packet_mmap.txt 34.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
--------------------------------------------------------------------------------
+ ABSTRACT
--------------------------------------------------------------------------------

5
This file documents the mmap() facility available with the PACKET
6 7 8
socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
i) capture network traffic with utilities like tcpdump, ii) transmit network
traffic, or any other that needs raw access to network interface.
L
Linus Torvalds 已提交
9

J
Johann Baudy 已提交
10
You can find the latest version of this document at:
11
    http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap
L
Linus Torvalds 已提交
12

J
Johann Baudy 已提交
13 14
Howto can be found at:
    http://wiki.gnu-log.net (packet_mmap)
L
Linus Torvalds 已提交
15

J
Johann Baudy 已提交
16
Please send your comments to
17
    Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es>
J
Johann Baudy 已提交
18
    Johann Baudy <johann.baudy@gnu-log.net>
L
Linus Torvalds 已提交
19 20 21 22 23

-------------------------------------------------------------------------------
+ Why use PACKET_MMAP
--------------------------------------------------------------------------------

24 25 26 27
In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
inefficient. It uses very limited buffers and requires one system call to
capture each packet, it requires two if you want to get packet's timestamp
(like libpcap always does).
L
Linus Torvalds 已提交
28 29

In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size 
J
Johann Baudy 已提交
30 31 32 33
configurable circular buffer mapped in user space that can be used to either
send or receive packets. This way reading packets just needs to wait for them,
most of the time there is no need to issue a single system call. Concerning
transmission, multiple packets can be sent through one system call to get the
34 35
highest bandwidth. By using a shared buffer between the kernel and the user
also has the benefit of minimizing packet copies.
J
Johann Baudy 已提交
36 37 38 39 40 41 42

It's fine to use PACKET_MMAP to improve the performance of the capture and
transmission process, but it isn't everything. At least, if you are capturing
at high speeds (this is relative to the cpu speed), you should check if the
device driver of your network interface card supports some sort of interrupt
load mitigation or (even better) if it supports NAPI, also make sure it is
enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
43 44
supported by devices of your network. CPU IRQ pinning of your network interface
card can also be an advantage.
L
Linus Torvalds 已提交
45 46

--------------------------------------------------------------------------------
47
+ How to use mmap() to improve capture process
L
Linus Torvalds 已提交
48 49
--------------------------------------------------------------------------------

U
Uwe Zeisberger 已提交
50
From the user standpoint, you should use the higher level libpcap library, which
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
is a de facto standard, portable across nearly all operating systems
including Win32. 

Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include
support for PACKET_MMAP, and also probably the libpcap included in your distribution. 

I'm aware of two implementations of PACKET_MMAP in libpcap:

59
    http://wiki.ipxwarzone.com/		     (by Simon Patarin, based on libpcap 0.6.2)
L
Linus Torvalds 已提交
60 61 62 63 64 65 66
    http://public.lanl.gov/cpw/              (by Phil Wood, based on lastest libpcap)

The rest of this document is intended for people who want to understand
the low level details or want to improve libpcap by including PACKET_MMAP
support.

--------------------------------------------------------------------------------
67
+ How to use mmap() directly to improve capture process
L
Linus Torvalds 已提交
68 69 70 71 72 73 74 75
--------------------------------------------------------------------------------

From the system calls stand point, the use of PACKET_MMAP involves
the following process:


[setup]     socket() -------> creation of the capture socket
            setsockopt() ---> allocation of the circular buffer (ring)
J
Johann Baudy 已提交
76
                              option: PACKET_RX_RING
77
            mmap() ---------> mapping of the allocated buffer to the
L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89
                              user process

[capture]   poll() ---------> to wait for incoming packets

[shutdown]  close() --------> destruction of the capture socket and
                              deallocation of all associated 
                              resources.


socket creation and destruction is straight forward, and is done 
the same way with or without PACKET_MMAP:

90
 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
L
Linus Torvalds 已提交
91 92 93 94 95 96 97 98 99 100

where mode is SOCK_RAW for the raw interface were link level
information can be captured or SOCK_DGRAM for the cooked
interface where link level information capture is not 
supported and a link level pseudo-header is provided 
by the kernel.

The destruction of the socket and all associated resources
is done by a simple call to close(fd).

101
Next I will describe PACKET_MMAP settings and its constraints,
102
also the mapping of the circular buffer in the user process and 
L
Linus Torvalds 已提交
103 104
the use of this buffer.

J
Johann Baudy 已提交
105
--------------------------------------------------------------------------------
106
+ How to use mmap() directly to improve transmission process
J
Johann Baudy 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
--------------------------------------------------------------------------------
Transmission process is similar to capture as shown below.

[setup]          socket() -------> creation of the transmission socket
                 setsockopt() ---> allocation of the circular buffer (ring)
                                   option: PACKET_TX_RING
                 bind() ---------> bind transmission socket with a network interface
                 mmap() ---------> mapping of the allocated buffer to the
                                   user process

[transmission]   poll() ---------> wait for free packets (optional)
                 send() ---------> send all packets that are set as ready in
                                   the ring
                                   The flag MSG_DONTWAIT can be used to return
                                   before end of transfer.

[shutdown]  close() --------> destruction of the transmission socket and
                              deallocation of all associated resources.

126 127 128 129 130 131 132 133 134 135
Socket creation and destruction is also straight forward, and is done
the same way as in capturing described in the previous paragraph:

 int fd = socket(PF_PACKET, mode, 0);

The protocol can optionally be 0 in case we only want to transmit
via this socket, which avoids an expensive call to packet_rcv().
In this case, you also need to bind(2) the TX_RING with sll_protocol = 0
set. Otherwise, htons(ETH_P_ALL) or any other protocol, for example.

J
Johann Baudy 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
Binding the socket to your network interface is mandatory (with zero copy) to
know the header size of frames used in the circular buffer.

As capture, each frame contains two parts:

 --------------------
| struct tpacket_hdr | Header. It contains the status of
|                    | of this frame
|--------------------|
| data buffer        |
.                    .  Data that will be sent over the network interface.
.                    .
 --------------------

 bind() associates the socket to your network interface thanks to
 sll_ifindex parameter of struct sockaddr_ll.

 Initialization example:

 struct sockaddr_ll my_addr;
 struct ifreq s_ifr;
 ...

 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));

 /* get interface index of eth0 */
 ioctl(this->socket, SIOCGIFINDEX, &s_ifr);

 /* fill sockaddr_ll struct to prepare binding */
 my_addr.sll_family = AF_PACKET;
W
Wei Yongjun 已提交
166
 my_addr.sll_protocol = htons(ETH_P_ALL);
J
Johann Baudy 已提交
167 168 169 170 171 172 173
 my_addr.sll_ifindex =  s_ifr.ifr_ifindex;

 /* bind socket to eth0 */
 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));

 A complete tutorial is available at: http://wiki.gnu-log.net/

174 175 176 177 178 179 180 181 182 183 184 185 186
By default, the user should put data at :
 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)

So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
the beginning of the user data will be at :
 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))

If you wish to put user data at a custom offset from the beginning of
the frame (for payload alignment with SOCK_RAW mode for instance) you
can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
to make this work it must be enabled previously with setsockopt()
and the PACKET_TX_HAS_OFF option.

L
Linus Torvalds 已提交
187 188 189 190 191 192
--------------------------------------------------------------------------------
+ PACKET_MMAP settings
--------------------------------------------------------------------------------

To setup PACKET_MMAP from user level code is done with a call like

J
Johann Baudy 已提交
193
 - Capture process
L
Linus Torvalds 已提交
194
     setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
J
Johann Baudy 已提交
195 196
 - Transmission process
     setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
L
Linus Torvalds 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209

The most significant argument in the previous call is the req parameter, 
this parameter must to have the following structure:

    struct tpacket_req
    {
        unsigned int    tp_block_size;  /* Minimal size of contiguous block */
        unsigned int    tp_block_nr;    /* Number of blocks */
        unsigned int    tp_frame_size;  /* Size of frame */
        unsigned int    tp_frame_nr;    /* Total number of frames */
    };

This structure is defined in /usr/include/linux/if_packet.h and establishes a 
J
Johann Baudy 已提交
210
circular buffer (ring) of unswappable memory.
L
Linus Torvalds 已提交
211 212 213
Being mapped in the capture process allows reading the captured frames and 
related meta-information like timestamps without requiring a system call.

J
Johann Baudy 已提交
214
Frames are grouped in blocks. Each block is a physically contiguous
L
Linus Torvalds 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
region of memory and holds tp_block_size/tp_frame_size frames. The total number 
of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because

    frames_per_block = tp_block_size/tp_frame_size

indeed, packet_set_ring checks that the following condition is true

    frames_per_block * tp_block_nr == tp_frame_nr

Lets see an example, with the following values:

     tp_block_size= 4096
     tp_frame_size= 2048
     tp_block_nr  = 4
     tp_frame_nr  = 8

we will get the following buffer structure:

        block #1                 block #2         
+---------+---------+    +---------+---------+    
| frame 1 | frame 2 |    | frame 3 | frame 4 |    
+---------+---------+    +---------+---------+    

        block #3                 block #4
+---------+---------+    +---------+---------+
| frame 5 | frame 6 |    | frame 7 | frame 8 |
+---------+---------+    +---------+---------+

A frame can be of any size with the only condition it can fit in a block. A block
can only hold an integer number of frames, or in other words, a frame cannot 
L
Lucas De Marchi 已提交
245
be spawned across two blocks, so there are some details you have to take into 
246
account when choosing the frame_size. See "Mapping and use of the circular 
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
buffer (ring)".

--------------------------------------------------------------------------------
+ PACKET_MMAP setting constraints
--------------------------------------------------------------------------------

In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
16384 in a 64 bit architecture. For information on these kernel versions
see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt

 Block size limit
------------------

As stated earlier, each block is a contiguous physical region of memory. These 
memory regions are allocated with calls to the __get_free_pages() function. As 
the name indicates, this function allocates pages of memory, and the second
argument is "order" or a power of two number of pages, that is 
(for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes, 
order=2 ==> 16384 bytes, etc. The maximum size of a 
region allocated by __get_free_pages is determined by the MAX_ORDER macro. More 
precisely the limit can be calculated as:

   PAGE_SIZE << MAX_ORDER

   In a i386 architecture PAGE_SIZE is 4096 bytes 
   In a 2.4/i386 kernel MAX_ORDER is 10
   In a 2.6/i386 kernel MAX_ORDER is 11

So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel 
respectively, with an i386 architecture.

User space programs can include /usr/include/sys/user.h and 
/usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.

The pagesize can also be determined dynamically with the getpagesize (2) 
system call. 

 Block number limit
--------------------

To understand the constraints of PACKET_MMAP, we have to see the structure 
used to hold the pointers to each block.

Currently, this structure is a dynamically allocated vector with kmalloc 
called pg_vec, its size limits the number of blocks that can be allocated.

    +---+---+---+---+
    | x | x | x | x |
    +---+---+---+---+
      |   |   |   |
      |   |   |   v
      |   |   v  block #4
      |   v  block #3
      v  block #2
     block #1

304 305
kmalloc allocates any number of bytes of physically contiguous memory from 
a pool of pre-determined sizes. This pool of memory is maintained by the slab 
U
Uwe Zeisberger 已提交
306 307
allocator which is at the end the responsible for doing the allocation and 
hence which imposes the maximum memory that kmalloc can allocate. 
L
Linus Torvalds 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The 
predetermined sizes that kmalloc uses can be checked in the "size-<bytes>" 
entries of /proc/slabinfo

In a 32 bit architecture, pointers are 4 bytes long, so the total number of 
pointers to blocks is

     131072/4 = 32768 blocks

 PACKET_MMAP buffer size calculator
------------------------------------

Definitions:

<size-max>    : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
<pointer size>: depends on the architecture -- sizeof(void *)
<page size>   : depends on the architecture -- PAGE_SIZE or getpagesize (2)
<max-order>   : is the value defined with MAX_ORDER
<frame size>  : it's an upper bound of frame's capture size (more on this later)

from these definitions we will derive 

	<block number> = <size-max>/<pointer size>
	<block size> = <pagesize> << <max-order>

so, the max buffer size is

	<block number> * <block size>

and, the number of frames be

	<block number> * <block size> / <frame size>

U
Uwe Zeisberger 已提交
342
Suppose the following parameters, which apply for 2.6 kernel and an
L
Linus Torvalds 已提交
343 344 345 346 347 348 349
i386 architecture:

	<size-max> = 131072 bytes
	<pointer size> = 4 bytes
	<pagesize> = 4096 bytes
	<max-order> = 11

350
and a value for <frame size> of 2048 bytes. These parameters will yield
L
Linus Torvalds 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364

	<block number> = 131072/4 = 32768 blocks
	<block size> = 4096 << 11 = 8 MiB.

and hence the buffer will have a 262144 MiB size. So it can hold 
262144 MiB / 2048 bytes = 134217728 frames

Actually, this buffer size is not possible with an i386 architecture. 
Remember that the memory is allocated in kernel space, in the case of 
an i386 kernel's memory size is limited to 1GiB.

All memory allocations are not freed until the socket is closed. The memory 
allocations are done with GFP_KERNEL priority, this basically means that 
the allocation can wait and swap other process' memory in order to allocate 
365
the necessary memory, so normally limits can be reached.
L
Linus Torvalds 已提交
366 367 368 369 370

 Other constraints
-------------------

If you check the source code you will see that what I draw here as a frame
M
Matt LaPlante 已提交
371
is not only the link level frame. At the beginning of each frame there is a 
L
Linus Torvalds 已提交
372 373 374 375 376 377 378 379 380 381 382
header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
meta information like timestamp. So what we draw here a frame it's really 
the following (from include/linux/if_packet.h):

/*
   Frame structure:

   - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
   - struct tpacket_hdr
   - pad to TPACKET_ALIGNMENT=16
   - struct sockaddr_ll
383
   - Gap, chosen so that packet data (Start+tp_net) aligns to 
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
     TPACKET_ALIGNMENT=16
   - Start+tp_mac: [ Optional MAC header ]
   - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
   - Pad to align to TPACKET_ALIGNMENT=16
 */
 
 The following are conditions that are checked in packet_set_ring

   tp_block_size must be a multiple of PAGE_SIZE (1)
   tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
   tp_frame_size must be a multiple of TPACKET_ALIGNMENT
   tp_frame_nr   must be exactly frames_per_block*tp_block_nr

397
Note that tp_block_size should be chosen to be a power of two or there will
L
Linus Torvalds 已提交
398 399 400
be a waste of memory.

--------------------------------------------------------------------------------
401
+ Mapping and use of the circular buffer (ring)
L
Linus Torvalds 已提交
402 403
--------------------------------------------------------------------------------

404
The mapping of the buffer in the user process is done with the conventional 
L
Linus Torvalds 已提交
405 406 407 408 409 410 411
mmap function. Even the circular buffer is compound of several physically
discontiguous blocks of memory, they are contiguous to the user space, hence
just one call to mmap is needed:

    mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

If tp_frame_size is a divisor of tp_block_size frames will be 
412
contiguously spaced by tp_frame_size bytes. If not, each
L
Linus Torvalds 已提交
413 414 415 416 417 418 419 420 421
tp_block_size/tp_frame_size frames there will be a gap between 
the frames. This is because a frame cannot be spawn across two
blocks. 

At the beginning of each frame there is an status field (see 
struct tpacket_hdr). If this field is 0 means that the frame is ready
to be used for the kernel, If not, there is a frame the user can read 
and the following flags apply:

J
Johann Baudy 已提交
422
+++ Capture process:
L
Linus Torvalds 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
     from include/linux/if_packet.h

     #define TP_STATUS_COPY          2 
     #define TP_STATUS_LOSING        4 
     #define TP_STATUS_CSUMNOTREADY  8 

TP_STATUS_COPY        : This flag indicates that the frame (and associated
                        meta information) has been truncated because it's 
                        larger than tp_frame_size. This packet can be 
                        read entirely with recvfrom().
                        
                        In order to make this work it must to be
                        enabled previously with setsockopt() and 
                        the PACKET_COPY_THRESH option. 

                        The number of frames than can be buffered to 
                        be read with recvfrom is limited like a normal socket.
                        See the SO_RCVBUF option in the socket (7) man page.

TP_STATUS_LOSING      : indicates there were packet drops from last time 
                        statistics where checked with getsockopt() and
                        the PACKET_STATISTICS option.

U
Uwe Zeisberger 已提交
446
TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which 
447
                        its checksum will be done in hardware. So while
L
Linus Torvalds 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
                        reading the packet we should not try to check the 
                        checksum. 

for convenience there are also the following defines:

     #define TP_STATUS_KERNEL        0
     #define TP_STATUS_USER          1

The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
receives a packet it puts in the buffer and updates the status with
at least the TP_STATUS_USER flag. Then the user can read the packet,
once the packet is read the user must zero the status field, so the kernel 
can use again that frame buffer.

The user can use poll (any other variant should apply too) to check if new
packets are in the ring:

    struct pollfd pfd;

    pfd.fd = fd;
    pfd.revents = 0;
    pfd.events = POLLIN|POLLRDNORM|POLLERR;

    if (status == TP_STATUS_KERNEL)
        retval = poll(&pfd, 1, timeout);

It doesn't incur in a race condition to first check the status value and 
then poll for frames.

J
Johann Baudy 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
++ Transmission process
Those defines are also used for transmission:

     #define TP_STATUS_AVAILABLE        0 // Frame is available
     #define TP_STATUS_SEND_REQUEST     1 // Frame will be sent on next send()
     #define TP_STATUS_SENDING          2 // Frame is currently in transmission
     #define TP_STATUS_WRONG_FORMAT     4 // Frame format is not correct

First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
packet, the user fills a data buffer of an available frame, sets tp_len to
current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
This can be done on multiple frames. Once the user is ready to transmit, it
calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
forwarded to the network device. The kernel updates each status of sent
frames with TP_STATUS_SENDING until the end of transfer.
At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.

    header->tp_len = in_i_size;
    header->tp_status = TP_STATUS_SEND_REQUEST;
    retval = send(this->socket, NULL, 0, 0);

The user can also use poll() to check if a buffer is available:
(status == TP_STATUS_SENDING)

    struct pollfd pfd;
    pfd.fd = fd;
    pfd.revents = 0;
    pfd.events = POLLOUT;
    retval = poll(&pfd, 1, timeout);

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
-------------------------------------------------------------------------------
+ What TPACKET versions are available and when to use them?
-------------------------------------------------------------------------------

 int val = tpacket_version;
 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));

where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.

TPACKET_V1:
	- Default if not otherwise specified by setsockopt(2)
	- RX_RING, TX_RING available
	- VLAN metadata information available for packets
	  (TP_STATUS_VLAN_VALID)

TPACKET_V1 --> TPACKET_V2:
	- Made 64 bit clean due to unsigned long usage in TPACKET_V1
	  structures, thus this also works on 64 bit kernel with 32 bit
	  userspace and the like
	- Timestamp resolution in nanoseconds instead of microseconds
	- RX_RING, TX_RING available
	- How to switch to TPACKET_V2:
		1. Replace struct tpacket_hdr by struct tpacket2_hdr
		2. Query header len and save
		3. Set protocol version to 2, set up ring as usual
		4. For getting the sockaddr_ll,
		   use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
		   (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))

TPACKET_V2 --> TPACKET_V3:
	- Flexible buffer implementation:
		1. Blocks can be configured with non-static frame-size
		2. Read/poll is at a block-level (as opposed to packet-level)
		3. Added poll timeout to avoid indefinite user-space wait
		   on idle links
		4. Added user-configurable knobs:
			4.1 block::timeout
			4.2 tpkt_hdr::sk_rxhash
	- RX Hash data available in user space
	- Currently only RX_RING available

-------------------------------------------------------------------------------
+ AF_PACKET fanout mode
-------------------------------------------------------------------------------

In the AF_PACKET fanout mode, packet reception can be load balanced among
processes. This also works in combination with mmap(2) on packet sockets.

556 557 558 559 560 561 562 563
Currently implemented fanout policies are:

  - PACKET_FANOUT_HASH: schedule to socket by skb's rxhash
  - PACKET_FANOUT_LB: schedule to socket by round-robin
  - PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
  - PACKET_FANOUT_RND: schedule to socket by random selection
  - PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
Minimal example code by David S. Miller (try things like "./test eth0 hash",
"./test eth0 lb", etc.):

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <sys/ioctl.h>

#include <unistd.h>

#include <linux/if_ether.h>
#include <linux/if_packet.h>

#include <net/if.h>

static const char *device_name;
static int fanout_type;
static int fanout_id;

#ifndef PACKET_FANOUT
# define PACKET_FANOUT			18
# define PACKET_FANOUT_HASH		0
# define PACKET_FANOUT_LB		1
#endif

static int setup_socket(void)
{
	int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
	struct sockaddr_ll ll;
	struct ifreq ifr;
	int fanout_arg;

	if (fd < 0) {
		perror("socket");
		return EXIT_FAILURE;
	}

	memset(&ifr, 0, sizeof(ifr));
	strcpy(ifr.ifr_name, device_name);
	err = ioctl(fd, SIOCGIFINDEX, &ifr);
	if (err < 0) {
		perror("SIOCGIFINDEX");
		return EXIT_FAILURE;
	}

	memset(&ll, 0, sizeof(ll));
	ll.sll_family = AF_PACKET;
	ll.sll_ifindex = ifr.ifr_ifindex;
	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
	if (err < 0) {
		perror("bind");
		return EXIT_FAILURE;
	}

	fanout_arg = (fanout_id | (fanout_type << 16));
	err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
			 &fanout_arg, sizeof(fanout_arg));
	if (err) {
		perror("setsockopt");
		return EXIT_FAILURE;
	}

	return fd;
}

static void fanout_thread(void)
{
	int fd = setup_socket();
	int limit = 10000;

	if (fd < 0)
		exit(fd);

	while (limit-- > 0) {
		char buf[1600];
		int err;

		err = read(fd, buf, sizeof(buf));
		if (err < 0) {
			perror("read");
			exit(EXIT_FAILURE);
		}
		if ((limit % 10) == 0)
			fprintf(stdout, "(%d) \n", getpid());
	}

	fprintf(stdout, "%d: Received 10000 packets\n", getpid());

	close(fd);
	exit(0);
}

int main(int argc, char **argp)
{
	int fd, err;
	int i;

	if (argc != 3) {
		fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
		return EXIT_FAILURE;
	}

	if (!strcmp(argp[2], "hash"))
		fanout_type = PACKET_FANOUT_HASH;
	else if (!strcmp(argp[2], "lb"))
		fanout_type = PACKET_FANOUT_LB;
	else {
		fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
		exit(EXIT_FAILURE);
	}

	device_name = argp[1];
	fanout_id = getpid() & 0xffff;

	for (i = 0; i < 4; i++) {
		pid_t pid = fork();

		switch (pid) {
		case 0:
			fanout_thread();

		case -1:
			perror("fork");
			exit(EXIT_FAILURE);
		}
	}

	for (i = 0; i < 4; i++) {
		int status;

		wait(&status);
	}

	return 0;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
-------------------------------------------------------------------------------
+ AF_PACKET TPACKET_V3 example
-------------------------------------------------------------------------------

AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
sizes by doing it's own memory management. It is based on blocks where polling
works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.

It is said that TPACKET_V3 brings the following benefits:
 *) ~15 - 20% reduction in CPU-usage
 *) ~20% increase in packet capture rate
 *) ~2x increase in packet density
 *) Port aggregation analysis
 *) Non static frame size to capture entire packet payload

So it seems to be a good candidate to be used with packet fanout.

Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.):

725 726 727 728 729 730
/* Written from scratch, but kernel-to-user space API usage
 * dissected from lolpcap:
 *  Copyright 2011, Chetan Loke <loke.chetan@gmail.com>
 *  License: GPL, version 2.0
 */

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <poll.h>
#include <unistd.h>
#include <signal.h>
#include <inttypes.h>
#include <sys/socket.h>
#include <sys/mman.h>
#include <linux/if_packet.h>
#include <linux/if_ether.h>
#include <linux/ip.h>

#ifndef likely
# define likely(x)		__builtin_expect(!!(x), 1)
#endif
#ifndef unlikely
# define unlikely(x)		__builtin_expect(!!(x), 0)
#endif

struct block_desc {
	uint32_t version;
	uint32_t offset_to_priv;
	struct tpacket_hdr_v1 h1;
};

struct ring {
	struct iovec *rd;
	uint8_t *map;
	struct tpacket_req3 req;
};

static unsigned long packets_total = 0, bytes_total = 0;
static sig_atomic_t sigint = 0;

771
static void sighandler(int num)
772 773 774 775 776 777 778 779
{
	sigint = 1;
}

static int setup_socket(struct ring *ring, char *netdev)
{
	int err, i, fd, v = TPACKET_V3;
	struct sockaddr_ll ll;
780 781
	unsigned int blocksiz = 1 << 22, framesiz = 1 << 11;
	unsigned int blocknum = 64;
782 783 784 785 786 787 788 789 790 791 792 793 794 795

	fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
	if (fd < 0) {
		perror("socket");
		exit(1);
	}

	err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
	if (err < 0) {
		perror("setsockopt");
		exit(1);
	}

	memset(&ring->req, 0, sizeof(ring->req));
796 797 798 799 800 801
	ring->req.tp_block_size = blocksiz;
	ring->req.tp_frame_size = framesiz;
	ring->req.tp_block_nr = blocknum;
	ring->req.tp_frame_nr = (blocksiz * blocknum) / framesiz;
	ring->req.tp_retire_blk_tov = 60;
	ring->req.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
802 803 804 805 806 807 808 809 810

	err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
			 sizeof(ring->req));
	if (err < 0) {
		perror("setsockopt");
		exit(1);
	}

	ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
811
			 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, fd, 0);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	if (ring->map == MAP_FAILED) {
		perror("mmap");
		exit(1);
	}

	ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
	assert(ring->rd);
	for (i = 0; i < ring->req.tp_block_nr; ++i) {
		ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
		ring->rd[i].iov_len = ring->req.tp_block_size;
	}

	memset(&ll, 0, sizeof(ll));
	ll.sll_family = PF_PACKET;
	ll.sll_protocol = htons(ETH_P_ALL);
	ll.sll_ifindex = if_nametoindex(netdev);
	ll.sll_hatype = 0;
	ll.sll_pkttype = 0;
	ll.sll_halen = 0;

	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
	if (err < 0) {
		perror("bind");
		exit(1);
	}

	return fd;
}

static void display(struct tpacket3_hdr *ppd)
{
	struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
	struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);

	if (eth->h_proto == htons(ETH_P_IP)) {
		struct sockaddr_in ss, sd;
		char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];

		memset(&ss, 0, sizeof(ss));
		ss.sin_family = PF_INET;
		ss.sin_addr.s_addr = ip->saddr;
		getnameinfo((struct sockaddr *) &ss, sizeof(ss),
			    sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);

		memset(&sd, 0, sizeof(sd));
		sd.sin_family = PF_INET;
		sd.sin_addr.s_addr = ip->daddr;
		getnameinfo((struct sockaddr *) &sd, sizeof(sd),
			    dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);

		printf("%s -> %s, ", sbuff, dbuff);
	}

	printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
}

static void walk_block(struct block_desc *pbd, const int block_num)
{
870
	int num_pkts = pbd->h1.num_pkts, i;
871 872 873
	unsigned long bytes = 0;
	struct tpacket3_hdr *ppd;

874 875
	ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd +
				       pbd->h1.offset_to_first_pkt);
876 877 878 879
	for (i = 0; i < num_pkts; ++i) {
		bytes += ppd->tp_snaplen;
		display(ppd);

880 881
		ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd +
					       ppd->tp_next_offset);
882 883 884 885 886 887
	}

	packets_total += num_pkts;
	bytes_total += bytes;
}

888
static void flush_block(struct block_desc *pbd)
889
{
890
	pbd->h1.block_status = TP_STATUS_KERNEL;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
}

static void teardown_socket(struct ring *ring, int fd)
{
	munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
	free(ring->rd);
	close(fd);
}

int main(int argc, char **argp)
{
	int fd, err;
	socklen_t len;
	struct ring ring;
	struct pollfd pfd;
906
	unsigned int block_num = 0, blocks = 64;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	struct block_desc *pbd;
	struct tpacket_stats_v3 stats;

	if (argc != 2) {
		fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
		return EXIT_FAILURE;
	}

	signal(SIGINT, sighandler);

	memset(&ring, 0, sizeof(ring));
	fd = setup_socket(&ring, argp[argc - 1]);
	assert(fd > 0);

	memset(&pfd, 0, sizeof(pfd));
	pfd.fd = fd;
	pfd.events = POLLIN | POLLERR;
	pfd.revents = 0;

	while (likely(!sigint)) {
		pbd = (struct block_desc *) ring.rd[block_num].iov_base;
928 929

		if ((pbd->h1.block_status & TP_STATUS_USER) == 0) {
930
			poll(&pfd, 1, -1);
931
			continue;
932 933 934 935
		}

		walk_block(pbd, block_num);
		flush_block(pbd);
936
		block_num = (block_num + 1) % blocks;
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	}

	len = sizeof(stats);
	err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
	if (err < 0) {
		perror("getsockopt");
		exit(1);
	}

	fflush(stdout);
	printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
	       stats.tp_packets, bytes_total, stats.tp_drops,
	       stats.tp_freeze_q_cnt);

	teardown_socket(&ring, fd);
	return 0;
}

955 956 957 958 959
-------------------------------------------------------------------------------
+ PACKET_TIMESTAMP
-------------------------------------------------------------------------------

The PACKET_TIMESTAMP setting determines the source of the timestamp in
960 961 962 963 964
the packet meta information for mmap(2)ed RX_RING and TX_RINGs.  If your
NIC is capable of timestamping packets in hardware, you can request those
hardware timestamps to be used. Note: you may need to enable the generation
of hardware timestamps with SIOCSHWTSTAMP (see related information from
Documentation/networking/timestamping.txt).
965 966 967 968 969 970 971 972 973 974 975

PACKET_TIMESTAMP accepts the same integer bit field as
SO_TIMESTAMPING.  However, only the SOF_TIMESTAMPING_SYS_HARDWARE
and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by
PACKET_TIMESTAMP.  SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over
SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set.

    int req = 0;
    req |= SOF_TIMESTAMPING_SYS_HARDWARE;
    setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
For the mmap(2)ed ring buffers, such timestamps are stored in the
tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine
what kind of timestamp has been reported, the tp_status field is binary |'ed
with the following possible bits ...

    TP_STATUS_TS_SYS_HARDWARE
    TP_STATUS_TS_RAW_HARDWARE
    TP_STATUS_TS_SOFTWARE

... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the
RX_RING, if none of those 3 are set (i.e. PACKET_TIMESTAMP is not set),
then this means that a software fallback was invoked *within* PF_PACKET's
processing code (less precise).

Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
frames to be updated resp. the frame handed over to the application, iv) walk
through the frames to pick up the individual hw/sw timestamps.

Only (!) if transmit timestamping is enabled, then these bits are combined
with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
in a first step to see if the frame belongs to the application, and then
one can extract the type of timestamp in a second step from tp_status)!

If you don't care about them, thus having it disabled, checking for
TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
members do not contain a valid value. For TX_RINGs, by default no timestamp
is generated!
1006 1007 1008 1009

See include/linux/net_tstamp.h and Documentation/networking/timestamping
for more information on hardware timestamps.

1010 1011 1012 1013 1014 1015 1016
-------------------------------------------------------------------------------
+ Miscellaneous bits
-------------------------------------------------------------------------------

- Packet sockets work well together with Linux socket filters, thus you also
  might want to have a look at Documentation/networking/filter.txt

L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022
--------------------------------------------------------------------------------
+ THANKS
--------------------------------------------------------------------------------
   
   Jesse Brandeburg, for fixing my grammathical/spelling errors