
	unsigned int nkeys = 0;
445
	unsigned int perturb_period = 0;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	u32 baseclass = 0;
	u32 keymask = 0;
	u32 mode;
	int err;

	if (opt == NULL)
		return -EINVAL;

	err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
	if (err < 0)
		return err;

	if (tb[TCA_FLOW_BASECLASS]) {
		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
		if (TC_H_MIN(baseclass) == 0)
			return -EINVAL;
	}

	if (tb[TCA_FLOW_KEYS]) {
		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);

		nkeys = hweight32(keymask);
		if (nkeys == 0)
			return -EINVAL;
470 471 472

		if (fls(keymask) - 1 > FLOW_KEY_MAX)
			return -EOPNOTSUPP;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	}

	err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
	if (err < 0)
		return err;

	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
	if (err < 0)
		goto err1;

	f = (struct flow_filter *)*arg;
	if (f != NULL) {
		err = -EINVAL;
		if (f->handle != handle && handle)
			goto err2;

		mode = f->mode;
		if (tb[TCA_FLOW_MODE])
			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
		if (mode != FLOW_MODE_HASH && nkeys > 1)
			goto err2;
494 495 496 497 498 499 500 501

		if (mode == FLOW_MODE_HASH)
			perturb_period = f->perturb_period;
		if (tb[TCA_FLOW_PERTURB]) {
			if (mode != FLOW_MODE_HASH)
				goto err2;
			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
		}
502 503 504 505 506 507 508 509 510 511 512 513 514
	} else {
		err = -EINVAL;
		if (!handle)
			goto err2;
		if (!tb[TCA_FLOW_KEYS])
			goto err2;

		mode = FLOW_MODE_MAP;
		if (tb[TCA_FLOW_MODE])
			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
		if (mode != FLOW_MODE_HASH && nkeys > 1)
			goto err2;

515 516 517 518 519 520
		if (tb[TCA_FLOW_PERTURB]) {
			if (mode != FLOW_MODE_HASH)
				goto err2;
			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
		}

521 522 523 524 525 526 527 528 529 530 531 532
		if (TC_H_MAJ(baseclass) == 0)
			baseclass = TC_H_MAKE(tp->q->handle, baseclass);
		if (TC_H_MIN(baseclass) == 0)
			baseclass = TC_H_MAKE(baseclass, 1);

		err = -ENOBUFS;
		f = kzalloc(sizeof(*f), GFP_KERNEL);
		if (f == NULL)
			goto err2;

		f->handle = handle;
		f->mask	  = ~0U;
533 534 535 536 537

		get_random_bytes(&f->hashrnd, 4);
		f->perturb_timer.function = flow_perturbation;
		f->perturb_timer.data = (unsigned long)f;
		init_timer_deferrable(&f->perturb_timer);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	}

	tcf_exts_change(tp, &f->exts, &e);
	tcf_em_tree_change(tp, &f->ematches, &t);

	tcf_tree_lock(tp);

	if (tb[TCA_FLOW_KEYS]) {
		f->keymask = keymask;
		f->nkeys   = nkeys;
	}

	f->mode = mode;

	if (tb[TCA_FLOW_MASK])
		f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
	if (tb[TCA_FLOW_XOR])
		f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
	if (tb[TCA_FLOW_RSHIFT])
		f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
	if (tb[TCA_FLOW_ADDEND])
		f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);

	if (tb[TCA_FLOW_DIVISOR])
		f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
	if (baseclass)
		f->baseclass = baseclass;

566 567 568 569 570
	f->perturb_period = perturb_period;
	del_timer(&f->perturb_timer);
	if (perturb_period)
		mod_timer(&f->perturb_timer, jiffies + perturb_period);

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	if (*arg == 0)
		list_add_tail(&f->list, &head->filters);

	tcf_tree_unlock(tp);

	*arg = (unsigned long)f;
	return 0;

err2:
	tcf_em_tree_destroy(tp, &t);
err1:
	tcf_exts_destroy(tp, &e);
	return err;
}

static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
{
588
	del_timer_sync(&f->perturb_timer);
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	tcf_exts_destroy(tp, &f->exts);
	tcf_em_tree_destroy(tp, &f->ematches);
	kfree(f);
}

static int flow_delete(struct tcf_proto *tp, unsigned long arg)
{
	struct flow_filter *f = (struct flow_filter *)arg;

	tcf_tree_lock(tp);
	list_del(&f->list);
	tcf_tree_unlock(tp);
	flow_destroy_filter(tp, f);
	return 0;
}

static int flow_init(struct tcf_proto *tp)
{
	struct flow_head *head;

	head = kzalloc(sizeof(*head), GFP_KERNEL);
	if (head == NULL)
		return -ENOBUFS;
	INIT_LIST_HEAD(&head->filters);
	tp->root = head;
	return 0;
}

static void flow_destroy(struct tcf_proto *tp)
{
	struct flow_head *head = tp->root;
	struct flow_filter *f, *next;

	list_for_each_entry_safe(f, next, &head->filters, list) {
		list_del(&f->list);
		flow_destroy_filter(tp, f);
	}
	kfree(head);
}

static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
{
	struct flow_head *head = tp->root;
	struct flow_filter *f;

	list_for_each_entry(f, &head->filters, list)
		if (f->handle == handle)
			return (unsigned long)f;
	return 0;
}

static void flow_put(struct tcf_proto *tp, unsigned long f)
{
}

static int flow_dump(struct tcf_proto *tp, unsigned long fh,
		     struct sk_buff *skb, struct tcmsg *t)
{
	struct flow_filter *f = (struct flow_filter *)fh;
	struct nlattr *nest;

	if (f == NULL)
		return skb->len;

	t->tcm_handle = f->handle;

	nest = nla_nest_start(skb, TCA_OPTIONS);
	if (nest == NULL)
		goto nla_put_failure;

	NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
	NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);

	if (f->mask != ~0 || f->xor != 0) {
		NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
		NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
	}
	if (f->rshift)
		NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
	if (f->addend)
		NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);

	if (f->divisor)
		NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
	if (f->baseclass)
		NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);

676 677 678
	if (f->perturb_period)
		NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);

679 680
	if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
		goto nla_put_failure;
681
#ifdef CONFIG_NET_EMATCH
682 683 684
	if (f->ematches.hdr.nmatches &&
	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
		goto nla_put_failure;
685
#endif
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	nla_nest_end(skb, nest);

	if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
		goto nla_put_failure;

	return skb->len;

nla_put_failure:
	nlmsg_trim(skb, nest);
	return -1;
}

static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
	struct flow_head *head = tp->root;
	struct flow_filter *f;

	list_for_each_entry(f, &head->filters, list) {
		if (arg->count < arg->skip)
			goto skip;
		if (arg->fn(tp, (unsigned long)f, arg) < 0) {
			arg->stop = 1;
			break;
		}
skip:
		arg->count++;
	}
}

static struct tcf_proto_ops cls_flow_ops __read_mostly = {
	.kind		= "flow",
	.classify	= flow_classify,
	.init		= flow_init,
	.destroy	= flow_destroy,
	.change		= flow_change,
	.delete		= flow_delete,
	.get		= flow_get,
	.put		= flow_put,
	.dump		= flow_dump,
	.walk		= flow_walk,
	.owner		= THIS_MODULE,
};

static int __init cls_flow_init(void)
{
	return register_tcf_proto_ops(&cls_flow_ops);
}

static void __exit cls_flow_exit(void)
{
	unregister_tcf_proto_ops(&cls_flow_ops);
}

module_init(cls_flow_init);
module_exit(cls_flow_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
MODULE_DESCRIPTION("TC flow classifier");