cx23885-core.c 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 *  Driver for the Conexant CX23885 PCIe bridge
 *
 *  Copyright (c) 2006 Steven Toth <stoth@hauppauge.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/init.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kmod.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/div64.h>

#include "cx23885.h"

MODULE_DESCRIPTION("Driver for cx23885 based TV cards");
MODULE_AUTHOR("Steven Toth <stoth@hauppauge.com>");
MODULE_LICENSE("GPL");

static unsigned int debug = 0;
module_param(debug,int,0644);
MODULE_PARM_DESC(debug,"enable debug messages");

static unsigned int card[]  = {[0 ... (CX23885_MAXBOARDS - 1)] = UNSET };
module_param_array(card,  int, NULL, 0444);
MODULE_PARM_DESC(card,"card type");

#define dprintk(level,fmt, arg...)	if (debug >= level) \
	printk(KERN_DEBUG "%s/0: " fmt, dev->name , ## arg)

static unsigned int cx23885_devcount;

static DEFINE_MUTEX(devlist);
static LIST_HEAD(cx23885_devlist);

#define NO_SYNC_LINE (-1U)

/*
 * CX23885 Assumptions
 * 1 line = 16 bytes of CDT
 * cmds size = 80
 * cdt size = 16 * linesize
 * iqsize = 64
 * maxlines = 6
 *
 * Address Space:
 * 0x00000000 0x00008fff FIFO clusters
 * 0x00010000 0x000104af Channel Management Data Structures
 * 0x000104b0 0x000104ff Free
 * 0x00010500 0x000108bf 15 channels * iqsize
 * 0x000108c0 0x000108ff Free
 * 0x00010900 0x00010e9f IQ's + Cluster Descriptor Tables
 *                       15 channels * (iqsize + (maxlines * linesize))
 * 0x00010ea0 0x00010xxx Free
 */

struct sram_channel cx23885_sram_channels[] = {
	[SRAM_CH01] = {
		.name		= "test ch1",
		.cmds_start	= 0x10000,
		.ctrl_start	= 0x10500,
		.cdt		= 0x10900,
		.fifo_start	= 0x3000,
		.fifo_size	= 0x1000,
		.ptr1_reg	= DMA1_PTR1,
		.ptr2_reg	= DMA1_PTR2,
		.cnt1_reg	= DMA1_CNT1,
		.cnt2_reg	= DMA1_CNT2,
		.jumponly	= 1,
	},
	[SRAM_CH02] = {
		.name		= "ch2",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA2_PTR1,
		.ptr2_reg	= DMA2_PTR2,
		.cnt1_reg	= DMA2_CNT1,
		.cnt2_reg	= DMA2_CNT2,
	},
	[SRAM_CH03] = {
		.name		= "ch3",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA3_PTR1,
		.ptr2_reg	= DMA3_PTR2,
		.cnt1_reg	= DMA3_CNT1,
		.cnt2_reg	= DMA3_CNT2,
	},
	[SRAM_CH04] = {
		.name		= "ch4",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA4_PTR1,
		.ptr2_reg	= DMA4_PTR2,
		.cnt1_reg	= DMA4_CNT1,
		.cnt2_reg	= DMA4_CNT2,
	},
	[SRAM_CH05] = {
		.name		= "ch5",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA5_PTR1,
		.ptr2_reg	= DMA5_PTR2,
		.cnt1_reg	= DMA5_CNT1,
		.cnt2_reg	= DMA5_CNT2,
	},
	[SRAM_CH06] = {
		.name		= "TS2 C",
		.cmds_start	= 0x10140,
		.ctrl_start	= 0x10680,
		.cdt		= 0x10480,
		.fifo_start	= 0x6000,
		.fifo_size	= 0x1000,
		.ptr1_reg	= DMA5_PTR1,
		.ptr2_reg	= DMA5_PTR2,
		.cnt1_reg	= DMA5_CNT1,
		.cnt2_reg	= DMA5_CNT2,
	},
	[SRAM_CH07] = {
		.name		= "ch7",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA6_PTR1,
		.ptr2_reg	= DMA6_PTR2,
		.cnt1_reg	= DMA6_CNT1,
		.cnt2_reg	= DMA6_CNT2,
	},
	[SRAM_CH08] = {
		.name		= "ch8",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA7_PTR1,
		.ptr2_reg	= DMA7_PTR2,
		.cnt1_reg	= DMA7_CNT1,
		.cnt2_reg	= DMA7_CNT2,
	},
	[SRAM_CH09] = {
		.name		= "ch9",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA8_PTR1,
		.ptr2_reg	= DMA8_PTR2,
		.cnt1_reg	= DMA8_CNT1,
		.cnt2_reg	= DMA8_CNT2,
	},
};

/* FIXME, these allocations will change when
 * analog arrives. The be reviewed.
 * CX23887 Assumptions
 * 1 line = 16 bytes of CDT
 * cmds size = 80
 * cdt size = 16 * linesize
 * iqsize = 64
 * maxlines = 6
 *
 * Address Space:
 * 0x00000000 0x00008fff FIFO clusters
 * 0x00010000 0x000104af Channel Management Data Structures
 * 0x000104b0 0x000104ff Free
 * 0x00010500 0x000108bf 15 channels * iqsize
 * 0x000108c0 0x000108ff Free
 * 0x00010900 0x00010e9f IQ's + Cluster Descriptor Tables
 *                       15 channels * (iqsize + (maxlines * linesize))
 * 0x00010ea0 0x00010xxx Free
 */

struct sram_channel cx23887_sram_channels[] = {
	[SRAM_CH01] = {
		.name		= "test ch1",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA1_PTR1,
		.ptr2_reg	= DMA1_PTR2,
		.cnt1_reg	= DMA1_CNT1,
		.cnt2_reg	= DMA1_CNT2,
	},
	[SRAM_CH02] = {
		.name		= "ch2",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA2_PTR1,
		.ptr2_reg	= DMA2_PTR2,
		.cnt1_reg	= DMA2_CNT1,
		.cnt2_reg	= DMA2_CNT2,
	},
	[SRAM_CH03] = {
		.name		= "ch3",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA3_PTR1,
		.ptr2_reg	= DMA3_PTR2,
		.cnt1_reg	= DMA3_CNT1,
		.cnt2_reg	= DMA3_CNT2,
	},
	[SRAM_CH04] = {
		.name		= "ch4",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA4_PTR1,
		.ptr2_reg	= DMA4_PTR2,
		.cnt1_reg	= DMA4_CNT1,
		.cnt2_reg	= DMA4_CNT2,
	},
	[SRAM_CH05] = {
		.name		= "ch5",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA5_PTR1,
		.ptr2_reg	= DMA5_PTR2,
		.cnt1_reg	= DMA5_CNT1,
		.cnt2_reg	= DMA5_CNT2,
	},
	[SRAM_CH06] = {
		.name		= "TS2 C",
		.cmds_start	= 0x10140,
		.ctrl_start	= 0x10680,
273
		.cdt		= 0x108d0,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
		.fifo_start	= 0x6000,
		.fifo_size	= 0x1000,
		.ptr1_reg	= DMA5_PTR1,
		.ptr2_reg	= DMA5_PTR2,
		.cnt1_reg	= DMA5_CNT1,
		.cnt2_reg	= DMA5_CNT2,
	},
	[SRAM_CH07] = {
		.name		= "ch7",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA6_PTR1,
		.ptr2_reg	= DMA6_PTR2,
		.cnt1_reg	= DMA6_CNT1,
		.cnt2_reg	= DMA6_CNT2,
	},
	[SRAM_CH08] = {
		.name		= "ch8",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA7_PTR1,
		.ptr2_reg	= DMA7_PTR2,
		.cnt1_reg	= DMA7_CNT1,
		.cnt2_reg	= DMA7_CNT2,
	},
	[SRAM_CH09] = {
		.name		= "ch9",
		.cmds_start	= 0x0,
		.ctrl_start	= 0x0,
		.cdt		= 0x0,
		.fifo_start	= 0x0,
		.fifo_size	= 0x0,
		.ptr1_reg	= DMA8_PTR1,
		.ptr2_reg	= DMA8_PTR2,
		.cnt1_reg	= DMA8_CNT1,
		.cnt2_reg	= DMA8_CNT2,
	},
};

static int cx23885_risc_decode(u32 risc)
{
	static char *instr[16] = {
		[ RISC_SYNC    >> 28 ] = "sync",
		[ RISC_WRITE   >> 28 ] = "write",
		[ RISC_WRITEC  >> 28 ] = "writec",
		[ RISC_READ    >> 28 ] = "read",
		[ RISC_READC   >> 28 ] = "readc",
		[ RISC_JUMP    >> 28 ] = "jump",
		[ RISC_SKIP    >> 28 ] = "skip",
		[ RISC_WRITERM >> 28 ] = "writerm",
		[ RISC_WRITECM >> 28 ] = "writecm",
		[ RISC_WRITECR >> 28 ] = "writecr",
	};
	static int incr[16] = {
		[ RISC_WRITE   >> 28 ] = 3, // 2
		[ RISC_JUMP    >> 28 ] = 3, // 2
		[ RISC_SKIP    >> 28 ] = 1,
		[ RISC_SYNC    >> 28 ] = 1,
		[ RISC_WRITERM >> 28 ] = 3,
		[ RISC_WRITECM >> 28 ] = 3,
		[ RISC_WRITECR >> 28 ] = 4,
	};
	static char *bits[] = {
		"12",   "13",   "14",   "resync",
		"cnt0", "cnt1", "18",   "19",
		"20",   "21",   "22",   "23",
		"irq1", "irq2", "eol",  "sol",
	};
	int i;

	printk("0x%08x [ %s", risc,
	       instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
352
	for (i = ARRAY_SIZE(bits) - 1; i >= 0; i--)
353
		if (risc & (1 << (i + 12)))
354
			printk(" %s", bits[i]);
355 356 357 358 359
	printk(" count=%d ]\n", risc & 0xfff);
	return incr[risc >> 28] ? incr[risc >> 28] : 1;
}

void cx23885_wakeup(struct cx23885_tsport *port,
360
		    struct cx23885_dmaqueue *q, u32 count)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
{
	struct cx23885_dev *dev = port->dev;
	struct cx23885_buffer *buf;
	int bc;

	for (bc = 0;; bc++) {
		if (list_empty(&q->active))
			break;
		buf = list_entry(q->active.next,
				 struct cx23885_buffer, vb.queue);
		/* count comes from the hw and is is 16bit wide --
		 * this trick handles wrap-arounds correctly for
		 * up to 32767 buffers in flight... */
		if ((s16) (count - buf->count) < 0)
			break;
		do_gettimeofday(&buf->vb.ts);
377
		dprintk(2, "[%p/%d] wakeup reg=%d buf=%d\n", buf, buf->vb.i,
378 379 380 381 382 383 384 385
			count, buf->count);
		buf->vb.state = STATE_DONE;
		list_del(&buf->vb.queue);
		wake_up(&buf->vb.done);
	}
	if (list_empty(&q->active)) {
		del_timer(&q->timeout);
	} else {
386
		mod_timer(&q->timeout, jiffies + BUFFER_TIMEOUT);
387 388
	}
	if (bc != 1)
389 390
		printk("%s: %d buffers handled (should be 1)\n",
		       __FUNCTION__, bc);
391 392
}
void cx23885_sram_channel_dump(struct cx23885_dev *dev,
393
			       struct sram_channel *ch);
394 395

int cx23885_sram_channel_setup(struct cx23885_dev *dev,
396 397
			       struct sram_channel *ch,
			       unsigned int bpl, u32 risc)
398
{
399
	unsigned int i, lines;
400 401 402 403
	u32 cdt;

	if (ch->cmds_start == 0)
	{
404 405
		dprintk(1, "%s() Erasing channel [%s]\n", __FUNCTION__,
			ch->name);
406 407 408 409 410 411
		cx_write(ch->ptr1_reg, 0);
		cx_write(ch->ptr2_reg, 0);
		cx_write(ch->cnt2_reg, 0);
		cx_write(ch->cnt1_reg, 0);
		return 0;
	} else {
412 413
		dprintk(1, "%s() Configuring channel [%s]\n", __FUNCTION__,
			ch->name);
414 415 416 417 418 419 420 421 422
	}

	bpl   = (bpl + 7) & ~7; /* alignment */
	cdt   = ch->cdt;
	lines = ch->fifo_size / bpl;
	if (lines > 6)
		lines = 6;
	BUG_ON(lines < 2);

423 424 425
	cx_write(8 + 0, cpu_to_le32(RISC_JUMP | RISC_IRQ1 | RISC_CNT_INC) );
	cx_write(8 + 4, cpu_to_le32(8) );
	cx_write(8 + 8, cpu_to_le32(0) );
426 427 428

	/* write CDT */
	for (i = 0; i < lines; i++) {
429 430
		dprintk(2, "%s() 0x%08x <- 0x%08x\n", __FUNCTION__, cdt + 16*i,
			ch->fifo_start + bpl*i);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
		cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
		cx_write(cdt + 16*i +  4, 0);
		cx_write(cdt + 16*i +  8, 0);
		cx_write(cdt + 16*i + 12, 0);
	}

	/* write CMDS */
	if (ch->jumponly)
		cx_write(ch->cmds_start +  0, 8);
	else
		cx_write(ch->cmds_start +  0, risc);
	cx_write(ch->cmds_start +  4, 0); /* 64 bits 63-32 */
	cx_write(ch->cmds_start +  8, cdt);
	cx_write(ch->cmds_start + 12, (lines*16) >> 3);
	cx_write(ch->cmds_start + 16, ch->ctrl_start);
	if (ch->jumponly)
		cx_write(ch->cmds_start + 20, 0x80000000 | (64 >> 2) );
	else
		cx_write(ch->cmds_start + 20, 64 >> 2);
	for (i = 24; i < 80; i += 4)
		cx_write(ch->cmds_start + i, 0);

	/* fill registers */
	cx_write(ch->ptr1_reg, ch->fifo_start);
	cx_write(ch->ptr2_reg, cdt);
	cx_write(ch->cnt2_reg, (lines*16) >> 3);
	cx_write(ch->cnt1_reg, (bpl >> 3) -1);

459 460
	dprintk(2,"[bridge %d] sram setup %s: bpl=%d lines=%d\n",
		dev->bridge,
461 462 463 464 465 466 467 468
		ch->name,
		bpl,
		lines);

	return 0;
}

void cx23885_sram_channel_dump(struct cx23885_dev *dev,
469
			       struct sram_channel *ch)
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
{
	static char *name[] = {
		"init risc lo",
		"init risc hi",
		"cdt base",
		"cdt size",
		"iq base",
		"iq size",
		"risc pc lo",
		"risc pc hi",
		"iq wr ptr",
		"iq rd ptr",
		"cdt current",
		"pci target lo",
		"pci target hi",
		"line / byte",
	};
	u32 risc;
488
	unsigned int i, j, n;
489 490 491 492 493 494 495 496 497

	printk("%s: %s - dma channel status dump\n",
	       dev->name, ch->name);
	for (i = 0; i < ARRAY_SIZE(name); i++)
		printk("%s:   cmds: %-15s: 0x%08x\n",
		       dev->name, name[i],
		       cx_read(ch->cmds_start + 4*i));

	for (i = 0; i < 4; i++) {
498
		risc = cx_read(ch->cmds_start + 4 * (i + 14));
499 500 501 502
		printk("%s:   risc%d: ", dev->name, i);
		cx23885_risc_decode(risc);
	}
	for (i = 0; i < (64 >> 2); i += n) {
503 504 505 506 507
		risc = cx_read(ch->ctrl_start + 4 * i);
		/* No consideration for bits 63-32 */

		printk("%s:   (0x%08x) iq %x: ", dev->name,
		       ch->ctrl_start + 4 * i, i);
508 509
		n = cx23885_risc_decode(risc);
		for (j = 1; j < n; j++) {
510
			risc = cx_read(ch->ctrl_start + 4 * (i + j));
511 512 513 514 515 516 517 518
			printk("%s:   iq %x: 0x%08x [ arg #%d ]\n",
			       dev->name, i+j, risc, j);
		}
	}

	printk("%s: fifo: 0x%08x -> 0x%x\n",
	       dev->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
	printk("%s: ctrl: 0x%08x -> 0x%x\n",
519
	       dev->name, ch->ctrl_start, ch->ctrl_start + 6*16);
520 521 522 523 524 525 526 527 528 529
	printk("%s:   ptr1_reg: 0x%08x\n",
	       dev->name, cx_read(ch->ptr1_reg));
	printk("%s:   ptr2_reg: 0x%08x\n",
	       dev->name, cx_read(ch->ptr2_reg));
	printk("%s:   cnt1_reg: 0x%08x\n",
	       dev->name, cx_read(ch->cnt1_reg));
	printk("%s:   cnt2_reg: 0x%08x\n",
	       dev->name, cx_read(ch->cnt2_reg));
}

530 531
void cx23885_risc_disasm(struct cx23885_tsport *port,
			 struct btcx_riscmem *risc)
532 533
{
	struct cx23885_dev *dev = port->dev;
534
	unsigned int i, j, n;
535 536 537 538 539 540 541 542

	printk("%s: risc disasm: %p [dma=0x%08lx]\n",
	       dev->name, risc->cpu, (unsigned long)risc->dma);
	for (i = 0; i < (risc->size >> 2); i += n) {
		printk("%s:   %04d: ", dev->name, i);
		n = cx23885_risc_decode(risc->cpu[i]);
		for (j = 1; j < n; j++)
			printk("%s:   %04d: 0x%08x [ arg #%d ]\n",
543
			       dev->name, i + j, risc->cpu[i + j], j);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		if (risc->cpu[i] == RISC_JUMP)
			break;
	}
}

void cx23885_shutdown(struct cx23885_dev *dev)
{
	/* disable RISC controller */
	cx_write(DEV_CNTRL2, 0);

	/* Disable all IR activity */
	cx_write(IR_CNTRL_REG, 0);

	/* Disable Video A/B activity */
	cx_write(VID_A_DMA_CTL, 0);
	cx_write(VID_B_DMA_CTL, 0);
	cx_write(VID_C_DMA_CTL, 0);

	/* Disable Audio activity */
	cx_write(AUD_INT_DMA_CTL, 0);
	cx_write(AUD_EXT_DMA_CTL, 0);

	/* Disable Serial port */
	cx_write(UART_CTL, 0);

	/* Disable Interrupts */
	cx_write(PCI_INT_MSK, 0);
	cx_write(VID_A_INT_MSK, 0);
	cx_write(VID_B_INT_MSK, 0);
	cx_write(VID_C_INT_MSK, 0);
	cx_write(AUDIO_INT_INT_MSK, 0);
	cx_write(AUDIO_EXT_INT_MSK, 0);

}

void cx23885_reset(struct cx23885_dev *dev)
{
	dprintk(1, "%s()\n", __FUNCTION__);

	cx23885_shutdown(dev);

	cx_write(PCI_INT_STAT, 0xffffffff);
	cx_write(VID_A_INT_STAT, 0xffffffff);
	cx_write(VID_B_INT_STAT, 0xffffffff);
	cx_write(VID_C_INT_STAT, 0xffffffff);
	cx_write(AUDIO_INT_INT_STAT, 0xffffffff);
	cx_write(AUDIO_EXT_INT_STAT, 0xffffffff);
	cx_write(CLK_DELAY, cx_read(CLK_DELAY) & 0x80000000);

	mdelay(100);

	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH01 ], 188*4, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH02 ], 128, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH03 ], 128, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH04 ], 128, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH05 ], 128, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH06 ], 188*4, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH07 ], 128, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH08 ], 128, 0);
	cx23885_sram_channel_setup(dev, &dev->sram_channels[ SRAM_CH09 ], 128, 0);

	switch(dev->board) {
	case CX23885_BOARD_HAUPPAUGE_HVR1800:
		/* GPIO-0 656_CLK */
		/* GPIO-1 656_D0 */
		/* GPIO-2 8295A Reset */
		/* GPIO-3-10 cx23417 data0-7 */
		/* GPIO-11-14 cx23417 addr0-3 */
		/* GPIO-15-18 cx23417 READY, CS, RD, WR */
		/* GPIO-19 IR_RX */
		dprintk( 1, "%s() Configuring HVR1800 GPIO's\n", __FUNCTION__);
		// FIXME: Analog requires the tuner is brought out of reset
		break;
	}
}


static int cx23885_pci_quirks(struct cx23885_dev *dev)
{
	dprintk(1, "%s()\n", __FUNCTION__);

	switch(dev->board) {
	case CX23885_BOARD_HAUPPAUGE_HVR1800lp:
		cx_clear(RDR_TLCTL0, 1 << 4);
		break;
	}
	return 0;
}

static int get_resources(struct cx23885_dev *dev)
{
	if (request_mem_region(pci_resource_start(dev->pci,0),
636 637
			       pci_resource_len(dev->pci,0),
			       dev->name))
638 639 640 641 642 643 644 645 646 647
		return 0;

	printk(KERN_ERR "%s: can't get MMIO memory @ 0x%llx\n",
		dev->name, (unsigned long long)pci_resource_start(dev->pci,0));

	return -EBUSY;
}

static void cx23885_timeout(unsigned long data);
int cx23885_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
648
			 u32 reg, u32 mask, u32 value);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

static int cx23885_ir_init(struct cx23885_dev *dev)
{
	dprintk(1, "%s()\n", __FUNCTION__);

	switch (dev->board) {
	case CX23885_BOARD_HAUPPAUGE_HVR1800:
		dprintk(1, "%s() FIXME - Implement IR support\n", __FUNCTION__);
		break;
	}

	return 0;
}

static int cx23885_dev_setup(struct cx23885_dev *dev)
{
	int i;

	mutex_init(&dev->lock);

	atomic_inc(&dev->refcount);

	dev->nr = cx23885_devcount++;
	dev->pci_bus  = dev->pci->bus->number;
	dev->pci_slot = PCI_SLOT(dev->pci->devfn);
	dev->pci_irqmask = 0x001f00;

	/* External Master 1 Bus */
	dev->i2c_bus[0].nr = 0;
	dev->i2c_bus[0].dev = dev;
	dev->i2c_bus[0].reg_stat  = I2C1_STAT;
	dev->i2c_bus[0].reg_ctrl  = I2C1_CTRL;
	dev->i2c_bus[0].reg_addr  = I2C1_ADDR;
	dev->i2c_bus[0].reg_rdata = I2C1_RDATA;
	dev->i2c_bus[0].reg_wdata = I2C1_WDATA;
	dev->i2c_bus[0].i2c_period = (0x9d << 24); /* 100kHz */

	/* External Master 2 Bus */
	dev->i2c_bus[1].nr = 1;
	dev->i2c_bus[1].dev = dev;
	dev->i2c_bus[1].reg_stat  = I2C2_STAT;
	dev->i2c_bus[1].reg_ctrl  = I2C2_CTRL;
	dev->i2c_bus[1].reg_addr  = I2C2_ADDR;
	dev->i2c_bus[1].reg_rdata = I2C2_RDATA;
	dev->i2c_bus[1].reg_wdata = I2C2_WDATA;
	dev->i2c_bus[1].i2c_period = (0x9d << 24); /* 100kHz */

	/* Internal Master 3 Bus */
	dev->i2c_bus[2].nr = 2;
	dev->i2c_bus[2].dev = dev;
	dev->i2c_bus[2].reg_stat  = I2C3_STAT;
	dev->i2c_bus[2].reg_ctrl  = I2C3_CTRL;
701
	dev->i2c_bus[2].reg_addr  = I2C3_ADDR;
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	dev->i2c_bus[2].reg_rdata = I2C3_RDATA;
	dev->i2c_bus[2].reg_wdata = I2C3_WDATA;
	dev->i2c_bus[2].i2c_period = (0x07 << 24); /* 1.95MHz */

	/* Transport bus init dma queue */
	spin_lock_init(&dev->ts2.slock);
	dev->ts2.dev = dev;
	dev->ts2.nr = 2;
	dev->ts2.sram_chno = SRAM_CH06;
	INIT_LIST_HEAD(&dev->ts2.mpegq.active);
	INIT_LIST_HEAD(&dev->ts2.mpegq.queued);
	dev->ts2.mpegq.timeout.function = cx23885_timeout;
	dev->ts2.mpegq.timeout.data     = (unsigned long)&dev->ts2;
	init_timer(&dev->ts2.mpegq.timeout);

	dev->ts2.reg_gpcnt = VID_C_GPCNT;
	dev->ts2.reg_gpcnt_ctl = VID_C_GPCNT_CTL;
	dev->ts2.reg_dma_ctl = VID_C_DMA_CTL;
	dev->ts2.reg_lngth = VID_C_LNGTH;
	dev->ts2.reg_hw_sop_ctrl = VID_C_HW_SOP_CTL;
	dev->ts2.reg_gen_ctrl = VID_C_GEN_CTL;
	dev->ts2.reg_bd_pkt_status = VID_C_BD_PKT_STATUS;
	dev->ts2.reg_sop_status = VID_C_SOP_STATUS;
	dev->ts2.reg_fifo_ovfl_stat = VID_C_FIFO_OVFL_STAT;
	dev->ts2.reg_vld_misc = VID_C_VLD_MISC;
	dev->ts2.reg_ts_clk_en = VID_C_TS_CLK_EN;
	dev->ts2.reg_ts_int_msk = VID_C_INT_MSK;

	// FIXME: Make this board specific
	dev->ts2.pci_irqmask = 0x04; /* TS Port 2 bit */
	dev->ts2.dma_ctl_val = 0x11; /* Enable RISC controller and Fifo */
	dev->ts2.ts_int_msk_val = 0x1111; /* TS port bits for RISC */
	dev->ts2.gen_ctrl_val = 0xc; /* Serial bus + punctured clock */
	dev->ts2.ts_clk_en_val = 0x1; /* Enable TS_CLK */

737 738
	cx23885_risc_stopper(dev->pci, &dev->ts2.mpegq.stopper,
			     dev->ts2.reg_dma_ctl, dev->ts2.dma_ctl_val, 0x00);
739

740
	sprintf(dev->name, "cx23885[%d]", dev->nr);
741 742 743

	if (get_resources(dev) < 0) {
		printk(KERN_ERR "CORE %s No more PCIe resources for "
744 745 746
		       "subsystem: %04x:%04x\n",
		       dev->name, dev->pci->subsystem_vendor,
		       dev->pci->subsystem_device);
747 748 749 750 751 752 753 754 755 756 757

		cx23885_devcount--;
		goto fail_free;
	}

	mutex_lock(&devlist);
	list_add_tail(&dev->devlist, &cx23885_devlist);
	mutex_unlock(&devlist);

	/* PCIe stuff */
	dev->lmmio = ioremap(pci_resource_start(dev->pci,0),
758
			     pci_resource_len(dev->pci,0));
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	dev->bmmio = (u8 __iomem *)dev->lmmio;

	/* board config */
	dev->board = UNSET;
	if (card[dev->nr] < cx23885_bcount)
		dev->board = card[dev->nr];
	for (i = 0; UNSET == dev->board  &&  i < cx23885_idcount; i++)
		if (dev->pci->subsystem_vendor == cx23885_subids[i].subvendor &&
		    dev->pci->subsystem_device == cx23885_subids[i].subdevice)
			dev->board = cx23885_subids[i].card;
	if (UNSET == dev->board) {
		dev->board = CX23885_BOARD_UNKNOWN;
		cx23885_card_list(dev);
	}
	printk(KERN_INFO "CORE %s: subsystem: %04x:%04x, board: %s [card=%d,%s]\n",
775 776 777 778
	       dev->name, dev->pci->subsystem_vendor,
	       dev->pci->subsystem_device, cx23885_boards[dev->board].name,
	       dev->board, card[dev->nr] == dev->board ?
	       "insmod option" : "autodetected");
779

780 781
	cx23885_pci_quirks(dev);

782 783 784
	/* Configure the internal memory */
	if(dev->pci->device == 0x8880) {
		dev->bridge = CX23885_BRIDGE_887;
785
		dev->sram_channels = cx23887_sram_channels;
786 787 788 789
	} else
	if(dev->pci->device == 0x8852) {
		dev->bridge = CX23885_BRIDGE_885;
		dev->sram_channels = cx23885_sram_channels;
790
	}
791 792
	dprintk(1, "%s() Memory configured for PCIe bridge type %d\n",
		__FUNCTION__, dev->bridge);
793 794 795 796 797 798 799 800 801 802 803 804 805

	/* init hardware */
	cx23885_reset(dev);

	cx23885_i2c_register(&dev->i2c_bus[0]);
	cx23885_i2c_register(&dev->i2c_bus[1]);
	cx23885_i2c_register(&dev->i2c_bus[2]);
	cx23885_call_i2c_clients (&dev->i2c_bus[0], TUNER_SET_STANDBY, NULL);

	cx23885_card_setup(dev);
	cx23885_ir_init(dev);

	if (cx23885_dvb_register(&dev->ts2) < 0) {
806 807
		printk(KERN_ERR "%s() Failed to register dvb adapters\n",
		       __FUNCTION__);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	}

	return 0;

fail_free:
	kfree(dev);
	return -ENODEV;
}

void cx23885_dev_unregister(struct cx23885_dev *dev)
{
	release_mem_region(pci_resource_start(dev->pci,0),
			   pci_resource_len(dev->pci,0));

	if (!atomic_dec_and_test(&dev->refcount))
		return;

	cx23885_dvb_unregister(&dev->ts2);
	cx23885_i2c_unregister(&dev->i2c_bus[2]);
	cx23885_i2c_unregister(&dev->i2c_bus[1]);
	cx23885_i2c_unregister(&dev->i2c_bus[0]);

	iounmap(dev->lmmio);
}

static u32* cx23885_risc_field(u32 *rp, struct scatterlist *sglist,
834 835 836
			       unsigned int offset, u32 sync_line,
			       unsigned int bpl, unsigned int padding,
			       unsigned int lines)
837 838
{
	struct scatterlist *sg;
839
	unsigned int line, todo;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

	/* sync instruction */
	if (sync_line != NO_SYNC_LINE)
		*(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);

	/* scan lines */
	sg = sglist;
	for (line = 0; line < lines; line++) {
		while (offset && offset >= sg_dma_len(sg)) {
			offset -= sg_dma_len(sg);
			sg++;
		}
		if (bpl <= sg_dma_len(sg)-offset) {
			/* fits into current chunk */
			*(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|RISC_EOL|bpl);
			*(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
			*(rp++)=cpu_to_le32(0); /* bits 63-32 */
			offset+=bpl;
		} else {
			/* scanline needs to be split */
			todo = bpl;
			*(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|
					    (sg_dma_len(sg)-offset));
			*(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
			*(rp++)=cpu_to_le32(0); /* bits 63-32 */
			todo -= (sg_dma_len(sg)-offset);
			offset = 0;
			sg++;
			while (todo > sg_dma_len(sg)) {
				*(rp++)=cpu_to_le32(RISC_WRITE|
						    sg_dma_len(sg));
				*(rp++)=cpu_to_le32(sg_dma_address(sg));
				*(rp++)=cpu_to_le32(0); /* bits 63-32 */
				todo -= sg_dma_len(sg);
				sg++;
			}
			*(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
			*(rp++)=cpu_to_le32(sg_dma_address(sg));
			*(rp++)=cpu_to_le32(0); /* bits 63-32 */
			offset += todo;
		}
		offset += padding;
	}

	return rp;
}

int cx23885_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
888 889 890
			struct scatterlist *sglist, unsigned int top_offset,
			unsigned int bottom_offset, unsigned int bpl,
			unsigned int padding, unsigned int lines)
891
{
892
	u32 instructions, fields;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	u32 *rp;
	int rc;

	fields = 0;
	if (UNSET != top_offset)
		fields++;
	if (UNSET != bottom_offset)
		fields++;

	/* estimate risc mem: worst case is one write per page border +
	   one write per scan line + syncs + jump (all 2 dwords).  Padding
	   can cause next bpl to start close to a page border.  First DMA
	   region may be smaller than PAGE_SIZE */
	/* write and jump need and extra dword */
	instructions  = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
	instructions += 2;
	//if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
	if ((rc = btcx_riscmem_alloc(pci,risc,instructions*12)) < 0)
		return rc;

	/* write risc instructions */
	rp = risc->cpu;
	if (UNSET != top_offset)
		rp = cx23885_risc_field(rp, sglist, top_offset, 0,
917
					bpl, padding, lines);
918 919
	if (UNSET != bottom_offset)
		rp = cx23885_risc_field(rp, sglist, bottom_offset, 0x200,
920
					bpl, padding, lines);
921 922 923 924 925 926 927 928

	/* save pointer to jmp instruction address */
	risc->jmp = rp;
	BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
	return 0;
}

int cx23885_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
929 930
			    struct scatterlist *sglist, unsigned int bpl,
			    unsigned int lines)
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
{
	u32 instructions;
	u32 *rp;
	int rc;

	/* estimate risc mem: worst case is one write per page border +
	   one write per scan line + syncs + jump (all 2 dwords).  Here
	   there is no padding and no sync.  First DMA region may be smaller
	   than PAGE_SIZE */
	/* Jump and write need an extra dword */
	instructions  = 1 + (bpl * lines) / PAGE_SIZE + lines;
	instructions += 1;

	//if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
	if ((rc = btcx_riscmem_alloc(pci,risc,instructions*12)) < 0)
		return rc;

	/* write risc instructions */
	rp = risc->cpu;
	rp = cx23885_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines);

	/* save pointer to jmp instruction address */
	risc->jmp = rp;
	BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
	return 0;
}

int cx23885_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
959
			 u32 reg, u32 mask, u32 value)
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
{
	u32 *rp;
	int rc;

	if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
		return rc;

	/* write risc instructions */
	rp = risc->cpu;
	//*(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2 | RISC_IMM);
	*(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2);
	*(rp++) = cpu_to_le32(reg);
	*(rp++) = cpu_to_le32(value);
	*(rp++) = cpu_to_le32(mask);
	*(rp++) = cpu_to_le32(RISC_JUMP);
	*(rp++) = cpu_to_le32(risc->dma);
	*(rp++) = cpu_to_le32(0); /* bits 63-32 */
	return 0;
}

void cx23885_free_buffer(struct videobuf_queue *q, struct cx23885_buffer *buf)
{
	BUG_ON(in_interrupt());
983
	videobuf_waiton(&buf->vb, 0, 0);
984 985 986 987 988 989 990
	videobuf_dma_unmap(q, &buf->vb.dma);
	videobuf_dma_free(&buf->vb.dma);
	btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc);
	buf->vb.state = STATE_NEEDS_INIT;
}

static int cx23885_start_dma(struct cx23885_tsport *port,
991 992
			     struct cx23885_dmaqueue *q,
			     struct cx23885_buffer   *buf)
993 994 995 996
{
	struct cx23885_dev *dev = port->dev;

	dprintk(1, "%s() w: %d, h: %d, f: %d\n", __FUNCTION__,
997
		buf->vb.width, buf->vb.height, buf->vb.field);
998 999 1000

	/* setup fifo + format */
	cx23885_sram_channel_setup(dev,
1001 1002
				   &dev->sram_channels[ port->sram_chno ],
				   port->ts_packet_size, buf->risc.dma);
1003
	if(debug > 5) {
1004 1005
		cx23885_sram_channel_dump(dev, &dev->sram_channels[ port->sram_chno ] );
		cx23885_risc_disasm(port, &buf->risc);
1006
	}
1007 1008 1009 1010 1011

	/* write TS length to chip */
	cx_write(port->reg_lngth, buf->vb.width);

	if (!(cx23885_boards[dev->board].portc & CX23885_MPEG_DVB)) {
1012 1013
		printk( "%s() Failed. Unsupported value in .portc (0x%08x)\n",
			__FUNCTION__, cx23885_boards[dev->board].portc );
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		return -EINVAL;
	}

	// FIXME: review the need for these two lines
	dprintk( 1, "%s() doing .dvb\n", __FUNCTION__);
	udelay(100);

	cx_write(port->reg_hw_sop_ctrl, 0x47 << 16 | 188 << 4);
	cx_write(port->reg_ts_clk_en, port->ts_clk_en_val);

	// FIXME: review the need for this
	cx_write(GPIO2, 0x00);

	switch (dev->board) {
	case CX23885_BOARD_HAUPPAUGE_HVR1800lp:
	case CX23885_BOARD_HAUPPAUGE_HVR1800:
		cx_write(port->reg_vld_misc, 0x00);
1031 1032
		dprintk(1, "%s() Configuring HVR1800/lp/1500 board\n",
			__FUNCTION__);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		break;
	default:
		// FIXME
		printk(KERN_ERR "%s() error, default case", __FUNCTION__ );
	}

	cx_write(port->reg_gen_ctrl, port->gen_ctrl_val);
	udelay(100);

	/* reset counter to zero */
	cx_write(port->reg_gpcnt_ctl, 3);
	q->count = 1;

1046
	switch(dev->bridge) {
1047
	case CX23885_BRIDGE_885:
1048
	case CX23885_BRIDGE_887:
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		/* enable irqs */
		dprintk(1, "%s() enabling TS int's and DMA\n", __FUNCTION__ );
		cx_set(port->reg_ts_int_msk,  port->ts_int_msk_val);
		cx_set(port->reg_dma_ctl, port->dma_ctl_val);
		cx_set(PCI_INT_MSK, dev->pci_irqmask | port->pci_irqmask);
		break;
	default:
		// FIXME: generate a sensible switch-default message
		printk(KERN_ERR "%s() error, default case", __FUNCTION__ );
	}

	dprintk(1, "%s() Register Dump\n", __FUNCTION__);
	dprintk(1, "%s() set port ts_int_msk, now %x\n", __FUNCTION__, cx_read(port->reg_ts_int_msk) );
	dprintk(1, "%s() DEV_CNTRL2      0x%08x\n", __FUNCTION__, cx_read(DEV_CNTRL2) );
	dprintk(1, "%s() PCI_INT_MSK     0x%08x\n", __FUNCTION__, cx_read(PCI_INT_MSK) );
	dprintk(1, "%s() VID_A_INT_MSK   0x%08x\n", __FUNCTION__, cx_read(VID_A_INT_MSK) );
	dprintk(1, "%s() VID_B_INT_MSK   0x%08x\n", __FUNCTION__, cx_read(VID_B_INT_MSK) );
	dprintk(1, "%s() VID_C_INT_MSK   0x%08x\n", __FUNCTION__, cx_read(VID_C_INT_MSK) );
	dprintk(1, "%s() VID_A_DMA_CTL   0x%08x\n", __FUNCTION__, cx_read(VID_A_DMA_CTL) );
	dprintk(1, "%s() VID_B_DMA_CTL   0x%08x\n", __FUNCTION__, cx_read(VID_B_DMA_CTL) );
	dprintk(1, "%s() VID_C_DMA_CTL   0x%08x\n", __FUNCTION__, cx_read(VID_C_DMA_CTL) );
	dprintk(1, "%s() AUD_INT_INT_MSK 0x%08x\n", __FUNCTION__, cx_read(AUDIO_INT_INT_MSK) );
	dprintk(1, "%s() AUD_INT_DMA_CTL 0x%08x\n", __FUNCTION__, cx_read(AUD_INT_DMA_CTL) );
	dprintk(1, "%s() AUD_EXT_INT_MSK 0x%08x\n", __FUNCTION__, cx_read(AUDIO_EXT_INT_MSK) );
	dprintk(1, "%s() AUD_EXT_DMA_CTL 0x%08x\n", __FUNCTION__, cx_read(AUD_EXT_DMA_CTL) );

	cx_set(DEV_CNTRL2, (1<<5)); /* Enable RISC controller */

	dprintk(1, "%s() set dev_cntrl2, now %x\n", __FUNCTION__, cx_read(DEV_CNTRL2) );
	dprintk(1, "%s() VID_C_DMA_CTL   , now %x\n", __FUNCTION__, cx_read(port->reg_dma_ctl) );
	dprintk(1, "%s() VID_C_DMA_CTL   , now %x\n", __FUNCTION__, cx_read(VID_C_DMA_CTL) );
	dprintk(1, "%s() PAD_CTRL %x\n", __FUNCTION__, cx_read(PAD_CTRL) );
	dprintk(1, "%s() GPIO2 %x\n", __FUNCTION__, cx_read(GPIO2) );
	dprintk(1, "%s() VID_C_LN_LNGTH  , now %x\n", __FUNCTION__, cx_read(port->reg_lngth) );
	dprintk(1, "%s() VID_C_HW_SOP_CTL, now %x\n", __FUNCTION__, cx_read(port->reg_hw_sop_ctrl) );
	dprintk(1, "%s() VID_C_GEN_CTL   , now %x\n", __FUNCTION__, cx_read(port->reg_gen_ctrl) );
	dprintk(1, "%s() VID_C_SOP_STATUS, now %x\n", __FUNCTION__, cx_read(VID_C_SOP_STATUS) );
	dprintk(1, "%s() VID_C_TS_CLK_EN , now %x\n", __FUNCTION__, cx_read(VID_C_TS_CLK_EN) );
	dprintk(1, "%s() VID_C_FIFO_OVLST, now %x\n", __FUNCTION__, cx_read(VID_C_FIFO_OVFL_STAT) );
	dprintk(1, "%s() VID_C_INT_MSTAT , now 0x%08x\n", __FUNCTION__, cx_read(VID_C_INT_MSTAT) );
	return 0;
}

static int cx23885_stop_dma(struct cx23885_tsport *port)
{
	struct cx23885_dev *dev = port->dev;
	dprintk(1, "%s()\n", __FUNCTION__);

	/* Stop interrupts and DMA */
	cx_clear(port->reg_ts_int_msk, port->ts_int_msk_val);
	cx_clear(port->reg_dma_ctl, port->dma_ctl_val);

	return 0;
}

static int cx23885_restart_queue(struct cx23885_tsport *port,
				struct cx23885_dmaqueue *q)
{
	struct cx23885_dev *dev = port->dev;
	struct cx23885_buffer *buf;
	struct list_head *item;

	dprintk(5, "%s()\n", __FUNCTION__);
	if (list_empty(&q->active))
	{
1114 1115
		struct cx23885_buffer *prev;
		prev = NULL;
1116 1117 1118

		dprintk(5, "%s() queue is empty\n", __FUNCTION__);

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		for (;;) {
			if (list_empty(&q->queued))
				return 0;
			buf = list_entry(q->queued.next, struct cx23885_buffer,
					 vb.queue);
			if (NULL == prev) {
				list_del(&buf->vb.queue);
				list_add_tail(&buf->vb.queue, &q->active);
				cx23885_start_dma(port, q, buf);
				buf->vb.state = STATE_ACTIVE;
				buf->count    = q->count++;
				mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
				dprintk(5, "[%p/%d] restart_queue - first active\n",
					buf, buf->vb.i);

			} else if (prev->vb.width  == buf->vb.width  &&
				   prev->vb.height == buf->vb.height &&
				   prev->fmt       == buf->fmt) {
				list_del(&buf->vb.queue);
				list_add_tail(&buf->vb.queue, &q->active);
				buf->vb.state = STATE_ACTIVE;
				buf->count    = q->count++;
				prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
				prev->risc.jmp[2] = cpu_to_le32(0); /* 64 bit bits 63-32 */
				dprintk(5,"[%p/%d] restart_queue - move to active\n",
					buf, buf->vb.i);
			} else {
				return 0;
			}
			prev = buf;
		}
1150 1151 1152 1153
		return 0;
	}

	buf = list_entry(q->active.next, struct cx23885_buffer, vb.queue);
1154
	dprintk(2, "restart_queue [%p/%d]: restart dma\n",
1155 1156
		buf, buf->vb.i);
	cx23885_start_dma(port, q, buf);
1157
	list_for_each(item, &q->active) {
1158 1159 1160
		buf = list_entry(item, struct cx23885_buffer, vb.queue);
		buf->count = q->count++;
	}
1161
	mod_timer(&q->timeout, jiffies + BUFFER_TIMEOUT);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	return 0;
}

/* ------------------------------------------------------------------ */

int cx23885_buf_prepare(struct videobuf_queue *q, struct cx23885_tsport *port,
			struct cx23885_buffer *buf, enum v4l2_field field)
{
	struct cx23885_dev *dev = port->dev;
	int size = port->ts_packet_size * port->ts_packet_count;
	int rc;

	dprintk(1, "%s: %p\n", __FUNCTION__, buf);
	if (0 != buf->vb.baddr  &&  buf->vb.bsize < size)
		return -EINVAL;

	if (STATE_NEEDS_INIT == buf->vb.state) {
		buf->vb.width  = port->ts_packet_size;
		buf->vb.height = port->ts_packet_count;
		buf->vb.size   = size;
		buf->vb.field  = field /*V4L2_FIELD_TOP*/;

1184
		if (0 != (rc = videobuf_iolock(q, &buf->vb, NULL)))
1185 1186 1187 1188 1189 1190 1191 1192 1193
			goto fail;
		cx23885_risc_databuffer(dev->pci, &buf->risc,
				     buf->vb.dma.sglist,
				     buf->vb.width, buf->vb.height);
	}
	buf->vb.state = STATE_PREPARED;
	return 0;

 fail:
1194
	cx23885_free_buffer(q, buf);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	return rc;
}

void cx23885_buf_queue(struct cx23885_tsport *port, struct cx23885_buffer *buf)
{
	struct cx23885_buffer    *prev;
	struct cx23885_dev *dev = port->dev;
	struct cx23885_dmaqueue  *cx88q = &port->mpegq;

	/* add jump to stopper */
	buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | RISC_CNT_INC);
	buf->risc.jmp[1] = cpu_to_le32(cx88q->stopper.dma);
	buf->risc.jmp[2] = cpu_to_le32(0); /* bits 63-32 */

	if (list_empty(&cx88q->active)) {
		dprintk( 1, "queue is empty - first active\n" );
1211
		list_add_tail(&buf->vb.queue, &cx88q->active);
1212 1213 1214
		cx23885_start_dma(port, cx88q, buf);
		buf->vb.state = STATE_ACTIVE;
		buf->count    = cx88q->count++;
1215 1216
		mod_timer(&cx88q->timeout, jiffies + BUFFER_TIMEOUT);
		dprintk(1, "[%p/%d] %s - first active\n",
1217 1218 1219 1220
			buf, buf->vb.i, __FUNCTION__);

	} else {
		dprintk( 1, "queue is not empty - append to active\n" );
1221 1222 1223
		prev = list_entry(cx88q->active.prev, struct cx23885_buffer,
				  vb.queue);
		list_add_tail(&buf->vb.queue, &cx88q->active);
1224 1225 1226 1227 1228
		buf->vb.state = STATE_ACTIVE;
		buf->count    = cx88q->count++;
		prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
		prev->risc.jmp[2] = cpu_to_le32(0); /* 64 bit bits 63-32 */
		dprintk( 1, "[%p/%d] %s - append to active\n",
1229
			 buf, buf->vb.i, __FUNCTION__);
1230 1231 1232 1233 1234
	}
}

/* ----------------------------------------------------------- */

1235 1236
static void do_cancel_buffers(struct cx23885_tsport *port, char *reason,
			      int restart)
1237 1238 1239 1240 1241 1242
{
	struct cx23885_dev *dev = port->dev;
	struct cx23885_dmaqueue *q = &port->mpegq;
	struct cx23885_buffer *buf;
	unsigned long flags;

1243
	spin_lock_irqsave(&port->slock, flags);
1244
	while (!list_empty(&q->active)) {
1245 1246
		buf = list_entry(q->active.next, struct cx23885_buffer,
				 vb.queue);
1247 1248 1249
		list_del(&buf->vb.queue);
		buf->vb.state = STATE_ERROR;
		wake_up(&buf->vb.done);
1250
		dprintk(1, "[%p/%d] %s - dma=0x%08lx\n",
1251 1252
			buf, buf->vb.i, reason, (unsigned long)buf->risc.dma);
	}
1253
	if (restart) {
1254 1255 1256
		dprintk(1, "restarting queue\n" );
		cx23885_restart_queue(port, q);
	}
1257
	spin_unlock_irqrestore(&port->slock, flags);
1258 1259 1260 1261 1262 1263 1264
}

void cx23885_cancel_buffers(struct cx23885_tsport *port)
{
	struct cx23885_dev *dev = port->dev;
	struct cx23885_dmaqueue *q = &port->mpegq;

1265
	dprintk(1, "%s()\n", __FUNCTION__);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	del_timer_sync(&q->timeout);
	cx23885_stop_dma(port);
	do_cancel_buffers(port, "cancel", 0);
}

static void cx23885_timeout(unsigned long data)
{
	struct cx23885_tsport *port = (struct cx23885_tsport *)data;
	struct cx23885_dev *dev = port->dev;

	dprintk(1, "%s()\n",__FUNCTION__);

	if (debug > 5)
		cx23885_sram_channel_dump(dev, &dev->sram_channels[ port->sram_chno ]);
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	cx23885_stop_dma(port);
	do_cancel_buffers(port, "timeout", 1);
}

#define PCI_MSK_APB_DMA   (1 << 12)
#define PCI_MSK_AL_WR     (1 << 11)
#define PCI_MSK_AL_RD     (1 << 10)
#define PCI_MSK_RISC_WR   (1 <<  9)
#define PCI_MSK_RISC_RD   (1 <<  8)

#define PCI_MSK_AUD_EXT   (1 <<  4)
#define PCI_MSK_AUD_INT   (1 <<  3)
#define PCI_MSK_VID_C     (1 <<  2)
#define PCI_MSK_VID_B     (1 <<  1)
#define PCI_MSK_VID_A      1

#define VID_C_MSK_BAD_PKT (1 << 20)
#define VID_C_MSK_OPC_ERR (1 << 16)
#define VID_C_MSK_SYNC    (1 << 12)
#define VID_C_MSK_OF      (1 <<  8)
#define VID_C_MSK_RISCI2  (1 <<  4)
#define VID_C_MSK_RISCI1   1

1304
static irqreturn_t cx23885_irq(int irq, void *dev_id)
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	struct cx23885_dev *dev = dev_id;
	struct cx23885_tsport *port = &dev->ts2;
	u32 pci_status, pci_mask;
	u32 ts2_status, ts2_mask;
	int count = 0, handled = 0;

	pci_status = cx_read(PCI_INT_STAT);
	pci_mask = cx_read(PCI_INT_MSK);

	ts2_status = cx_read(VID_C_INT_STAT);
	ts2_mask = cx_read(VID_C_INT_MSK);

	if ( (pci_status == 0) && (ts2_status == 0) )
		goto out;

	count = cx_read(port->reg_gpcnt);
	dprintk(7, "pci_status: 0x%08x  pci_mask: 0x%08x\n", pci_status, pci_mask );
	dprintk(7, "ts2_status: 0x%08x  ts2_mask: 0x%08x count: 0x%x\n", ts2_status, ts2_mask, count );

	if ( (pci_status & PCI_MSK_RISC_RD) ||
1326 1327 1328 1329 1330 1331 1332 1333 1334
	     (pci_status & PCI_MSK_RISC_WR) ||
	     (pci_status & PCI_MSK_AL_RD) ||
	     (pci_status & PCI_MSK_AL_WR) ||
	     (pci_status & PCI_MSK_APB_DMA) ||
	     (pci_status & PCI_MSK_VID_C) ||
	     (pci_status & PCI_MSK_VID_B) ||
	     (pci_status & PCI_MSK_VID_A) ||
	     (pci_status & PCI_MSK_AUD_INT) ||
	     (pci_status & PCI_MSK_AUD_EXT) )
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	{

		if (pci_status & PCI_MSK_RISC_RD)
			dprintk(7, " (PCI_MSK_RISC_RD   0x%08x)\n", PCI_MSK_RISC_RD);
		if (pci_status & PCI_MSK_RISC_WR)
			dprintk(7, " (PCI_MSK_RISC_WR   0x%08x)\n", PCI_MSK_RISC_WR);
		if (pci_status & PCI_MSK_AL_RD)
			dprintk(7, " (PCI_MSK_AL_RD     0x%08x)\n", PCI_MSK_AL_RD);
		if (pci_status & PCI_MSK_AL_WR)
			dprintk(7, " (PCI_MSK_AL_WR     0x%08x)\n", PCI_MSK_AL_WR);
		if (pci_status & PCI_MSK_APB_DMA)
			dprintk(7, " (PCI_MSK_APB_DMA   0x%08x)\n", PCI_MSK_APB_DMA);
		if (pci_status & PCI_MSK_VID_C)
			dprintk(7, " (PCI_MSK_VID_C     0x%08x)\n", PCI_MSK_VID_C);
		if (pci_status & PCI_MSK_VID_B)
			dprintk(7, " (PCI_MSK_VID_B     0x%08x)\n", PCI_MSK_VID_B);
		if (pci_status & PCI_MSK_VID_A)
			dprintk(7, " (PCI_MSK_VID_A     0x%08x)\n", PCI_MSK_VID_A);
		if (pci_status & PCI_MSK_AUD_INT)
			dprintk(7, " (PCI_MSK_AUD_INT   0x%08x)\n", PCI_MSK_AUD_INT);
		if (pci_status & PCI_MSK_AUD_EXT)
			dprintk(7, " (PCI_MSK_AUD_EXT   0x%08x)\n", PCI_MSK_AUD_EXT);

	}

	if ( (ts2_status & VID_C_MSK_OPC_ERR) ||
1361 1362 1363
	     (ts2_status & VID_C_MSK_BAD_PKT) ||
	     (ts2_status & VID_C_MSK_SYNC) ||
	     (ts2_status & VID_C_MSK_OF))
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	{
		if (ts2_status & VID_C_MSK_OPC_ERR)
			dprintk(7, " (VID_C_MSK_OPC_ERR 0x%08x)\n", VID_C_MSK_OPC_ERR);
		if (ts2_status & VID_C_MSK_BAD_PKT)
			dprintk(7, " (VID_C_MSK_BAD_PKT 0x%08x)\n", VID_C_MSK_BAD_PKT);
		if (ts2_status & VID_C_MSK_SYNC)
			dprintk(7, " (VID_C_MSK_SYNC    0x%08x)\n", VID_C_MSK_SYNC);
		if (ts2_status & VID_C_MSK_OF)
			dprintk(7, " (VID_C_MSK_OF      0x%08x)\n", VID_C_MSK_OF);

		printk(KERN_ERR "%s: mpeg risc op code error\n", dev->name);

		cx_clear(port->reg_dma_ctl, port->dma_ctl_val);
		cx23885_sram_channel_dump(dev, &dev->sram_channels[ port->sram_chno ]);

	} else if (ts2_status & VID_C_MSK_RISCI1) {

		dprintk(7, " (RISCI1            0x%08x)\n", VID_C_MSK_RISCI1);

		spin_lock(&port->slock);
		count = cx_read(port->reg_gpcnt);
		cx23885_wakeup(port, &port->mpegq, count);
		spin_unlock(&port->slock);

	} else if (ts2_status & VID_C_MSK_RISCI2) {

		dprintk(7, " (RISCI2            0x%08x)\n", VID_C_MSK_RISCI2);

		spin_lock(&port->slock);
		cx23885_restart_queue(port, &port->mpegq);
		spin_unlock(&port->slock);

	}

	cx_write(VID_C_INT_STAT, ts2_status);
	cx_write(PCI_INT_STAT, pci_status);
	handled = 1;
out:
	return IRQ_RETVAL(handled);
}

static int __devinit cx23885_initdev(struct pci_dev *pci_dev,
1406
				     const struct pci_device_id *pci_id)
1407 1408 1409 1410
{
	struct cx23885_dev *dev;
	int err;

1411
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (NULL == dev)
		return -ENOMEM;

	/* pci init */
	dev->pci = pci_dev;
	if (pci_enable_device(pci_dev)) {
		err = -EIO;
		goto fail_free;
	}

	if (cx23885_dev_setup(dev) < 0) {
		err = -EINVAL;
		goto fail_free;
	}

	/* print pci info */
	pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &dev->pci_rev);
	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER,  &dev->pci_lat);
	printk(KERN_INFO "%s/0: found at %s, rev: %d, irq: %d, "
	       "latency: %d, mmio: 0x%llx\n", dev->name,
	       pci_name(pci_dev), dev->pci_rev, pci_dev->irq,
	       dev->pci_lat, (unsigned long long)pci_resource_start(pci_dev,0));

	pci_set_master(pci_dev);
	if (!pci_dma_supported(pci_dev, 0xffffffff)) {
		printk("%s/0: Oops: no 32bit PCI DMA ???\n", dev->name);
		err = -EIO;
		goto fail_irq;
	}

1442 1443
	err = request_irq(pci_dev->irq, cx23885_irq,
			  IRQF_SHARED | IRQF_DISABLED, dev->name, dev);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (err < 0) {
		printk(KERN_ERR "%s: can't get IRQ %d\n",
		       dev->name, pci_dev->irq);
		goto fail_irq;
	}

	pci_set_drvdata(pci_dev, dev);
	return 0;

fail_irq:
	cx23885_dev_unregister(dev);
fail_free:
	kfree(dev);
	return err;
}

static void __devexit cx23885_finidev(struct pci_dev *pci_dev)
{
	struct cx23885_dev *dev = pci_get_drvdata(pci_dev);

	cx23885_shutdown(dev);

	pci_disable_device(pci_dev);

	/* unregister stuff */
	free_irq(pci_dev->irq, dev);
	pci_set_drvdata(pci_dev, NULL);

	mutex_lock(&devlist);
	list_del(&dev->devlist);
	mutex_unlock(&devlist);

	cx23885_dev_unregister(dev);
	kfree(dev);
}

static struct pci_device_id cx23885_pci_tbl[] = {
	{
		/* CX23885 */
		.vendor       = 0x14f1,
		.device       = 0x8852,
		.subvendor    = PCI_ANY_ID,
		.subdevice    = PCI_ANY_ID,
	},{
		/* CX23887 Rev 2 */
		.vendor       = 0x14f1,
		.device       = 0x8880,
		.subvendor    = PCI_ANY_ID,
		.subdevice    = PCI_ANY_ID,
	},{
		/* --- end of list --- */
	}
};
MODULE_DEVICE_TABLE(pci, cx23885_pci_tbl);

static struct pci_driver cx23885_pci_driver = {
	.name     = "cx23885",
	.id_table = cx23885_pci_tbl,
	.probe    = cx23885_initdev,
	.remove   = __devexit_p(cx23885_finidev),
	/* TODO */
	.suspend  = NULL,
	.resume   = NULL,
};

static int cx23885_init(void)
{
	printk(KERN_INFO "cx23885 driver version %d.%d.%d loaded\n",
S
Steven Toth 已提交
1512 1513 1514
	       (CX23885_VERSION_CODE >> 16) & 0xff,
	       (CX23885_VERSION_CODE >>  8) & 0xff,
	       CX23885_VERSION_CODE & 0xff);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
#ifdef SNAPSHOT
	printk(KERN_INFO "cx23885: snapshot date %04d-%02d-%02d\n",
	       SNAPSHOT/10000, (SNAPSHOT/100)%100, SNAPSHOT%100);
#endif
	return pci_register_driver(&cx23885_pci_driver);
}

static void cx23885_fini(void)
{
	pci_unregister_driver(&cx23885_pci_driver);
}

module_init(cx23885_init);
module_exit(cx23885_fini);

/* ----------------------------------------------------------- */
/*
 * Local variables:
 * c-basic-offset: 8
 * End:
 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
 */