nouveau_dp.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2009 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

#include "drmP.h"
26

27 28
#include "nouveau_drv.h"
#include "nouveau_i2c.h"
29
#include "nouveau_connector.h"
30
#include "nouveau_encoder.h"
31
#include "nouveau_crtc.h"
32
#include "nouveau_gpio.h"
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/******************************************************************************
 * aux channel util functions
 *****************************************************************************/
#define AUX_DBG(fmt, args...) do {                                             \
	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_AUXCH) {                     \
		NV_PRINTK(KERN_DEBUG, dev, "AUXCH(%d): " fmt, ch, ##args);     \
	}                                                                      \
} while (0)
#define AUX_ERR(fmt, args...) NV_ERROR(dev, "AUXCH(%d): " fmt, ch, ##args)

static void
auxch_fini(struct drm_device *dev, int ch)
{
	nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00310000, 0x00000000);
}

static int
auxch_init(struct drm_device *dev, int ch)
{
	const u32 unksel = 1; /* nfi which to use, or if it matters.. */
	const u32 ureq = unksel ? 0x00100000 : 0x00200000;
	const u32 urep = unksel ? 0x01000000 : 0x02000000;
	u32 ctrl, timeout;

	/* wait up to 1ms for any previous transaction to be done... */
	timeout = 1000;
	do {
		ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
		udelay(1);
		if (!timeout--) {
			AUX_ERR("begin idle timeout 0x%08x", ctrl);
			return -EBUSY;
		}
	} while (ctrl & 0x03010000);

	/* set some magic, and wait up to 1ms for it to appear */
	nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00300000, ureq);
	timeout = 1000;
	do {
		ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
		udelay(1);
		if (!timeout--) {
			AUX_ERR("magic wait 0x%08x\n", ctrl);
			auxch_fini(dev, ch);
			return -EBUSY;
		}
	} while ((ctrl & 0x03000000) != urep);

	return 0;
}

static int
auxch_tx(struct drm_device *dev, int ch, u8 type, u32 addr, u8 *data, u8 size)
{
	u32 ctrl, stat, timeout, retries;
	u32 xbuf[4] = {};
	int ret, i;

	AUX_DBG("%d: 0x%08x %d\n", type, addr, size);

	ret = auxch_init(dev, ch);
	if (ret)
		goto out;

	stat = nv_rd32(dev, 0x00e4e8 + (ch * 0x50));
	if (!(stat & 0x10000000)) {
		AUX_DBG("sink not detected\n");
		ret = -ENXIO;
		goto out;
	}

	if (!(type & 1)) {
		memcpy(xbuf, data, size);
		for (i = 0; i < 16; i += 4) {
			AUX_DBG("wr 0x%08x\n", xbuf[i / 4]);
			nv_wr32(dev, 0x00e4c0 + (ch * 0x50) + i, xbuf[i / 4]);
		}
	}

	ctrl  = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
	ctrl &= ~0x0001f0ff;
	ctrl |= type << 12;
	ctrl |= size - 1;
	nv_wr32(dev, 0x00e4e0 + (ch * 0x50), addr);

	/* retry transaction a number of times on failure... */
	ret = -EREMOTEIO;
	for (retries = 0; retries < 32; retries++) {
		/* reset, and delay a while if this is a retry */
		nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x80000000 | ctrl);
		nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00000000 | ctrl);
		if (retries)
			udelay(400);

		/* transaction request, wait up to 1ms for it to complete */
		nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00010000 | ctrl);

		timeout = 1000;
		do {
			ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
			udelay(1);
			if (!timeout--) {
				AUX_ERR("tx req timeout 0x%08x\n", ctrl);
				goto out;
			}
		} while (ctrl & 0x00010000);

		/* read status, and check if transaction completed ok */
		stat = nv_mask(dev, 0x00e4e8 + (ch * 0x50), 0, 0);
		if (!(stat & 0x000f0f00)) {
			ret = 0;
			break;
		}

		AUX_DBG("%02d 0x%08x 0x%08x\n", retries, ctrl, stat);
	}

	if (type & 1) {
		for (i = 0; i < 16; i += 4) {
			xbuf[i / 4] = nv_rd32(dev, 0x00e4d0 + (ch * 0x50) + i);
			AUX_DBG("rd 0x%08x\n", xbuf[i / 4]);
		}
		memcpy(data, xbuf, size);
	}

out:
	auxch_fini(dev, ch);
	return ret;
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static u32
dp_link_bw_get(struct drm_device *dev, int or, int link)
{
	u32 ctrl = nv_rd32(dev, 0x614300 + (or * 0x800));
	if (!(ctrl & 0x000c0000))
		return 162000;
	return 270000;
}

static int
dp_lane_count_get(struct drm_device *dev, int or, int link)
{
	u32 ctrl = nv_rd32(dev, NV50_SOR_DP_CTRL(or, link));
	switch (ctrl & 0x000f0000) {
	case 0x00010000: return 1;
	case 0x00030000: return 2;
	default:
		return 4;
	}
}

void
nouveau_dp_tu_update(struct drm_device *dev, int or, int link, u32 clk, u32 bpp)
{
	const u32 symbol = 100000;
	int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
	int TU, VTUi, VTUf, VTUa;
	u64 link_data_rate, link_ratio, unk;
	u32 best_diff = 64 * symbol;
	u32 link_nr, link_bw, r;

	/* calculate packed data rate for each lane */
	link_nr = dp_lane_count_get(dev, or, link);
	link_data_rate = (clk * bpp / 8) / link_nr;

	/* calculate ratio of packed data rate to link symbol rate */
	link_bw = dp_link_bw_get(dev, or, link);
	link_ratio = link_data_rate * symbol;
	r = do_div(link_ratio, link_bw);

	for (TU = 64; TU >= 32; TU--) {
		/* calculate average number of valid symbols in each TU */
		u32 tu_valid = link_ratio * TU;
		u32 calc, diff;

		/* find a hw representation for the fraction.. */
		VTUi = tu_valid / symbol;
		calc = VTUi * symbol;
		diff = tu_valid - calc;
		if (diff) {
			if (diff >= (symbol / 2)) {
				VTUf = symbol / (symbol - diff);
				if (symbol - (VTUf * diff))
					VTUf++;

				if (VTUf <= 15) {
					VTUa  = 1;
					calc += symbol - (symbol / VTUf);
				} else {
					VTUa  = 0;
					VTUf  = 1;
					calc += symbol;
				}
			} else {
				VTUa  = 0;
				VTUf  = min((int)(symbol / diff), 15);
				calc += symbol / VTUf;
			}

			diff = calc - tu_valid;
		} else {
			/* no remainder, but the hw doesn't like the fractional
			 * part to be zero.  decrement the integer part and
			 * have the fraction add a whole symbol back
			 */
			VTUa = 0;
			VTUf = 1;
			VTUi--;
		}

		if (diff < best_diff) {
			best_diff = diff;
			bestTU = TU;
			bestVTUa = VTUa;
			bestVTUf = VTUf;
			bestVTUi = VTUi;
			if (diff == 0)
				break;
		}
	}

	if (!bestTU) {
		NV_ERROR(dev, "DP: unable to find suitable config\n");
		return;
	}

	/* XXX close to vbios numbers, but not right */
	unk  = (symbol - link_ratio) * bestTU;
	unk *= link_ratio;
	r = do_div(unk, symbol);
	r = do_div(unk, symbol);
	unk += 6;

	nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x000001fc, bestTU << 2);
	nv_mask(dev, NV50_SOR_DP_SCFG(or, link), 0x010f7f3f, bestVTUa << 24 |
							     bestVTUf << 16 |
							     bestVTUi << 8 |
							     unk);
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
u8 *
nouveau_dp_bios_data(struct drm_device *dev, struct dcb_entry *dcb, u8 **entry)
{
	struct bit_entry d;
	u8 *table;
	int i;

	if (bit_table(dev, 'd', &d)) {
		NV_ERROR(dev, "BIT 'd' table not found\n");
		return NULL;
	}

	if (d.version != 1) {
		NV_ERROR(dev, "BIT 'd' table version %d unknown\n", d.version);
		return NULL;
	}

291
	table = ROMPTR(dev, d.data[0]);
292 293 294 295 296 297 298 299
	if (!table) {
		NV_ERROR(dev, "displayport table pointer invalid\n");
		return NULL;
	}

	switch (table[0]) {
	case 0x20:
	case 0x21:
300
	case 0x30:
301 302 303 304 305 306 307
		break;
	default:
		NV_ERROR(dev, "displayport table 0x%02x unknown\n", table[0]);
		return NULL;
	}

	for (i = 0; i < table[3]; i++) {
308
		*entry = ROMPTR(dev, table[table[1] + (i * table[2])]);
309 310 311 312 313 314 315 316
		if (*entry && bios_encoder_match(dcb, ROM32((*entry)[0])))
			return table;
	}

	NV_ERROR(dev, "displayport encoder table not found\n");
	return NULL;
}

317 318 319 320 321
/******************************************************************************
 * link training
 *****************************************************************************/
struct dp_state {
	struct dcb_entry *dcb;
322 323
	u8 *table;
	u8 *entry;
324 325 326 327
	int auxch;
	int crtc;
	int or;
	int link;
328
	u8 *dpcd;
329 330 331 332 333
	int link_nr;
	u32 link_bw;
	u8  stat[6];
	u8  conf[4];
};
334

335 336
static void
dp_set_link_config(struct drm_device *dev, struct dp_state *dp)
337
{
338
	int or = dp->or, link = dp->link;
339
	u8 *entry, sink[2];
340
	u32 dp_ctrl;
341
	u16 script;
342

343
	NV_DEBUG_KMS(dev, "%d lanes at %d KB/s\n", dp->link_nr, dp->link_bw);
344

345
	/* set selected link rate on source */
346 347
	switch (dp->link_bw) {
	case 270000:
348
		nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00040000);
349 350 351
		sink[0] = DP_LINK_BW_2_7;
		break;
	default:
352
		nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00000000);
353 354 355
		sink[0] = DP_LINK_BW_1_62;
		break;
	}
356

357 358 359 360
	/* offset +0x0a of each dp encoder table entry is a pointer to another
	 * table, that has (among other things) pointers to more scripts that
	 * need to be executed, this time depending on link speed.
	 */
361
	entry = ROMPTR(dev, dp->entry[10]);
362
	if (entry) {
363 364 365 366 367 368 369 370 371
		if (dp->table[0] < 0x30) {
			while (dp->link_bw < (ROM16(entry[0]) * 10))
				entry += 4;
			script = ROM16(entry[2]);
		} else {
			while (dp->link_bw < (entry[0] * 27000))
				entry += 3;
			script = ROM16(entry[1]);
		}
372

373
		nouveau_bios_run_init_table(dev, script, dp->dcb, dp->crtc);
374 375 376
	}

	/* configure lane count on the source */
377 378
	dp_ctrl = ((1 << dp->link_nr) - 1) << 16;
	sink[1] = dp->link_nr;
379
	if (dp->dpcd[2] & DP_ENHANCED_FRAME_CAP) {
380 381 382
		dp_ctrl |= 0x00004000;
		sink[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
	}
383

384
	nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x001f4000, dp_ctrl);
385

386
	/* inform the sink of the new configuration */
387
	auxch_tx(dev, dp->auxch, 8, DP_LINK_BW_SET, sink, 2);
388 389
}

390 391
static void
dp_set_training_pattern(struct drm_device *dev, struct dp_state *dp, u8 tp)
392
{
393 394
	u8 sink_tp;

395
	NV_DEBUG_KMS(dev, "training pattern %d\n", tp);
396

397
	nv_mask(dev, NV50_SOR_DP_CTRL(dp->or, dp->link), 0x0f000000, tp << 24);
398 399 400 401 402

	auxch_tx(dev, dp->auxch, 9, DP_TRAINING_PATTERN_SET, &sink_tp, 1);
	sink_tp &= ~DP_TRAINING_PATTERN_MASK;
	sink_tp |= tp;
	auxch_tx(dev, dp->auxch, 8, DP_TRAINING_PATTERN_SET, &sink_tp, 1);
403 404
}

405 406 407
static const u8 nv50_lane_map[] = { 16, 8, 0, 24 };
static const u8 nvaf_lane_map[] = { 24, 16, 8, 0 };

408
static int
409
dp_link_train_commit(struct drm_device *dev, struct dp_state *dp)
410
{
411
	struct drm_nouveau_private *dev_priv = dev->dev_private;
412
	u32 mask = 0, drv = 0, pre = 0, unk = 0;
413
	const u8 *shifts;
414 415 416 417
	int link = dp->link;
	int or = dp->or;
	int i;

418 419 420 421 422
	if (dev_priv->chipset != 0xaf)
		shifts = nv50_lane_map;
	else
		shifts = nvaf_lane_map;

423
	for (i = 0; i < dp->link_nr; i++) {
424
		u8 *conf = dp->entry + dp->table[4];
425 426 427
		u8 lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf;
		u8 lpre = (lane & 0x0c) >> 2;
		u8 lvsw = (lane & 0x03) >> 0;
428

429 430
		mask |= 0xff << shifts[i];
		unk |= 1 << (shifts[i] >> 3);
431

432 433
		dp->conf[i] = (lpre << 3) | lvsw;
		if (lvsw == DP_TRAIN_VOLTAGE_SWING_1200)
434
			dp->conf[i] |= DP_TRAIN_MAX_SWING_REACHED;
435
		if ((lpre << 3) == DP_TRAIN_PRE_EMPHASIS_9_5)
436
			dp->conf[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
437

438 439
		NV_DEBUG_KMS(dev, "config lane %d %02x\n", i, dp->conf[i]);

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		if (dp->table[0] < 0x30) {
			u8 *last = conf + (dp->entry[4] * dp->table[5]);
			while (lvsw != conf[0] || lpre != conf[1]) {
				conf += dp->table[5];
				if (conf >= last)
					return -EINVAL;
			}

			conf += 2;
		} else {
			/* no lookup table anymore, set entries for each
			 * combination of voltage swing and pre-emphasis
			 * level allowed by the DP spec.
			 */
			switch (lvsw) {
			case 0: lpre += 0; break;
			case 1: lpre += 4; break;
			case 2: lpre += 7; break;
			case 3: lpre += 9; break;
			}

			conf = conf + (lpre * dp->table[5]);
			conf++;
		}

		drv |= conf[0] << shifts[i];
		pre |= conf[1] << shifts[i];
		unk  = (unk & ~0x0000ff00) | (conf[2] << 8);
468 469
	}

470 471 472 473 474
	nv_mask(dev, NV50_SOR_DP_UNK118(or, link), mask, drv);
	nv_mask(dev, NV50_SOR_DP_UNK120(or, link), mask, pre);
	nv_mask(dev, NV50_SOR_DP_UNK130(or, link), 0x0000ff0f, unk);

	return auxch_tx(dev, dp->auxch, 8, DP_TRAINING_LANE0_SET, dp->conf, 4);
475 476
}

477 478
static int
dp_link_train_update(struct drm_device *dev, struct dp_state *dp, u32 delay)
479
{
480
	int ret;
481

482
	udelay(delay);
483

484
	ret = auxch_tx(dev, dp->auxch, 9, DP_LANE0_1_STATUS, dp->stat, 6);
485
	if (ret)
486
		return ret;
487

488 489 490 491 492
	NV_DEBUG_KMS(dev, "status %02x %02x %02x %02x %02x %02x\n",
		     dp->stat[0], dp->stat[1], dp->stat[2], dp->stat[3],
		     dp->stat[4], dp->stat[5]);
	return 0;
}
493

494 495 496 497 498 499
static int
dp_link_train_cr(struct drm_device *dev, struct dp_state *dp)
{
	bool cr_done = false, abort = false;
	int voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
	int tries = 0, i;
500

501
	dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_1);
502

503 504 505 506
	do {
		if (dp_link_train_commit(dev, dp) ||
		    dp_link_train_update(dev, dp, 100))
			break;
507

508 509 510 511 512 513 514 515 516 517
		cr_done = true;
		for (i = 0; i < dp->link_nr; i++) {
			u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
			if (!(lane & DP_LANE_CR_DONE)) {
				cr_done = false;
				if (dp->conf[i] & DP_TRAIN_MAX_SWING_REACHED)
					abort = true;
				break;
			}
		}
518

519 520 521 522 523
		if ((dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
			voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
			tries = 0;
		}
	} while (!cr_done && !abort && ++tries < 5);
524

525
	return cr_done ? 0 : -1;
526 527
}

528 529
static int
dp_link_train_eq(struct drm_device *dev, struct dp_state *dp)
530
{
531 532
	bool eq_done, cr_done = true;
	int tries = 0, i;
533

534
	dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_2);
535

536 537
	do {
		if (dp_link_train_update(dev, dp, 400))
538 539
			break;

540 541 542 543 544 545 546 547 548
		eq_done = !!(dp->stat[2] & DP_INTERLANE_ALIGN_DONE);
		for (i = 0; i < dp->link_nr && eq_done; i++) {
			u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
			if (!(lane & DP_LANE_CR_DONE))
				cr_done = false;
			if (!(lane & DP_LANE_CHANNEL_EQ_DONE) ||
			    !(lane & DP_LANE_SYMBOL_LOCKED))
				eq_done = false;
		}
549

550 551 552 553 554
		if (dp_link_train_commit(dev, dp))
			break;
	} while (!eq_done && cr_done && ++tries <= 5);

	return eq_done ? 0 : -1;
555 556 557
}

bool
558
nouveau_dp_link_train(struct drm_encoder *encoder, u32 datarate)
559 560
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
561 562 563 564 565 566 567 568
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector =
		nouveau_encoder_connector_get(nv_encoder);
	struct drm_device *dev = encoder->dev;
	struct nouveau_i2c_chan *auxch;
	const u32 bw_list[] = { 270000, 162000, 0 };
	const u32 *link_bw = bw_list;
	struct dp_state dp;
569

570 571
	auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index);
	if (!auxch)
572 573
		return false;

574 575
	dp.table = nouveau_dp_bios_data(dev, nv_encoder->dcb, &dp.entry);
	if (!dp.table)
576
		return -EINVAL;
577

578 579
	dp.dcb = nv_encoder->dcb;
	dp.crtc = nv_crtc->index;
580
	dp.auxch = auxch->drive;
581 582
	dp.or = nv_encoder->or;
	dp.link = !(nv_encoder->dcb->sorconf.link & 1);
583
	dp.dpcd = nv_encoder->dp.dpcd;
584

585 586 587 588
	/* some sinks toggle hotplug in response to some of the actions
	 * we take during link training (DP_SET_POWER is one), we need
	 * to ignore them for the moment to avoid races.
	 */
589
	nouveau_gpio_irq(dev, 0, nv_connector->hpd, 0xff, false);
590

591
	/* enable down-spreading, if possible */
592 593
	if (dp.table[1] >= 16) {
		u16 script = ROM16(dp.entry[14]);
594
		if (nv_encoder->dp.dpcd[3] & 1)
595
			script = ROM16(dp.entry[12]);
596 597 598 599

		nouveau_bios_run_init_table(dev, script, dp.dcb, dp.crtc);
	}

600
	/* execute pre-train script from vbios */
601
	nouveau_bios_run_init_table(dev, ROM16(dp.entry[6]), dp.dcb, dp.crtc);
602

603
	/* start off at highest link rate supported by encoder and display */
604
	while (*link_bw > nv_encoder->dp.link_bw)
605
		link_bw++;
606

607 608 609 610 611
	while (link_bw[0]) {
		/* find minimum required lane count at this link rate */
		dp.link_nr = nv_encoder->dp.link_nr;
		while ((dp.link_nr >> 1) * link_bw[0] > datarate)
			dp.link_nr >>= 1;
612

613 614 615 616
		/* drop link rate to minimum with this lane count */
		while ((link_bw[1] * dp.link_nr) > datarate)
			link_bw++;
		dp.link_bw = link_bw[0];
617

618 619
		/* program selected link configuration */
		dp_set_link_config(dev, &dp);
620

621 622 623 624
		/* attempt to train the link at this configuration */
		memset(dp.stat, 0x00, sizeof(dp.stat));
		if (!dp_link_train_cr(dev, &dp) &&
		    !dp_link_train_eq(dev, &dp))
625 626
			break;

627 628
		/* retry at lower rate */
		link_bw++;
629 630
	}

631 632
	/* finish link training */
	dp_set_training_pattern(dev, &dp, DP_TRAINING_PATTERN_DISABLE);
633

634
	/* execute post-train script from vbios */
635
	nouveau_bios_run_init_table(dev, ROM16(dp.entry[8]), dp.dcb, dp.crtc);
636

637
	/* re-enable hotplug detect */
638
	nouveau_gpio_irq(dev, 0, nv_connector->hpd, 0xff, true);
639
	return true;
640 641 642 643 644 645 646
}

bool
nouveau_dp_detect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
647 648
	struct nouveau_i2c_chan *auxch;
	u8 *dpcd = nv_encoder->dp.dpcd;
649 650
	int ret;

651 652 653 654
	auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index);
	if (!auxch)
		return false;

655
	ret = auxch_tx(dev, auxch->drive, 9, DP_DPCD_REV, dpcd, 8);
656 657 658
	if (ret)
		return false;

659 660
	nv_encoder->dp.link_bw = 27000 * dpcd[1];
	nv_encoder->dp.link_nr = dpcd[2] & DP_MAX_LANE_COUNT_MASK;
661

662 663 664 665 666
	NV_DEBUG_KMS(dev, "display: %dx%d dpcd 0x%02x\n",
		     nv_encoder->dp.link_nr, nv_encoder->dp.link_bw, dpcd[0]);
	NV_DEBUG_KMS(dev, "encoder: %dx%d\n",
		     nv_encoder->dcb->dpconf.link_nr,
		     nv_encoder->dcb->dpconf.link_bw);
667

668
	if (nv_encoder->dcb->dpconf.link_nr < nv_encoder->dp.link_nr)
669
		nv_encoder->dp.link_nr = nv_encoder->dcb->dpconf.link_nr;
670 671
	if (nv_encoder->dcb->dpconf.link_bw < nv_encoder->dp.link_bw)
		nv_encoder->dp.link_bw = nv_encoder->dcb->dpconf.link_bw;
672

673 674
	NV_DEBUG_KMS(dev, "maximum: %dx%d\n",
		     nv_encoder->dp.link_nr, nv_encoder->dp.link_bw);
675

676 677 678 679 680 681 682
	return true;
}

int
nouveau_dp_auxch(struct nouveau_i2c_chan *auxch, int cmd, int addr,
		 uint8_t *data, int data_nr)
{
683
	return auxch_tx(auxch->dev, auxch->drive, cmd, addr, data, data_nr);
684 685
}

686 687
static int
nouveau_dp_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
688
{
689 690 691
	struct nouveau_i2c_chan *auxch = (struct nouveau_i2c_chan *)adap;
	struct i2c_msg *msg = msgs;
	int ret, mcnt = num;
692

693 694 695
	while (mcnt--) {
		u8 remaining = msg->len;
		u8 *ptr = msg->buf;
696

697 698 699
		while (remaining) {
			u8 cnt = (remaining > 16) ? 16 : remaining;
			u8 cmd;
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714
			if (msg->flags & I2C_M_RD)
				cmd = AUX_I2C_READ;
			else
				cmd = AUX_I2C_WRITE;

			if (mcnt || remaining > 16)
				cmd |= AUX_I2C_MOT;

			ret = nouveau_dp_auxch(auxch, cmd, msg->addr, ptr, cnt);
			if (ret < 0)
				return ret;

			ptr += cnt;
			remaining -= cnt;
715
		}
716 717

		msg++;
718
	}
719 720 721 722 723 724 725 726

	return num;
}

static u32
nouveau_dp_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
727 728
}

729 730 731 732
const struct i2c_algorithm nouveau_dp_i2c_algo = {
	.master_xfer = nouveau_dp_i2c_xfer,
	.functionality = nouveau_dp_i2c_func
};