skmsg.c 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */

#include <linux/skmsg.h>
#include <linux/skbuff.h>
#include <linux/scatterlist.h>

#include <net/sock.h>
#include <net/tcp.h>
10
#include <net/tls.h>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
{
	if (msg->sg.end > msg->sg.start &&
	    elem_first_coalesce < msg->sg.end)
		return true;

	if (msg->sg.end < msg->sg.start &&
	    (elem_first_coalesce > msg->sg.start ||
	     elem_first_coalesce < msg->sg.end))
		return true;

	return false;
}

int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
		 int elem_first_coalesce)
{
	struct page_frag *pfrag = sk_page_frag(sk);
	int ret = 0;

	len -= msg->sg.size;
	while (len > 0) {
		struct scatterlist *sge;
		u32 orig_offset;
		int use, i;

		if (!sk_page_frag_refill(sk, pfrag))
			return -ENOMEM;

		orig_offset = pfrag->offset;
		use = min_t(int, len, pfrag->size - orig_offset);
		if (!sk_wmem_schedule(sk, use))
			return -ENOMEM;

		i = msg->sg.end;
		sk_msg_iter_var_prev(i);
		sge = &msg->sg.data[i];

		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
		    sg_page(sge) == pfrag->page &&
		    sge->offset + sge->length == orig_offset) {
			sge->length += use;
		} else {
			if (sk_msg_full(msg)) {
				ret = -ENOSPC;
				break;
			}

			sge = &msg->sg.data[msg->sg.end];
			sg_unmark_end(sge);
			sg_set_page(sge, pfrag->page, use, orig_offset);
			get_page(pfrag->page);
			sk_msg_iter_next(msg, end);
		}

		sk_mem_charge(sk, use);
		msg->sg.size += use;
		pfrag->offset += use;
		len -= use;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(sk_msg_alloc);

77 78 79 80 81
int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
		 u32 off, u32 len)
{
	int i = src->sg.start;
	struct scatterlist *sge = sk_msg_elem(src, i);
82
	struct scatterlist *sgd = NULL;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	u32 sge_len, sge_off;

	while (off) {
		if (sge->length > off)
			break;
		off -= sge->length;
		sk_msg_iter_var_next(i);
		if (i == src->sg.end && off)
			return -ENOSPC;
		sge = sk_msg_elem(src, i);
	}

	while (len) {
		sge_len = sge->length - off;
		if (sge_len > len)
			sge_len = len;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

		if (dst->sg.end)
			sgd = sk_msg_elem(dst, dst->sg.end - 1);

		if (sgd &&
		    (sg_page(sge) == sg_page(sgd)) &&
		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
			sgd->length += sge_len;
			dst->sg.size += sge_len;
		} else if (!sk_msg_full(dst)) {
			sge_off = sge->offset + off;
			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
		} else {
			return -ENOSPC;
		}

115 116 117 118 119 120 121 122 123 124 125 126 127
		off = 0;
		len -= sge_len;
		sk_mem_charge(sk, sge_len);
		sk_msg_iter_var_next(i);
		if (i == src->sg.end && len)
			return -ENOSPC;
		sge = sk_msg_elem(src, i);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(sk_msg_clone);

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
{
	int i = msg->sg.start;

	do {
		struct scatterlist *sge = sk_msg_elem(msg, i);

		if (bytes < sge->length) {
			sge->length -= bytes;
			sge->offset += bytes;
			sk_mem_uncharge(sk, bytes);
			break;
		}

		sk_mem_uncharge(sk, sge->length);
		bytes -= sge->length;
		sge->length = 0;
		sge->offset = 0;
		sk_msg_iter_var_next(i);
	} while (bytes && i != msg->sg.end);
	msg->sg.start = i;
}
EXPORT_SYMBOL_GPL(sk_msg_return_zero);

void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
{
	int i = msg->sg.start;

	do {
		struct scatterlist *sge = &msg->sg.data[i];
		int uncharge = (bytes < sge->length) ? bytes : sge->length;

		sk_mem_uncharge(sk, uncharge);
		bytes -= uncharge;
		sk_msg_iter_var_next(i);
	} while (i != msg->sg.end);
}
EXPORT_SYMBOL_GPL(sk_msg_return);

static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
			    bool charge)
{
	struct scatterlist *sge = sk_msg_elem(msg, i);
	u32 len = sge->length;

173 174 175 176
	/* When the skb owns the memory we free it from consume_skb path. */
	if (!msg->skb) {
		if (charge)
			sk_mem_uncharge(sk, len);
177
		put_page(sg_page(sge));
178
	}
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	memset(sge, 0, sizeof(*sge));
	return len;
}

static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
			 bool charge)
{
	struct scatterlist *sge = sk_msg_elem(msg, i);
	int freed = 0;

	while (msg->sg.size) {
		msg->sg.size -= sge->length;
		freed += sk_msg_free_elem(sk, msg, i, charge);
		sk_msg_iter_var_next(i);
		sk_msg_check_to_free(msg, i, msg->sg.size);
		sge = sk_msg_elem(msg, i);
	}
196
	consume_skb(msg->skb);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	sk_msg_init(msg);
	return freed;
}

int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
{
	return __sk_msg_free(sk, msg, msg->sg.start, false);
}
EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);

int sk_msg_free(struct sock *sk, struct sk_msg *msg)
{
	return __sk_msg_free(sk, msg, msg->sg.start, true);
}
EXPORT_SYMBOL_GPL(sk_msg_free);

static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
				  u32 bytes, bool charge)
{
	struct scatterlist *sge;
	u32 i = msg->sg.start;

	while (bytes) {
		sge = sk_msg_elem(msg, i);
		if (!sge->length)
			break;
		if (bytes < sge->length) {
			if (charge)
				sk_mem_uncharge(sk, bytes);
			sge->length -= bytes;
			sge->offset += bytes;
			msg->sg.size -= bytes;
			break;
		}

		msg->sg.size -= sge->length;
		bytes -= sge->length;
		sk_msg_free_elem(sk, msg, i, charge);
		sk_msg_iter_var_next(i);
		sk_msg_check_to_free(msg, i, bytes);
	}
	msg->sg.start = i;
}

void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
{
	__sk_msg_free_partial(sk, msg, bytes, true);
}
EXPORT_SYMBOL_GPL(sk_msg_free_partial);

void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
				  u32 bytes)
{
	__sk_msg_free_partial(sk, msg, bytes, false);
}

void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
{
	int trim = msg->sg.size - len;
	u32 i = msg->sg.end;

	if (trim <= 0) {
		WARN_ON(trim < 0);
		return;
	}

	sk_msg_iter_var_prev(i);
	msg->sg.size = len;
	while (msg->sg.data[i].length &&
	       trim >= msg->sg.data[i].length) {
		trim -= msg->sg.data[i].length;
		sk_msg_free_elem(sk, msg, i, true);
		sk_msg_iter_var_prev(i);
		if (!trim)
			goto out;
	}

	msg->sg.data[i].length -= trim;
	sk_mem_uncharge(sk, trim);
276 277 278
	/* Adjust copybreak if it falls into the trimmed part of last buf */
	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
		msg->sg.copybreak = msg->sg.data[i].length;
279
out:
280 281 282 283 284 285
	sk_msg_iter_var_next(i);
	msg->sg.end = i;

	/* If we trim data a full sg elem before curr pointer update
	 * copybreak and current so that any future copy operations
	 * start at new copy location.
286 287 288
	 * However trimed data that has not yet been used in a copy op
	 * does not require an update.
	 */
289 290 291 292 293 294
	if (!msg->sg.size) {
		msg->sg.curr = msg->sg.start;
		msg->sg.copybreak = 0;
	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
		sk_msg_iter_var_prev(i);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
		msg->sg.curr = i;
		msg->sg.copybreak = msg->sg.data[i].length;
	}
}
EXPORT_SYMBOL_GPL(sk_msg_trim);

int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
			      struct sk_msg *msg, u32 bytes)
{
	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
	const int to_max_pages = MAX_MSG_FRAGS;
	struct page *pages[MAX_MSG_FRAGS];
	ssize_t orig, copied, use, offset;

	orig = msg->sg.size;
	while (bytes > 0) {
		i = 0;
		maxpages = to_max_pages - num_elems;
		if (maxpages == 0) {
			ret = -EFAULT;
			goto out;
		}

		copied = iov_iter_get_pages(from, pages, bytes, maxpages,
					    &offset);
		if (copied <= 0) {
			ret = -EFAULT;
			goto out;
		}

		iov_iter_advance(from, copied);
		bytes -= copied;
		msg->sg.size += copied;

		while (copied) {
			use = min_t(int, copied, PAGE_SIZE - offset);
			sg_set_page(&msg->sg.data[msg->sg.end],
				    pages[i], use, offset);
			sg_unmark_end(&msg->sg.data[msg->sg.end]);
			sk_mem_charge(sk, use);

			offset = 0;
			copied -= use;
			sk_msg_iter_next(msg, end);
			num_elems++;
			i++;
		}
		/* When zerocopy is mixed with sk_msg_*copy* operations we
		 * may have a copybreak set in this case clear and prefer
		 * zerocopy remainder when possible.
		 */
		msg->sg.copybreak = 0;
		msg->sg.curr = msg->sg.end;
	}
out:
	/* Revert iov_iter updates, msg will need to use 'trim' later if it
	 * also needs to be cleared.
	 */
	if (ret)
		iov_iter_revert(from, msg->sg.size - orig);
	return ret;
}
EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);

int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
			     struct sk_msg *msg, u32 bytes)
{
	int ret = -ENOSPC, i = msg->sg.curr;
	struct scatterlist *sge;
	u32 copy, buf_size;
	void *to;

	do {
		sge = sk_msg_elem(msg, i);
		/* This is possible if a trim operation shrunk the buffer */
		if (msg->sg.copybreak >= sge->length) {
			msg->sg.copybreak = 0;
			sk_msg_iter_var_next(i);
			if (i == msg->sg.end)
				break;
			sge = sk_msg_elem(msg, i);
		}

		buf_size = sge->length - msg->sg.copybreak;
		copy = (buf_size > bytes) ? bytes : buf_size;
		to = sg_virt(sge) + msg->sg.copybreak;
		msg->sg.copybreak += copy;
		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
			ret = copy_from_iter_nocache(to, copy, from);
		else
			ret = copy_from_iter(to, copy, from);
		if (ret != copy) {
			ret = -EFAULT;
			goto out;
		}
		bytes -= copy;
		if (!bytes)
			break;
		msg->sg.copybreak = 0;
		sk_msg_iter_var_next(i);
	} while (i != msg->sg.end);
out:
	msg->sg.curr = i;
	return ret;
}
EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);

402 403
static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
						  struct sk_buff *skb)
404 405 406
{
	struct sk_msg *msg;

407
	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
408 409 410 411
		return NULL;

	if (!sk_rmem_schedule(sk, skb, skb->truesize))
		return NULL;
412

413 414
	msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
	if (unlikely(!msg))
415
		return NULL;
416 417

	sk_msg_init(msg);
418 419 420 421 422 423 424 425
	return msg;
}

static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
					struct sk_psock *psock,
					struct sock *sk,
					struct sk_msg *msg)
{
426
	int num_sge, copied;
427

428 429 430 431 432 433 434 435
	/* skb linearize may fail with ENOMEM, but lets simply try again
	 * later if this happens. Under memory pressure we don't want to
	 * drop the skb. We need to linearize the skb so that the mapping
	 * in skb_to_sgvec can not error.
	 */
	if (skb_linearize(skb))
		return -EAGAIN;
	num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
436 437 438 439 440 441 442
	if (unlikely(num_sge < 0)) {
		kfree(msg);
		return num_sge;
	}

	copied = skb->len;
	msg->sg.start = 0;
443
	msg->sg.size = copied;
444
	msg->sg.end = num_sge;
445 446 447
	msg->skb = skb;

	sk_psock_queue_msg(psock, msg);
448
	sk_psock_data_ready(sk, psock);
449 450 451
	return copied;
}

452 453
static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);

454 455 456 457 458
static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
{
	struct sock *sk = psock->sk;
	struct sk_msg *msg;

459 460 461 462 463 464
	/* If we are receiving on the same sock skb->sk is already assigned,
	 * skip memory accounting and owner transition seeing it already set
	 * correctly.
	 */
	if (unlikely(skb->sk == sk))
		return sk_psock_skb_ingress_self(psock, skb);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	msg = sk_psock_create_ingress_msg(sk, skb);
	if (!msg)
		return -EAGAIN;

	/* This will transition ownership of the data from the socket where
	 * the BPF program was run initiating the redirect to the socket
	 * we will eventually receive this data on. The data will be released
	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
	 * into user buffers.
	 */
	skb_set_owner_r(skb, sk);
	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
}

/* Puts an skb on the ingress queue of the socket already assigned to the
 * skb. In this case we do not need to check memory limits or skb_set_owner_r
 * because the skb is already accounted for here.
 */
static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
{
	struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
	struct sock *sk = psock->sk;

	if (unlikely(!msg))
		return -EAGAIN;
	sk_msg_init(msg);
	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
}

494 495 496
static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
			       u32 off, u32 len, bool ingress)
{
497 498 499
	if (!ingress) {
		if (!sock_writeable(psock->sk))
			return -EAGAIN;
500
		return skb_send_sock_locked(psock->sk, skb, off, len);
501 502
	}
	return sk_psock_skb_ingress(psock, skb);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
}

static void sk_psock_backlog(struct work_struct *work)
{
	struct sk_psock *psock = container_of(work, struct sk_psock, work);
	struct sk_psock_work_state *state = &psock->work_state;
	struct sk_buff *skb;
	bool ingress;
	u32 len, off;
	int ret;

	/* Lock sock to avoid losing sk_socket during loop. */
	lock_sock(psock->sk);
	if (state->skb) {
		skb = state->skb;
		len = state->len;
		off = state->off;
		state->skb = NULL;
		goto start;
	}

	while ((skb = skb_dequeue(&psock->ingress_skb))) {
		len = skb->len;
		off = 0;
start:
		ingress = tcp_skb_bpf_ingress(skb);
		do {
			ret = -EIO;
			if (likely(psock->sk->sk_socket))
				ret = sk_psock_handle_skb(psock, skb, off,
							  len, ingress);
			if (ret <= 0) {
				if (ret == -EAGAIN) {
					state->skb = skb;
					state->len = len;
					state->off = off;
					goto end;
				}
				/* Hard errors break pipe and stop xmit. */
				sk_psock_report_error(psock, ret ? -ret : EPIPE);
				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
				kfree_skb(skb);
				goto end;
			}
			off += ret;
			len -= ret;
		} while (len);

		if (!ingress)
			kfree_skb(skb);
	}
end:
	release_sock(psock->sk);
}

struct sk_psock *sk_psock_init(struct sock *sk, int node)
{
560 561
	struct sk_psock *psock;
	struct proto *prot;
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	write_lock_bh(&sk->sk_callback_lock);

	if (inet_csk_has_ulp(sk)) {
		psock = ERR_PTR(-EINVAL);
		goto out;
	}

	if (sk->sk_user_data) {
		psock = ERR_PTR(-EBUSY);
		goto out;
	}

	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
	if (!psock) {
		psock = ERR_PTR(-ENOMEM);
		goto out;
	}

	prot = READ_ONCE(sk->sk_prot);
582
	psock->sk = sk;
583 584 585 586 587
	psock->eval = __SK_NONE;
	psock->sk_proto = prot;
	psock->saved_unhash = prot->unhash;
	psock->saved_close = prot->close;
	psock->saved_write_space = sk->sk_write_space;
588 589 590 591 592 593 594 595 596 597 598

	INIT_LIST_HEAD(&psock->link);
	spin_lock_init(&psock->link_lock);

	INIT_WORK(&psock->work, sk_psock_backlog);
	INIT_LIST_HEAD(&psock->ingress_msg);
	skb_queue_head_init(&psock->ingress_skb);

	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
	refcount_set(&psock->refcnt, 1);

599
	rcu_assign_sk_user_data_nocopy(sk, psock);
600 601
	sock_hold(sk);

602 603
out:
	write_unlock_bh(&sk->sk_callback_lock);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	return psock;
}
EXPORT_SYMBOL_GPL(sk_psock_init);

struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
{
	struct sk_psock_link *link;

	spin_lock_bh(&psock->link_lock);
	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
					list);
	if (link)
		list_del(&link->list);
	spin_unlock_bh(&psock->link_lock);
	return link;
}

void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
{
	struct sk_msg *msg, *tmp;

	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
		list_del(&msg->list);
		sk_msg_free(psock->sk, msg);
		kfree(msg);
	}
}

static void sk_psock_zap_ingress(struct sk_psock *psock)
{
	__skb_queue_purge(&psock->ingress_skb);
	__sk_psock_purge_ingress_msg(psock);
}

static void sk_psock_link_destroy(struct sk_psock *psock)
{
	struct sk_psock_link *link, *tmp;

	list_for_each_entry_safe(link, tmp, &psock->link, list) {
		list_del(&link->list);
		sk_psock_free_link(link);
	}
}

static void sk_psock_destroy_deferred(struct work_struct *gc)
{
	struct sk_psock *psock = container_of(gc, struct sk_psock, gc);

	/* No sk_callback_lock since already detached. */
653 654 655 656

	/* Parser has been stopped */
	if (psock->progs.skb_parser)
		strp_done(&psock->parser.strp);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

	cancel_work_sync(&psock->work);

	psock_progs_drop(&psock->progs);

	sk_psock_link_destroy(psock);
	sk_psock_cork_free(psock);
	sk_psock_zap_ingress(psock);

	if (psock->sk_redir)
		sock_put(psock->sk_redir);
	sock_put(psock->sk);
	kfree(psock);
}

void sk_psock_destroy(struct rcu_head *rcu)
{
	struct sk_psock *psock = container_of(rcu, struct sk_psock, rcu);

	INIT_WORK(&psock->gc, sk_psock_destroy_deferred);
	schedule_work(&psock->gc);
}
EXPORT_SYMBOL_GPL(sk_psock_destroy);

void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
{
	sk_psock_cork_free(psock);
684
	sk_psock_zap_ingress(psock);
685 686

	write_lock_bh(&sk->sk_callback_lock);
687 688
	sk_psock_restore_proto(sk, psock);
	rcu_assign_sk_user_data(sk, NULL);
689 690
	if (psock->progs.skb_parser)
		sk_psock_stop_strp(sk, psock);
691 692
	else if (psock->progs.skb_verdict)
		sk_psock_stop_verdict(sk, psock);
693 694 695
	write_unlock_bh(&sk->sk_callback_lock);
	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);

696
	call_rcu(&psock->rcu, sk_psock_destroy);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}
EXPORT_SYMBOL_GPL(sk_psock_drop);

static int sk_psock_map_verd(int verdict, bool redir)
{
	switch (verdict) {
	case SK_PASS:
		return redir ? __SK_REDIRECT : __SK_PASS;
	case SK_DROP:
	default:
		break;
	}

	return __SK_DROP;
}

int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
			 struct sk_msg *msg)
{
	struct bpf_prog *prog;
	int ret;

	rcu_read_lock();
	prog = READ_ONCE(psock->progs.msg_parser);
	if (unlikely(!prog)) {
		ret = __SK_PASS;
		goto out;
	}

	sk_msg_compute_data_pointers(msg);
	msg->sk = sk;
728
	ret = bpf_prog_run_pin_on_cpu(prog, msg);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	ret = sk_psock_map_verd(ret, msg->sk_redir);
	psock->apply_bytes = msg->apply_bytes;
	if (ret == __SK_REDIRECT) {
		if (psock->sk_redir)
			sock_put(psock->sk_redir);
		psock->sk_redir = msg->sk_redir;
		if (!psock->sk_redir) {
			ret = __SK_DROP;
			goto out;
		}
		sock_hold(psock->sk_redir);
	}
out:
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);

static int sk_psock_bpf_run(struct sk_psock *psock, struct bpf_prog *prog,
			    struct sk_buff *skb)
{
	bpf_compute_data_end_sk_skb(skb);
751
	return bpf_prog_run_pin_on_cpu(prog, skb);
752 753 754 755 756 757 758 759 760 761
}

static struct sk_psock *sk_psock_from_strp(struct strparser *strp)
{
	struct sk_psock_parser *parser;

	parser = container_of(strp, struct sk_psock_parser, strp);
	return container_of(parser, struct sk_psock, parser);
}

762
static void sk_psock_skb_redirect(struct sk_buff *skb)
763 764 765 766
{
	struct sk_psock *psock_other;
	struct sock *sk_other;

767
	sk_other = tcp_skb_bpf_redirect_fetch(skb);
768 769 770
	/* This error is a buggy BPF program, it returned a redirect
	 * return code, but then didn't set a redirect interface.
	 */
771 772 773 774 775
	if (unlikely(!sk_other)) {
		kfree_skb(skb);
		return;
	}
	psock_other = sk_psock(sk_other);
776 777 778 779
	/* This error indicates the socket is being torn down or had another
	 * error that caused the pipe to break. We can't send a packet on
	 * a socket that is in this state so we drop the skb.
	 */
780 781 782 783 784 785
	if (!psock_other || sock_flag(sk_other, SOCK_DEAD) ||
	    !sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
		kfree_skb(skb);
		return;
	}

786 787
	skb_queue_tail(&psock_other->ingress_skb, skb);
	schedule_work(&psock_other->work);
788 789
}

790
static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict)
791 792 793
{
	switch (verdict) {
	case __SK_REDIRECT:
794
		skb_set_owner_r(skb, sk);
795
		sk_psock_skb_redirect(skb);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		break;
	case __SK_PASS:
	case __SK_DROP:
	default:
		break;
	}
}

int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
{
	struct bpf_prog *prog;
	int ret = __SK_PASS;

	rcu_read_lock();
	prog = READ_ONCE(psock->progs.skb_verdict);
	if (likely(prog)) {
812 813 814 815 816
		/* We skip full set_owner_r here because if we do a SK_PASS
		 * or SK_DROP we can skip skb memory accounting and use the
		 * TLS context.
		 */
		skb->sk = psock->sk;
817 818 819
		tcp_skb_bpf_redirect_clear(skb);
		ret = sk_psock_bpf_run(psock, prog, skb);
		ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
820
		skb->sk = NULL;
821
	}
822
	sk_psock_tls_verdict_apply(skb, psock->sk, ret);
823 824 825 826 827
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);

828 829 830
static void sk_psock_verdict_apply(struct sk_psock *psock,
				   struct sk_buff *skb, int verdict)
{
831
	struct tcp_skb_cb *tcp;
832
	struct sock *sk_other;
833
	int err = -EIO;
834

835
	switch (verdict) {
836 837 838 839 840 841 842
	case __SK_PASS:
		sk_other = psock->sk;
		if (sock_flag(sk_other, SOCK_DEAD) ||
		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
			goto out_free;
		}

843 844
		tcp = TCP_SKB_CB(skb);
		tcp->bpf.flags |= BPF_F_INGRESS;
845 846 847 848 849 850 851 852

		/* If the queue is empty then we can submit directly
		 * into the msg queue. If its not empty we have to
		 * queue work otherwise we may get OOO data. Otherwise,
		 * if sk_psock_skb_ingress errors will be handled by
		 * retrying later from workqueue.
		 */
		if (skb_queue_empty(&psock->ingress_skb)) {
853
			err = sk_psock_skb_ingress_self(psock, skb);
854 855 856 857 858
		}
		if (err < 0) {
			skb_queue_tail(&psock->ingress_skb, skb);
			schedule_work(&psock->work);
		}
859
		break;
860
	case __SK_REDIRECT:
861
		sk_psock_skb_redirect(skb);
862
		break;
863 864 865 866 867 868 869 870 871
	case __SK_DROP:
	default:
out_free:
		kfree_skb(skb);
	}
}

static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
{
872
	struct sk_psock *psock;
873 874
	struct bpf_prog *prog;
	int ret = __SK_DROP;
875
	struct sock *sk;
876 877

	rcu_read_lock();
878 879 880 881 882 883
	sk = strp->sk;
	psock = sk_psock(sk);
	if (unlikely(!psock)) {
		kfree_skb(skb);
		goto out;
	}
884
	skb_set_owner_r(skb, sk);
885 886 887 888 889 890 891
	prog = READ_ONCE(psock->progs.skb_verdict);
	if (likely(prog)) {
		tcp_skb_bpf_redirect_clear(skb);
		ret = sk_psock_bpf_run(psock, prog, skb);
		ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
	}
	sk_psock_verdict_apply(psock, skb, ret);
892
out:
893
	rcu_read_unlock();
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
}

static int sk_psock_strp_read_done(struct strparser *strp, int err)
{
	return err;
}

static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
{
	struct sk_psock *psock = sk_psock_from_strp(strp);
	struct bpf_prog *prog;
	int ret = skb->len;

	rcu_read_lock();
	prog = READ_ONCE(psock->progs.skb_parser);
909 910
	if (likely(prog)) {
		skb->sk = psock->sk;
911
		ret = sk_psock_bpf_run(psock, prog, skb);
912 913
		skb->sk = NULL;
	}
914 915 916 917 918
	rcu_read_unlock();
	return ret;
}

/* Called with socket lock held. */
919
static void sk_psock_strp_data_ready(struct sock *sk)
920 921 922 923 924 925
{
	struct sk_psock *psock;

	rcu_read_lock();
	psock = sk_psock(sk);
	if (likely(psock)) {
926 927 928 929 930 931 932
		if (tls_sw_has_ctx_rx(sk)) {
			psock->parser.saved_data_ready(sk);
		} else {
			write_lock_bh(&sk->sk_callback_lock);
			strp_data_ready(&psock->parser.strp);
			write_unlock_bh(&sk->sk_callback_lock);
		}
933 934 935 936
	}
	rcu_read_unlock();
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
				 unsigned int offset, size_t orig_len)
{
	struct sock *sk = (struct sock *)desc->arg.data;
	struct sk_psock *psock;
	struct bpf_prog *prog;
	int ret = __SK_DROP;
	int len = skb->len;

	/* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
	skb = skb_clone(skb, GFP_ATOMIC);
	if (!skb) {
		desc->error = -ENOMEM;
		return 0;
	}

	rcu_read_lock();
	psock = sk_psock(sk);
	if (unlikely(!psock)) {
		len = 0;
		kfree_skb(skb);
		goto out;
	}
	skb_set_owner_r(skb, sk);
	prog = READ_ONCE(psock->progs.skb_verdict);
	if (likely(prog)) {
		tcp_skb_bpf_redirect_clear(skb);
		ret = sk_psock_bpf_run(psock, prog, skb);
		ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
	}
	sk_psock_verdict_apply(psock, skb, ret);
out:
	rcu_read_unlock();
	return len;
}

static void sk_psock_verdict_data_ready(struct sock *sk)
{
	struct socket *sock = sk->sk_socket;
	read_descriptor_t desc;

	if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
		return;

	desc.arg.data = sk;
	desc.error = 0;
	desc.count = 1;

	sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
}

988 989 990
static void sk_psock_write_space(struct sock *sk)
{
	struct sk_psock *psock;
991
	void (*write_space)(struct sock *sk) = NULL;
992 993 994

	rcu_read_lock();
	psock = sk_psock(sk);
995 996 997 998 999
	if (likely(psock)) {
		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
			schedule_work(&psock->work);
		write_space = psock->saved_write_space;
	}
1000
	rcu_read_unlock();
1001 1002
	if (write_space)
		write_space(sk);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
}

int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
{
	static const struct strp_callbacks cb = {
		.rcv_msg	= sk_psock_strp_read,
		.read_sock_done	= sk_psock_strp_read_done,
		.parse_msg	= sk_psock_strp_parse,
	};

	psock->parser.enabled = false;
	return strp_init(&psock->parser.strp, sk, &cb);
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
{
	struct sk_psock_parser *parser = &psock->parser;

	if (parser->enabled)
		return;

	parser->saved_data_ready = sk->sk_data_ready;
	sk->sk_data_ready = sk_psock_verdict_data_ready;
	sk->sk_write_space = sk_psock_write_space;
	parser->enabled = true;
}

1030 1031 1032 1033 1034 1035 1036 1037
void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
{
	struct sk_psock_parser *parser = &psock->parser;

	if (parser->enabled)
		return;

	parser->saved_data_ready = sk->sk_data_ready;
1038
	sk->sk_data_ready = sk_psock_strp_data_ready;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	sk->sk_write_space = sk_psock_write_space;
	parser->enabled = true;
}

void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
{
	struct sk_psock_parser *parser = &psock->parser;

	if (!parser->enabled)
		return;

	sk->sk_data_ready = parser->saved_data_ready;
	parser->saved_data_ready = NULL;
	strp_stop(&parser->strp);
	parser->enabled = false;
}
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
{
	struct sk_psock_parser *parser = &psock->parser;

	if (!parser->enabled)
		return;

	sk->sk_data_ready = parser->saved_data_ready;
	parser->saved_data_ready = NULL;
	parser->enabled = false;
}