intel_bw.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

#include <drm/drm_atomic_state_helper.h>

#include "intel_bw.h"
9
#include "intel_display_types.h"
10 11 12 13 14 15 16 17
#include "intel_sideband.h"

/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};

struct intel_qgv_info {
18
	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
	u8 num_points;
	u8 num_channels;
	u8 t_bl;
	enum intel_dram_type dram_type;
};

static int icl_pcode_read_mem_global_info(struct drm_i915_private *dev_priv,
					  struct intel_qgv_info *qi)
{
	u32 val = 0;
	int ret;

	ret = sandybridge_pcode_read(dev_priv,
				     ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
				     ICL_PCODE_MEM_SS_READ_GLOBAL_INFO,
				     &val, NULL);
	if (ret)
		return ret;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	if (IS_GEN(dev_priv, 12)) {
		switch (val & 0xf) {
		case 0:
			qi->dram_type = INTEL_DRAM_DDR4;
			break;
		case 3:
			qi->dram_type = INTEL_DRAM_LPDDR4;
			break;
		case 4:
			qi->dram_type = INTEL_DRAM_DDR3;
			break;
		case 5:
			qi->dram_type = INTEL_DRAM_LPDDR3;
			break;
		default:
			MISSING_CASE(val & 0xf);
			break;
		}
	} else if (IS_GEN(dev_priv, 11)) {
		switch (val & 0xf) {
		case 0:
			qi->dram_type = INTEL_DRAM_DDR4;
			break;
		case 1:
			qi->dram_type = INTEL_DRAM_DDR3;
			break;
		case 2:
			qi->dram_type = INTEL_DRAM_LPDDR3;
			break;
		case 3:
			qi->dram_type = INTEL_DRAM_LPDDR4;
			break;
		default:
			MISSING_CASE(val & 0xf);
			break;
		}
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
		qi->dram_type = INTEL_DRAM_LPDDR3; /* Conservative default */
77 78 79 80 81
	}

	qi->num_channels = (val & 0xf0) >> 4;
	qi->num_points = (val & 0xf00) >> 8;

82 83 84 85
	if (IS_GEN(dev_priv, 12))
		qi->t_bl = qi->dram_type == INTEL_DRAM_DDR4 ? 4 : 16;
	else if (IS_GEN(dev_priv, 11))
		qi->t_bl = qi->dram_type == INTEL_DRAM_DDR4 ? 4 : 8;
86 87 88 89 90 91 92 93

	return 0;
}

static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
					 struct intel_qgv_point *sp,
					 int point)
{
94
	u32 val = 0, val2 = 0;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	int ret;

	ret = sandybridge_pcode_read(dev_priv,
				     ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
				     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
				     &val, &val2);
	if (ret)
		return ret;

	sp->dclk = val & 0xffff;
	sp->t_rp = (val & 0xff0000) >> 16;
	sp->t_rcd = (val & 0xff000000) >> 24;

	sp->t_rdpre = val2 & 0xff;
	sp->t_ras = (val2 & 0xff00) >> 8;

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
			      struct intel_qgv_info *qi)
{
	int i, ret;

	ret = icl_pcode_read_mem_global_info(dev_priv, qi);
	if (ret)
		return ret;

	if (WARN_ON(qi->num_points > ARRAY_SIZE(qi->points)))
		qi->num_points = ARRAY_SIZE(qi->points);

	for (i = 0; i < qi->num_points; i++) {
		struct intel_qgv_point *sp = &qi->points[i];

		ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
		if (ret)
			return ret;

		DRM_DEBUG_KMS("QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
			      i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
			      sp->t_rcd, sp->t_rc);
	}

	return 0;
}

static int icl_calc_bw(int dclk, int num, int den)
{
	/* multiples of 16.666MHz (100/6) */
	return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
}

static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
	u16 dclk = 0;
	int i;

	for (i = 0; i < qi->num_points; i++)
		dclk = max(dclk, qi->points[i].dclk);

	return dclk;
}

struct intel_sa_info {
161 162
	u16 displayrtids;
	u8 deburst, deprogbwlimit;
163 164 165 166 167 168 169 170
};

static const struct intel_sa_info icl_sa_info = {
	.deburst = 8,
	.deprogbwlimit = 25, /* GB/s */
	.displayrtids = 128,
};

171 172 173 174 175 176 177
static const struct intel_sa_info tgl_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 34, /* GB/s */
	.displayrtids = 256,
};

static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
	struct intel_qgv_info qi = {};
	bool is_y_tile = true; /* assume y tile may be used */
	int num_channels;
	int deinterleave;
	int ipqdepth, ipqdepthpch;
	int dclk_max;
	int maxdebw;
	int i, ret;

	ret = icl_get_qgv_points(dev_priv, &qi);
	if (ret) {
		DRM_DEBUG_KMS("Failed to get memory subsystem information, ignoring bandwidth limits");
		return ret;
	}
	num_channels = qi.num_channels;

	deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
	dclk_max = icl_sagv_max_dclk(&qi);

	ipqdepthpch = 16;

	maxdebw = min(sa->deprogbwlimit * 1000,
		      icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);

	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
		int clpchgroup;
		int j;

		clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;

212 213
		bi->num_qgv_points = qi.num_points;

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
			bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);

			bi->deratedbw[j] = min(maxdebw,
					       bw * 9 / 10); /* 90% */

231
			DRM_DEBUG_KMS("BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
				      i, j, bi->num_planes, bi->deratedbw[j]);
		}

		if (bi->num_planes == 1)
			break;
	}

	return 0;
}

static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

251 252 253 254 255 256 257
		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

258 259 260 261 262 263 264 265 266
		if (num_planes >= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return 0;
}

void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
267 268 269
	if (!HAS_DISPLAY(dev_priv))
		return;

270 271 272 273
	if (IS_GEN(dev_priv, 12))
		icl_get_bw_info(dev_priv, &tgl_sa_info);
	else if (IS_GEN(dev_priv, 11))
		icl_get_bw_info(dev_priv, &icl_sa_info);
274 275 276 277 278
}

static unsigned int intel_max_data_rate(struct drm_i915_private *dev_priv,
					int num_planes)
{
279 280 281 282 283 284 285 286 287
	if (INTEL_GEN(dev_priv) >= 11) {
		/*
		 * Any bw group has same amount of QGV points
		 */
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[0];
		unsigned int min_bw = UINT_MAX;
		int i;

288 289 290 291 292
		/*
		 * FIXME with SAGV disabled maybe we can assume
		 * point 1 will always be used? Seems to match
		 * the behaviour observed in the wild.
		 */
293 294 295 296 297 298 299
		for (i = 0; i < bi->num_qgv_points; i++) {
			unsigned int bw = icl_max_bw(dev_priv, num_planes, i);

			min_bw = min(bw, min_bw);
		}
		return min_bw;
	} else {
300
		return UINT_MAX;
301
	}
302 303 304 305 306 307 308 309 310 311 312 313 314
}

static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
	/*
	 * We assume cursors are small enough
	 * to not not cause bandwidth problems.
	 */
	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}

static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
315
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	unsigned int data_rate = 0;
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		/*
		 * We assume cursors are small enough
		 * to not not cause bandwidth problems.
		 */
		if (plane_id == PLANE_CURSOR)
			continue;

		data_rate += crtc_state->data_rate[plane_id];
	}

	return data_rate;
}

void intel_bw_crtc_update(struct intel_bw_state *bw_state,
			  const struct intel_crtc_state *crtc_state)
{
336
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

	bw_state->data_rate[crtc->pipe] =
		intel_bw_crtc_data_rate(crtc_state);
	bw_state->num_active_planes[crtc->pipe] =
		intel_bw_crtc_num_active_planes(crtc_state);

	DRM_DEBUG_KMS("pipe %c data rate %u num active planes %u\n",
		      pipe_name(crtc->pipe),
		      bw_state->data_rate[crtc->pipe],
		      bw_state->num_active_planes[crtc->pipe]);
}

static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
					       const struct intel_bw_state *bw_state)
{
	unsigned int num_active_planes = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		num_active_planes += bw_state->num_active_planes[pipe];

	return num_active_planes;
}

static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
				       const struct intel_bw_state *bw_state)
{
	unsigned int data_rate = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		data_rate += bw_state->data_rate[pipe];

	return data_rate;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386
static struct intel_bw_state *
intel_atomic_get_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct drm_private_state *bw_state;

	bw_state = drm_atomic_get_private_obj_state(&state->base,
						    &dev_priv->bw_obj);
	if (IS_ERR(bw_state))
		return ERR_CAST(bw_state);

	return to_intel_bw_state(bw_state);
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
	struct intel_bw_state *bw_state = NULL;
	unsigned int data_rate, max_data_rate;
	unsigned int num_active_planes;
	struct intel_crtc *crtc;
	int i;

	/* FIXME earlier gens need some checks too */
	if (INTEL_GEN(dev_priv) < 11)
		return 0;

	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		unsigned int old_data_rate =
			intel_bw_crtc_data_rate(old_crtc_state);
		unsigned int new_data_rate =
			intel_bw_crtc_data_rate(new_crtc_state);
		unsigned int old_active_planes =
			intel_bw_crtc_num_active_planes(old_crtc_state);
		unsigned int new_active_planes =
			intel_bw_crtc_num_active_planes(new_crtc_state);

		/*
		 * Avoid locking the bw state when
		 * nothing significant has changed.
		 */
		if (old_data_rate == new_data_rate &&
		    old_active_planes == new_active_planes)
			continue;

		bw_state  = intel_atomic_get_bw_state(state);
		if (IS_ERR(bw_state))
			return PTR_ERR(bw_state);

		bw_state->data_rate[crtc->pipe] = new_data_rate;
		bw_state->num_active_planes[crtc->pipe] = new_active_planes;

		DRM_DEBUG_KMS("pipe %c data rate %u num active planes %u\n",
			      pipe_name(crtc->pipe),
			      bw_state->data_rate[crtc->pipe],
			      bw_state->num_active_planes[crtc->pipe]);
	}

	if (!bw_state)
		return 0;

	data_rate = intel_bw_data_rate(dev_priv, bw_state);
	num_active_planes = intel_bw_num_active_planes(dev_priv, bw_state);

	max_data_rate = intel_max_data_rate(dev_priv, num_active_planes);

	data_rate = DIV_ROUND_UP(data_rate, 1000);

	if (data_rate > max_data_rate) {
		DRM_DEBUG_KMS("Bandwidth %u MB/s exceeds max available %d MB/s (%d active planes)\n",
			      data_rate, max_data_rate, num_active_planes);
		return -EINVAL;
	}

	return 0;
}

static struct drm_private_state *intel_bw_duplicate_state(struct drm_private_obj *obj)
{
	struct intel_bw_state *state;

	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);

	return &state->base;
}

static void intel_bw_destroy_state(struct drm_private_obj *obj,
				   struct drm_private_state *state)
{
	kfree(state);
}

static const struct drm_private_state_funcs intel_bw_funcs = {
	.atomic_duplicate_state = intel_bw_duplicate_state,
	.atomic_destroy_state = intel_bw_destroy_state,
};

int intel_bw_init(struct drm_i915_private *dev_priv)
{
	struct intel_bw_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;

	drm_atomic_private_obj_init(&dev_priv->drm, &dev_priv->bw_obj,
				    &state->base, &intel_bw_funcs);

	return 0;
}