hns3_enet.c 80.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2016~2017 Hisilicon Limited.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/sctp.h>
#include <linux/vermagic.h>
#include <net/gre.h>
22
#include <net/pkt_cls.h>
23 24 25 26 27
#include <net/vxlan.h>

#include "hnae3.h"
#include "hns3_enet.h"

28
static const char hns3_driver_name[] = "hns3";
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
const char hns3_driver_version[] = VERMAGIC_STRING;
static const char hns3_driver_string[] =
			"Hisilicon Ethernet Network Driver for Hip08 Family";
static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
static struct hnae3_client client;

/* hns3_pci_tbl - PCI Device ID Table
 *
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static const struct pci_device_id hns3_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 56
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	/* required last entry */
	{0, }
};
MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);

static irqreturn_t hns3_irq_handle(int irq, void *dev)
{
	struct hns3_enet_tqp_vector *tqp_vector = dev;

	napi_schedule(&tqp_vector->napi);

	return IRQ_HANDLED;
}

static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	unsigned int i;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
			continue;

		/* release the irq resource */
		free_irq(tqp_vectors->vector_irq, tqp_vectors);
		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
	}
}

static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	int txrx_int_idx = 0;
	int rx_int_idx = 0;
	int tx_int_idx = 0;
	unsigned int i;
	int ret;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
			continue;

		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "TxRx",
				 txrx_int_idx++);
			txrx_int_idx++;
		} else if (tqp_vectors->rx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "Rx",
				 rx_int_idx++);
		} else if (tqp_vectors->tx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "Tx",
				 tx_int_idx++);
		} else {
			/* Skip this unused q_vector */
			continue;
		}

		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';

		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
				  tqp_vectors->name,
				       tqp_vectors);
		if (ret) {
			netdev_err(priv->netdev, "request irq(%d) fail\n",
				   tqp_vectors->vector_irq);
			return ret;
		}

		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
	}

	return 0;
}

static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 mask_en)
{
	writel(mask_en, tqp_vector->mask_addr);
}

static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
{
	napi_enable(&tqp_vector->napi);

	/* enable vector */
	hns3_mask_vector_irq(tqp_vector, 1);
}

static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
{
	/* disable vector */
	hns3_mask_vector_irq(tqp_vector, 0);

	disable_irq(tqp_vector->vector_irq);
	napi_disable(&tqp_vector->napi);
}

static void hns3_set_vector_coalesc_gl(struct hns3_enet_tqp_vector *tqp_vector,
				       u32 gl_value)
{
	/* this defines the configuration for GL (Interrupt Gap Limiter)
	 * GL defines inter interrupt gap.
	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
	 */
	writel(gl_value, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
	writel(gl_value, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
	writel(gl_value, tqp_vector->mask_addr + HNS3_VECTOR_GL2_OFFSET);
}

static void hns3_set_vector_coalesc_rl(struct hns3_enet_tqp_vector *tqp_vector,
				       u32 rl_value)
{
	/* this defines the configuration for RL (Interrupt Rate Limiter).
	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
	 */
	writel(rl_value, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
}

static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector)
{
	/* initialize the configuration for interrupt coalescing.
	 * 1. GL (Interrupt Gap Limiter)
	 * 2. RL (Interrupt Rate Limiter)
	 */

	/* Default :enable interrupt coalesce */
	tqp_vector->rx_group.int_gl = HNS3_INT_GL_50K;
	tqp_vector->tx_group.int_gl = HNS3_INT_GL_50K;
	hns3_set_vector_coalesc_gl(tqp_vector, HNS3_INT_GL_50K);
	/* for now we are disabling Interrupt RL - we
	 * will re-enable later
	 */
	hns3_set_vector_coalesc_rl(tqp_vector, 0);
	tqp_vector->rx_group.flow_level = HNS3_FLOW_LOW;
	tqp_vector->tx_group.flow_level = HNS3_FLOW_LOW;
}

202 203
static int hns3_nic_set_real_num_queue(struct net_device *netdev)
{
204
	struct hnae3_handle *h = hns3_get_handle(netdev);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
	int ret;

	ret = netif_set_real_num_tx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
			   ret);
		return ret;
	}

	ret = netif_set_real_num_rx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
		return ret;
	}

	return 0;
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static int hns3_nic_net_up(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	int i, j;
	int ret;

	/* get irq resource for all vectors */
	ret = hns3_nic_init_irq(priv);
	if (ret) {
		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
		return ret;
	}

	/* enable the vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_enable(&priv->tqp_vector[i]);

	/* start the ae_dev */
	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
	if (ret)
		goto out_start_err;

	return 0;

out_start_err:
	for (j = i - 1; j >= 0; j--)
		hns3_vector_disable(&priv->tqp_vector[j]);

	hns3_nic_uninit_irq(priv);

	return ret;
}

static int hns3_nic_net_open(struct net_device *netdev)
{
263
	struct hns3_nic_priv *priv = netdev_priv(netdev);
264 265 266 267
	int ret;

	netif_carrier_off(netdev);

268 269
	ret = hns3_nic_set_real_num_queue(netdev);
	if (ret)
270 271 272 273 274 275 276 277 278
		return ret;

	ret = hns3_nic_net_up(netdev);
	if (ret) {
		netdev_err(netdev,
			   "hns net up fail, ret=%d!\n", ret);
		return ret;
	}

279
	priv->last_reset_time = jiffies;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	return 0;
}

static void hns3_nic_net_down(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	const struct hnae3_ae_ops *ops;
	int i;

	/* stop ae_dev */
	ops = priv->ae_handle->ae_algo->ops;
	if (ops->stop)
		ops->stop(priv->ae_handle);

	/* disable vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_disable(&priv->tqp_vector[i]);

	/* free irq resources */
	hns3_nic_uninit_irq(priv);
}

static int hns3_nic_net_stop(struct net_device *netdev)
{
	netif_tx_stop_all_queues(netdev);
	netif_carrier_off(netdev);

	hns3_nic_net_down(netdev);

	return 0;
}

static int hns3_nic_uc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
315
	struct hnae3_handle *h = hns3_get_handle(netdev);
316 317 318 319 320 321 322 323 324 325

	if (h->ae_algo->ops->add_uc_addr)
		return h->ae_algo->ops->add_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_uc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
326
	struct hnae3_handle *h = hns3_get_handle(netdev);
327 328 329 330 331 332 333 334 335 336

	if (h->ae_algo->ops->rm_uc_addr)
		return h->ae_algo->ops->rm_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
337
	struct hnae3_handle *h = hns3_get_handle(netdev);
338

339
	if (h->ae_algo->ops->add_mc_addr)
340 341 342 343 344 345 346 347
		return h->ae_algo->ops->add_mc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
348
	struct hnae3_handle *h = hns3_get_handle(netdev);
349

350
	if (h->ae_algo->ops->rm_mc_addr)
351 352 353 354 355
		return h->ae_algo->ops->rm_mc_addr(h, addr);

	return 0;
}

356
static void hns3_nic_set_rx_mode(struct net_device *netdev)
357
{
358
	struct hnae3_handle *h = hns3_get_handle(netdev);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	if (h->ae_algo->ops->set_promisc_mode) {
		if (netdev->flags & IFF_PROMISC)
			h->ae_algo->ops->set_promisc_mode(h, 1);
		else
			h->ae_algo->ops->set_promisc_mode(h, 0);
	}
	if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
		netdev_err(netdev, "sync uc address fail\n");
	if (netdev->flags & IFF_MULTICAST)
		if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
			netdev_err(netdev, "sync mc address fail\n");
}

static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
			u16 *mss, u32 *type_cs_vlan_tso)
{
	u32 l4_offset, hdr_len;
	union l3_hdr_info l3;
	union l4_hdr_info l4;
	u32 l4_paylen;
	int ret;

	if (!skb_is_gso(skb))
		return 0;

	ret = skb_cow_head(skb, 0);
	if (ret)
		return ret;

	l3.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* Software should clear the IPv4's checksum field when tso is
	 * needed.
	 */
	if (l3.v4->version == 4)
		l3.v4->check = 0;

	/* tunnel packet.*/
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
					 SKB_GSO_GRE_CSUM |
					 SKB_GSO_UDP_TUNNEL |
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
		if ((!(skb_shinfo(skb)->gso_type &
		    SKB_GSO_PARTIAL)) &&
		    (skb_shinfo(skb)->gso_type &
		    SKB_GSO_UDP_TUNNEL_CSUM)) {
			/* Software should clear the udp's checksum
			 * field when tso is needed.
			 */
			l4.udp->check = 0;
		}
		/* reset l3&l4 pointers from outer to inner headers */
		l3.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* Software should clear the IPv4's checksum field when
		 * tso is needed.
		 */
		if (l3.v4->version == 4)
			l3.v4->check = 0;
	}

	/* normal or tunnel packet*/
	l4_offset = l4.hdr - skb->data;
	hdr_len = (l4.tcp->doff * 4) + l4_offset;

	/* remove payload length from inner pseudo checksum when tso*/
	l4_paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check,
			     (__force __wsum)htonl(l4_paylen));

	/* find the txbd field values */
	*paylen = skb->len - hdr_len;
	hnae_set_bit(*type_cs_vlan_tso,
		     HNS3_TXD_TSO_B, 1);

	/* get MSS for TSO */
	*mss = skb_shinfo(skb)->gso_size;

	return 0;
}

443 444
static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
				u8 *il4_proto)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
{
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} l3;
	unsigned char *l4_hdr;
	unsigned char *exthdr;
	u8 l4_proto_tmp;
	__be16 frag_off;

	/* find outer header point */
	l3.hdr = skb_network_header(skb);
	l4_hdr = skb_inner_transport_header(skb);

	if (skb->protocol == htons(ETH_P_IPV6)) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (skb->protocol == htons(ETH_P_IP)) {
		l4_proto_tmp = l3.v4->protocol;
468 469
	} else {
		return -EINVAL;
470 471 472 473 474 475 476
	}

	*ol4_proto = l4_proto_tmp;

	/* tunnel packet */
	if (!skb->encapsulation) {
		*il4_proto = 0;
477
		return 0;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	}

	/* find inner header point */
	l3.hdr = skb_inner_network_header(skb);
	l4_hdr = skb_inner_transport_header(skb);

	if (l3.v6->version == 6) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (l3.v4->version == 4) {
		l4_proto_tmp = l3.v4->protocol;
	}

	*il4_proto = l4_proto_tmp;
495 496

	return 0;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
}

static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
				u8 il4_proto, u32 *type_cs_vlan_tso,
				u32 *ol_type_vlan_len_msec)
{
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} l3;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		struct gre_base_hdr *gre;
		unsigned char *hdr;
	} l4;
	unsigned char *l2_hdr;
	u8 l4_proto = ol4_proto;
	u32 ol2_len;
	u32 ol3_len;
	u32 ol4_len;
	u32 l2_len;
	u32 l3_len;

	l3.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* compute L2 header size for normal packet, defined in 2 Bytes */
	l2_len = l3.hdr - skb->data;
	hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
		       HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* tunnel packet*/
	if (skb->encapsulation) {
		/* compute OL2 header size, defined in 2 Bytes */
		ol2_len = l2_len;
		hnae_set_field(*ol_type_vlan_len_msec,
			       HNS3_TXD_L2LEN_M,
			       HNS3_TXD_L2LEN_S, ol2_len >> 1);

		/* compute OL3 header size, defined in 4 Bytes */
		ol3_len = l4.hdr - l3.hdr;
		hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
			       HNS3_TXD_L3LEN_S, ol3_len >> 2);

		/* MAC in UDP, MAC in GRE (0x6558)*/
		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
			/* switch MAC header ptr from outer to inner header.*/
			l2_hdr = skb_inner_mac_header(skb);

			/* compute OL4 header size, defined in 4 Bytes. */
			ol4_len = l2_hdr - l4.hdr;
			hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_M,
				       HNS3_TXD_L4LEN_S, ol4_len >> 2);

			/* switch IP header ptr from outer to inner header */
			l3.hdr = skb_inner_network_header(skb);

			/* compute inner l2 header size, defined in 2 Bytes. */
			l2_len = l3.hdr - l2_hdr;
			hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
				       HNS3_TXD_L2LEN_S, l2_len >> 1);
		} else {
			/* skb packet types not supported by hardware,
			 * txbd len fild doesn't be filled.
			 */
			return;
		}

		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);

		l4_proto = il4_proto;
	}

	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
		       HNS3_TXD_L3LEN_S, l3_len >> 2);

	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
	switch (l4_proto) {
	case IPPROTO_TCP:
		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
			       HNS3_TXD_L4LEN_S, l4.tcp->doff);
		break;
	case IPPROTO_SCTP:
		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
			       HNS3_TXD_L4LEN_S, (sizeof(struct sctphdr) >> 2));
		break;
	case IPPROTO_UDP:
		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
			       HNS3_TXD_L4LEN_S, (sizeof(struct udphdr) >> 2));
		break;
	default:
		/* skb packet types not supported by hardware,
		 * txbd len fild doesn't be filled.
		 */
		return;
	}
}

static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
				   u8 il4_proto, u32 *type_cs_vlan_tso,
				   u32 *ol_type_vlan_len_msec)
{
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} l3;
	u32 l4_proto = ol4_proto;

	l3.hdr = skb_network_header(skb);

	/* define OL3 type and tunnel type(OL4).*/
	if (skb->encapsulation) {
		/* define outer network header type.*/
		if (skb->protocol == htons(ETH_P_IP)) {
			if (skb_is_gso(skb))
				hnae_set_field(*ol_type_vlan_len_msec,
					       HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
					       HNS3_OL3T_IPV4_CSUM);
			else
				hnae_set_field(*ol_type_vlan_len_msec,
					       HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
					       HNS3_OL3T_IPV4_NO_CSUM);

		} else if (skb->protocol == htons(ETH_P_IPV6)) {
			hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
				       HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
		}

		/* define tunnel type(OL4).*/
		switch (l4_proto) {
		case IPPROTO_UDP:
			hnae_set_field(*ol_type_vlan_len_msec,
				       HNS3_TXD_TUNTYPE_M,
				       HNS3_TXD_TUNTYPE_S,
				       HNS3_TUN_MAC_IN_UDP);
			break;
		case IPPROTO_GRE:
			hnae_set_field(*ol_type_vlan_len_msec,
				       HNS3_TXD_TUNTYPE_M,
				       HNS3_TXD_TUNTYPE_S,
				       HNS3_TUN_NVGRE);
			break;
		default:
			/* drop the skb tunnel packet if hardware don't support,
			 * because hardware can't calculate csum when TSO.
			 */
			if (skb_is_gso(skb))
				return -EDOM;

			/* the stack computes the IP header already,
			 * driver calculate l4 checksum when not TSO.
			 */
			skb_checksum_help(skb);
			return 0;
		}

		l3.hdr = skb_inner_network_header(skb);
		l4_proto = il4_proto;
	}

	if (l3.v4->version == 4) {
		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
			       HNS3_TXD_L3T_S, HNS3_L3T_IPV4);

		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (skb_is_gso(skb))
			hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);

		hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
	} else if (l3.v6->version == 6) {
		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
			       HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
		hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
	}

	switch (l4_proto) {
	case IPPROTO_TCP:
		hnae_set_field(*type_cs_vlan_tso,
			       HNS3_TXD_L4T_M,
			       HNS3_TXD_L4T_S,
			       HNS3_L4T_TCP);
		break;
	case IPPROTO_UDP:
		hnae_set_field(*type_cs_vlan_tso,
			       HNS3_TXD_L4T_M,
			       HNS3_TXD_L4T_S,
			       HNS3_L4T_UDP);
		break;
	case IPPROTO_SCTP:
		hnae_set_field(*type_cs_vlan_tso,
			       HNS3_TXD_L4T_M,
			       HNS3_TXD_L4T_S,
			       HNS3_L4T_SCTP);
		break;
	default:
		/* drop the skb tunnel packet if hardware don't support,
		 * because hardware can't calculate csum when TSO.
		 */
		if (skb_is_gso(skb))
			return -EDOM;

		/* the stack computes the IP header already,
		 * driver calculate l4 checksum when not TSO.
		 */
		skb_checksum_help(skb);
		return 0;
	}

	return 0;
}

static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
{
	/* Config bd buffer end */
	hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
		       HNS3_TXD_BDTYPE_M, 0);
	hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
	hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
723
	hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
}

static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
			  int size, dma_addr_t dma, int frag_end,
			  enum hns_desc_type type)
{
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
	u32 ol_type_vlan_len_msec = 0;
	u16 bdtp_fe_sc_vld_ra_ri = 0;
	u32 type_cs_vlan_tso = 0;
	struct sk_buff *skb;
	u32 paylen = 0;
	u16 mss = 0;
	__be16 protocol;
	u8 ol4_proto;
	u8 il4_proto;
	int ret;

	/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
	desc_cb->priv = priv;
	desc_cb->length = size;
	desc_cb->dma = dma;
	desc_cb->type = type;

	/* now, fill the descriptor */
	desc->addr = cpu_to_le64(dma);
	desc->tx.send_size = cpu_to_le16((u16)size);
	hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
	desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);

	if (type == DESC_TYPE_SKB) {
		skb = (struct sk_buff *)priv;
757
		paylen = skb->len;
758 759 760 761 762 763 764 765 766 767

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
			skb_reset_mac_len(skb);
			protocol = skb->protocol;

			/* vlan packet*/
			if (protocol == htons(ETH_P_8021Q)) {
				protocol = vlan_get_protocol(skb);
				skb->protocol = protocol;
			}
768 769 770
			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
			if (ret)
				return ret;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
					    &type_cs_vlan_tso,
					    &ol_type_vlan_len_msec);
			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
						      &type_cs_vlan_tso,
						      &ol_type_vlan_len_msec);
			if (ret)
				return ret;

			ret = hns3_set_tso(skb, &paylen, &mss,
					   &type_cs_vlan_tso);
			if (ret)
				return ret;
		}

		/* Set txbd */
		desc->tx.ol_type_vlan_len_msec =
			cpu_to_le32(ol_type_vlan_len_msec);
		desc->tx.type_cs_vlan_tso_len =
			cpu_to_le32(type_cs_vlan_tso);
791
		desc->tx.paylen = cpu_to_le32(paylen);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
		desc->tx.mss = cpu_to_le16(mss);
	}

	/* move ring pointer to next.*/
	ring_ptr_move_fw(ring, next_to_use);

	return 0;
}

static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
			      int size, dma_addr_t dma, int frag_end,
			      enum hns_desc_type type)
{
	unsigned int frag_buf_num;
	unsigned int k;
	int sizeoflast;
	int ret;

	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
	sizeoflast = size % HNS3_MAX_BD_SIZE;
	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;

	/* When the frag size is bigger than hardware, split this frag */
	for (k = 0; k < frag_buf_num; k++) {
		ret = hns3_fill_desc(ring, priv,
				     (k == frag_buf_num - 1) ?
				sizeoflast : HNS3_MAX_BD_SIZE,
				dma + HNS3_MAX_BD_SIZE * k,
				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
				(type == DESC_TYPE_SKB && !k) ?
					DESC_TYPE_SKB : DESC_TYPE_PAGE);
		if (ret)
			return ret;
	}

	return 0;
}

static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
				   struct hns3_enet_ring *ring)
{
	struct sk_buff *skb = *out_skb;
	struct skb_frag_struct *frag;
	int bdnum_for_frag;
	int frag_num;
	int buf_num;
	int size;
	int i;

	size = skb_headlen(skb);
	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;

	frag_num = skb_shinfo(skb)->nr_frags;
	for (i = 0; i < frag_num; i++) {
		frag = &skb_shinfo(skb)->frags[i];
		size = skb_frag_size(frag);
		bdnum_for_frag =
			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
			return -ENOMEM;

		buf_num += bdnum_for_frag;
	}

	if (buf_num > ring_space(ring))
		return -EBUSY;

	*bnum = buf_num;
	return 0;
}

static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
				  struct hns3_enet_ring *ring)
{
	struct sk_buff *skb = *out_skb;
	int buf_num;

	/* No. of segments (plus a header) */
	buf_num = skb_shinfo(skb)->nr_frags + 1;

	if (buf_num > ring_space(ring))
		return -EBUSY;

	*bnum = buf_num;

	return 0;
}

static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
{
	struct device *dev = ring_to_dev(ring);
	unsigned int i;

	for (i = 0; i < ring->desc_num; i++) {
		/* check if this is where we started */
		if (ring->next_to_use == next_to_use_orig)
			break;

		/* unmap the descriptor dma address */
		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
			dma_unmap_single(dev,
					 ring->desc_cb[ring->next_to_use].dma,
					ring->desc_cb[ring->next_to_use].length,
					DMA_TO_DEVICE);
		else
			dma_unmap_page(dev,
				       ring->desc_cb[ring->next_to_use].dma,
				       ring->desc_cb[ring->next_to_use].length,
				       DMA_TO_DEVICE);

		/* rollback one */
		ring_ptr_move_bw(ring, next_to_use);
	}
}

907
netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_nic_ring_data *ring_data =
		&tx_ring_data(priv, skb->queue_mapping);
	struct hns3_enet_ring *ring = ring_data->ring;
	struct device *dev = priv->dev;
	struct netdev_queue *dev_queue;
	struct skb_frag_struct *frag;
	int next_to_use_head;
	int next_to_use_frag;
	dma_addr_t dma;
	int buf_num;
	int seg_num;
	int size;
	int ret;
	int i;

	/* Prefetch the data used later */
	prefetch(skb->data);

	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
	case -EBUSY:
		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_busy++;
		u64_stats_update_end(&ring->syncp);

		goto out_net_tx_busy;
	case -ENOMEM:
		u64_stats_update_begin(&ring->syncp);
		ring->stats.sw_err_cnt++;
		u64_stats_update_end(&ring->syncp);
		netdev_err(netdev, "no memory to xmit!\n");

		goto out_err_tx_ok;
	default:
		break;
	}

	/* No. of segments (plus a header) */
	seg_num = skb_shinfo(skb)->nr_frags + 1;
	/* Fill the first part */
	size = skb_headlen(skb);

	next_to_use_head = ring->next_to_use;

	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, dma)) {
		netdev_err(netdev, "TX head DMA map failed\n");
		ring->stats.sw_err_cnt++;
		goto out_err_tx_ok;
	}

	ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
			   DESC_TYPE_SKB);
	if (ret)
		goto head_dma_map_err;

	next_to_use_frag = ring->next_to_use;
	/* Fill the fragments */
	for (i = 1; i < seg_num; i++) {
		frag = &skb_shinfo(skb)->frags[i - 1];
		size = skb_frag_size(frag);
		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
		if (dma_mapping_error(dev, dma)) {
			netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
			ring->stats.sw_err_cnt++;
			goto frag_dma_map_err;
		}
		ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
				    seg_num - 1 == i ? 1 : 0,
				    DESC_TYPE_PAGE);

		if (ret)
			goto frag_dma_map_err;
	}

	/* Complete translate all packets */
	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
	netdev_tx_sent_queue(dev_queue, skb->len);

	wmb(); /* Commit all data before submit */

	hnae_queue_xmit(ring->tqp, buf_num);

	return NETDEV_TX_OK;

frag_dma_map_err:
	hns_nic_dma_unmap(ring, next_to_use_frag);

head_dma_map_err:
	hns_nic_dma_unmap(ring, next_to_use_head);

out_err_tx_ok:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;

out_net_tx_busy:
	netif_stop_subqueue(netdev, ring_data->queue_index);
	smp_mb(); /* Commit all data before submit */

	return NETDEV_TX_BUSY;
}

static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
{
1013
	struct hnae3_handle *h = hns3_get_handle(netdev);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	struct sockaddr *mac_addr = p;
	int ret;

	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
		return -EADDRNOTAVAIL;

	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data);
	if (ret) {
		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
		return ret;
	}

	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);

	return 0;
}

static int hns3_nic_set_features(struct net_device *netdev,
				 netdev_features_t features)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);

	if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
		priv->ops.fill_desc = hns3_fill_desc_tso;
		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
	} else {
		priv->ops.fill_desc = hns3_fill_desc;
		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
	}

	netdev->features = features;
	return 0;
}

static void
hns3_nic_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int queue_num = priv->ae_handle->kinfo.num_tqps;
	struct hns3_enet_ring *ring;
	unsigned int start;
	unsigned int idx;
	u64 tx_bytes = 0;
	u64 rx_bytes = 0;
	u64 tx_pkts = 0;
	u64 rx_pkts = 0;

	for (idx = 0; idx < queue_num; idx++) {
		/* fetch the tx stats */
		ring = priv->ring_data[idx].ring;
		do {
1065
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1066 1067 1068 1069 1070 1071 1072
			tx_bytes += ring->stats.tx_bytes;
			tx_pkts += ring->stats.tx_pkts;
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));

		/* fetch the rx stats */
		ring = priv->ring_data[idx + queue_num].ring;
		do {
1073
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
			rx_bytes += ring->stats.rx_bytes;
			rx_pkts += ring->stats.rx_pkts;
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
	}

	stats->tx_bytes = tx_bytes;
	stats->tx_packets = tx_pkts;
	stats->rx_bytes = rx_bytes;
	stats->rx_packets = rx_pkts;

	stats->rx_errors = netdev->stats.rx_errors;
	stats->multicast = netdev->stats.multicast;
	stats->rx_length_errors = netdev->stats.rx_length_errors;
	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
	stats->rx_missed_errors = netdev->stats.rx_missed_errors;

	stats->tx_errors = netdev->stats.tx_errors;
	stats->rx_dropped = netdev->stats.rx_dropped;
	stats->tx_dropped = netdev->stats.tx_dropped;
	stats->collisions = netdev->stats.collisions;
	stats->rx_over_errors = netdev->stats.rx_over_errors;
	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
	stats->tx_window_errors = netdev->stats.tx_window_errors;
	stats->rx_compressed = netdev->stats.rx_compressed;
	stats->tx_compressed = netdev->stats.tx_compressed;
}

static void hns3_add_tunnel_port(struct net_device *netdev, u16 port,
				 enum hns3_udp_tnl_type type)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_udp_tunnel *udp_tnl = &priv->udp_tnl[type];
	struct hnae3_handle *h = priv->ae_handle;

	if (udp_tnl->used && udp_tnl->dst_port == port) {
		udp_tnl->used++;
		return;
	}

	if (udp_tnl->used) {
		netdev_warn(netdev,
			    "UDP tunnel [%d], port [%d] offload\n", type, port);
		return;
	}

	udp_tnl->dst_port = port;
	udp_tnl->used = 1;
	/* TBD send command to hardware to add port */
	if (h->ae_algo->ops->add_tunnel_udp)
		h->ae_algo->ops->add_tunnel_udp(h, port);
}

static void hns3_del_tunnel_port(struct net_device *netdev, u16 port,
				 enum hns3_udp_tnl_type type)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_udp_tunnel *udp_tnl = &priv->udp_tnl[type];
	struct hnae3_handle *h = priv->ae_handle;

	if (!udp_tnl->used || udp_tnl->dst_port != port) {
		netdev_warn(netdev,
			    "Invalid UDP tunnel port %d\n", port);
		return;
	}

	udp_tnl->used--;
	if (udp_tnl->used)
		return;

	udp_tnl->dst_port = 0;
	/* TBD send command to hardware to del port  */
	if (h->ae_algo->ops->del_tunnel_udp)
1151
		h->ae_algo->ops->del_tunnel_udp(h, port);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

/* hns3_nic_udp_tunnel_add - Get notifiacetion about UDP tunnel ports
 * @netdev: This physical ports's netdev
 * @ti: Tunnel information
 */
static void hns3_nic_udp_tunnel_add(struct net_device *netdev,
				    struct udp_tunnel_info *ti)
{
	u16 port_n = ntohs(ti->port);

	switch (ti->type) {
	case UDP_TUNNEL_TYPE_VXLAN:
		hns3_add_tunnel_port(netdev, port_n, HNS3_UDP_TNL_VXLAN);
		break;
	case UDP_TUNNEL_TYPE_GENEVE:
		hns3_add_tunnel_port(netdev, port_n, HNS3_UDP_TNL_GENEVE);
		break;
	default:
		netdev_err(netdev, "unsupported tunnel type %d\n", ti->type);
		break;
	}
}

static void hns3_nic_udp_tunnel_del(struct net_device *netdev,
				    struct udp_tunnel_info *ti)
{
	u16 port_n = ntohs(ti->port);

	switch (ti->type) {
	case UDP_TUNNEL_TYPE_VXLAN:
		hns3_del_tunnel_port(netdev, port_n, HNS3_UDP_TNL_VXLAN);
		break;
	case UDP_TUNNEL_TYPE_GENEVE:
		hns3_del_tunnel_port(netdev, port_n, HNS3_UDP_TNL_GENEVE);
		break;
	default:
		break;
	}
}

1193
static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1194
{
1195
	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1196
	struct hnae3_handle *h = hns3_get_handle(netdev);
1197
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1198 1199 1200 1201 1202
	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
	u8 tc = mqprio_qopt->qopt.num_tc;
	u16 mode = mqprio_qopt->mode;
	u8 hw = mqprio_qopt->qopt.hw;
	bool if_running;
1203 1204 1205
	unsigned int i;
	int ret;

1206 1207 1208 1209
	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
		return -EOPNOTSUPP;

1210 1211 1212 1213 1214 1215
	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!netdev)
		return -EINVAL;

1216 1217 1218 1219
	if_running = netif_running(netdev);
	if (if_running) {
		hns3_nic_net_stop(netdev);
		msleep(100);
1220 1221
	}

1222 1223
	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1224
	if (ret)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		goto out;

	if (tc <= 1) {
		netdev_reset_tc(netdev);
	} else {
		ret = netdev_set_num_tc(netdev, tc);
		if (ret)
			goto out;

		for (i = 0; i < HNAE3_MAX_TC; i++) {
			if (!kinfo->tc_info[i].enable)
				continue;
1237 1238 1239 1240 1241

			netdev_set_tc_queue(netdev,
					    kinfo->tc_info[i].tc,
					    kinfo->tc_info[i].tqp_count,
					    kinfo->tc_info[i].tqp_offset);
1242
		}
1243 1244
	}

1245 1246 1247 1248 1249 1250 1251
	ret = hns3_nic_set_real_num_queue(netdev);

out:
	if (if_running)
		hns3_nic_net_open(netdev);

	return ret;
1252 1253
}

1254
static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1255
			     void *type_data)
1256
{
1257
	if (type != TC_SETUP_QDISC_MQPRIO)
1258
		return -EOPNOTSUPP;
1259

1260
	return hns3_setup_tc(dev, type_data);
1261 1262 1263 1264 1265
}

static int hns3_vlan_rx_add_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
{
1266
	struct hnae3_handle *h = hns3_get_handle(netdev);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);

	return ret;
}

static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
				 __be16 proto, u16 vid)
{
1278
	struct hnae3_handle *h = hns3_get_handle(netdev);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);

	return ret;
}

static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
				u8 qos, __be16 vlan_proto)
{
1290
	struct hnae3_handle *h = hns3_get_handle(netdev);
1291 1292 1293 1294 1295 1296 1297 1298 1299
	int ret = -EIO;

	if (h->ae_algo->ops->set_vf_vlan_filter)
		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
						   qos, vlan_proto);

	return ret;
}

1300 1301
static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
{
1302
	struct hnae3_handle *h = hns3_get_handle(netdev);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	bool if_running = netif_running(netdev);
	int ret;

	if (!h->ae_algo->ops->set_mtu)
		return -EOPNOTSUPP;

	/* if this was called with netdev up then bring netdevice down */
	if (if_running) {
		(void)hns3_nic_net_stop(netdev);
		msleep(100);
	}

	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
	if (ret) {
		netdev_err(netdev, "failed to change MTU in hardware %d\n",
			   ret);
		return ret;
	}

	/* if the netdev was running earlier, bring it up again */
	if (if_running && hns3_nic_net_open(netdev))
		ret = -EINVAL;

	return ret;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hns3_enet_ring *tx_ring = NULL;
	int timeout_queue = 0;
	int hw_head, hw_tail;
	int i;

	/* Find the stopped queue the same way the stack does */
	for (i = 0; i < ndev->real_num_tx_queues; i++) {
		struct netdev_queue *q;
		unsigned long trans_start;

		q = netdev_get_tx_queue(ndev, i);
		trans_start = q->trans_start;
		if (netif_xmit_stopped(q) &&
		    time_after(jiffies,
			       (trans_start + ndev->watchdog_timeo))) {
			timeout_queue = i;
			break;
		}
	}

	if (i == ndev->num_tx_queues) {
		netdev_info(ndev,
			    "no netdev TX timeout queue found, timeout count: %llu\n",
			    priv->tx_timeout_count);
		return false;
	}

	tx_ring = priv->ring_data[timeout_queue].ring;

	hw_head = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_HEAD_REG);
	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_TAIL_REG);
	netdev_info(ndev,
		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
		    priv->tx_timeout_count,
		    timeout_queue,
		    tx_ring->next_to_use,
		    tx_ring->next_to_clean,
		    hw_head,
		    hw_tail,
		    readl(tx_ring->tqp_vector->mask_addr));

	return true;
}

static void hns3_nic_net_timeout(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	unsigned long last_reset_time = priv->last_reset_time;
	struct hnae3_handle *h = priv->ae_handle;

	if (!hns3_get_tx_timeo_queue_info(ndev))
		return;

	priv->tx_timeout_count++;

	/* This timeout is far away enough from last timeout,
	 * if timeout again,set the reset type to PF reset
	 */
	if (time_after(jiffies, (last_reset_time + 20 * HZ)))
		priv->reset_level = HNAE3_FUNC_RESET;

	/* Don't do any new action before the next timeout */
	else if (time_before(jiffies, (last_reset_time + ndev->watchdog_timeo)))
		return;

	priv->last_reset_time = jiffies;

	if (h->ae_algo->ops->reset_event)
		h->ae_algo->ops->reset_event(h, priv->reset_level);

	priv->reset_level++;
	if (priv->reset_level > HNAE3_GLOBAL_RESET)
		priv->reset_level = HNAE3_GLOBAL_RESET;
}

1409 1410 1411 1412
static const struct net_device_ops hns3_nic_netdev_ops = {
	.ndo_open		= hns3_nic_net_open,
	.ndo_stop		= hns3_nic_net_stop,
	.ndo_start_xmit		= hns3_nic_net_xmit,
1413
	.ndo_tx_timeout		= hns3_nic_net_timeout,
1414
	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1415
	.ndo_change_mtu		= hns3_nic_change_mtu,
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	.ndo_set_features	= hns3_nic_set_features,
	.ndo_get_stats64	= hns3_nic_get_stats64,
	.ndo_setup_tc		= hns3_nic_setup_tc,
	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
	.ndo_udp_tunnel_add	= hns3_nic_udp_tunnel_add,
	.ndo_udp_tunnel_del	= hns3_nic_udp_tunnel_del,
	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
};

/* hns3_probe - Device initialization routine
 * @pdev: PCI device information struct
 * @ent: entry in hns3_pci_tbl
 *
 * hns3_probe initializes a PF identified by a pci_dev structure.
 * The OS initialization, configuring of the PF private structure,
 * and a hardware reset occur.
 *
 * Returns 0 on success, negative on failure
 */
static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct hnae3_ae_dev *ae_dev;
	int ret;

	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
			      GFP_KERNEL);
	if (!ae_dev) {
		ret = -ENOMEM;
		return ret;
	}

	ae_dev->pdev = pdev;
1450
	ae_dev->flag = ent->driver_data;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	ae_dev->dev_type = HNAE3_DEV_KNIC;
	pci_set_drvdata(pdev, ae_dev);

	return hnae3_register_ae_dev(ae_dev);
}

/* hns3_remove - Device removal routine
 * @pdev: PCI device information struct
 */
static void hns3_remove(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	hnae3_unregister_ae_dev(ae_dev);

	devm_kfree(&pdev->dev, ae_dev);

	pci_set_drvdata(pdev, NULL);
}

static struct pci_driver hns3_driver = {
	.name     = hns3_driver_name,
	.id_table = hns3_pci_tbl,
	.probe    = hns3_probe,
	.remove   = hns3_remove,
};

/* set default feature to hns3 */
static void hns3_set_default_feature(struct net_device *netdev)
{
	netdev->priv_flags |= IFF_UNICAST_FLT;

	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
		NETIF_F_GSO_UDP_TUNNEL_CSUM;

	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;

	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;

	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_HW_VLAN_CTAG_FILTER |
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
		NETIF_F_GSO_UDP_TUNNEL_CSUM;

	netdev->vlan_features |=
		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
		NETIF_F_GSO_UDP_TUNNEL_CSUM;

	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_HW_VLAN_CTAG_FILTER |
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
		NETIF_F_GSO_UDP_TUNNEL_CSUM;
}

static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
	unsigned int order = hnae_page_order(ring);
	struct page *p;

	p = dev_alloc_pages(order);
	if (!p)
		return -ENOMEM;

	cb->priv = p;
	cb->page_offset = 0;
	cb->reuse_flag = 0;
	cb->buf  = page_address(p);
	cb->length = hnae_page_size(ring);
	cb->type = DESC_TYPE_PAGE;

	return 0;
}

static void hns3_free_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
	if (cb->type == DESC_TYPE_SKB)
		dev_kfree_skb_any((struct sk_buff *)cb->priv);
	else if (!HNAE3_IS_TX_RING(ring))
		put_page((struct page *)cb->priv);
	memset(cb, 0, sizeof(*cb));
}

static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
{
	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
			       cb->length, ring_to_dma_dir(ring));

	if (dma_mapping_error(ring_to_dev(ring), cb->dma))
		return -EIO;

	return 0;
}

static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
			      struct hns3_desc_cb *cb)
{
	if (cb->type == DESC_TYPE_SKB)
		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
				 ring_to_dma_dir(ring));
	else
		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
			       ring_to_dma_dir(ring));
}

static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
	ring->desc[i].addr = 0;
}

static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	struct hns3_desc_cb *cb = &ring->desc_cb[i];

	if (!ring->desc_cb[i].dma)
		return;

	hns3_buffer_detach(ring, i);
	hns3_free_buffer(ring, cb);
}

static void hns3_free_buffers(struct hns3_enet_ring *ring)
{
	int i;

	for (i = 0; i < ring->desc_num; i++)
		hns3_free_buffer_detach(ring, i);
}

/* free desc along with its attached buffer */
static void hns3_free_desc(struct hns3_enet_ring *ring)
{
	hns3_free_buffers(ring);

	dma_unmap_single(ring_to_dev(ring), ring->desc_dma_addr,
			 ring->desc_num * sizeof(ring->desc[0]),
			 DMA_BIDIRECTIONAL);
	ring->desc_dma_addr = 0;
	kfree(ring->desc);
	ring->desc = NULL;
}

static int hns3_alloc_desc(struct hns3_enet_ring *ring)
{
	int size = ring->desc_num * sizeof(ring->desc[0]);

	ring->desc = kzalloc(size, GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	ring->desc_dma_addr = dma_map_single(ring_to_dev(ring), ring->desc,
					     size, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ring_to_dev(ring), ring->desc_dma_addr)) {
		ring->desc_dma_addr = 0;
		kfree(ring->desc);
		ring->desc = NULL;
		return -ENOMEM;
	}

	return 0;
}

static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
				   struct hns3_desc_cb *cb)
{
	int ret;

	ret = hns3_alloc_buffer(ring, cb);
	if (ret)
		goto out;

	ret = hns3_map_buffer(ring, cb);
	if (ret)
		goto out_with_buf;

	return 0;

out_with_buf:
1641
	hns3_free_buffer(ring, cb);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
out:
	return ret;
}

static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
{
	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);

	if (ret)
		return ret;

	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);

	return 0;
}

/* Allocate memory for raw pkg, and map with dma */
static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
{
	int i, j, ret;

	for (i = 0; i < ring->desc_num; i++) {
		ret = hns3_alloc_buffer_attach(ring, i);
		if (ret)
			goto out_buffer_fail;
	}

	return 0;

out_buffer_fail:
	for (j = i - 1; j >= 0; j--)
		hns3_free_buffer_detach(ring, j);
	return ret;
}

/* detach a in-used buffer and replace with a reserved one  */
static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
				struct hns3_desc_cb *res_cb)
{
1681
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	ring->desc_cb[i] = *res_cb;
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
}

static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
{
	ring->desc_cb[i].reuse_flag = 0;
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
		+ ring->desc_cb[i].page_offset);
}

static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
				      int *pkts)
{
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];

	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
	(*bytes) += desc_cb->length;
	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
	hns3_free_buffer_detach(ring, ring->next_to_clean);

	ring_ptr_move_fw(ring, next_to_clean);
}

static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
{
	int u = ring->next_to_use;
	int c = ring->next_to_clean;

	if (unlikely(h > ring->desc_num))
		return 0;

	return u > c ? (h > c && h <= u) : (h > c || h <= u);
}

1717
bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	struct netdev_queue *dev_queue;
	int bytes, pkts;
	int head;

	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
	rmb(); /* Make sure head is ready before touch any data */

	if (is_ring_empty(ring) || head == ring->next_to_clean)
1728
		return true; /* no data to poll */
1729 1730 1731 1732 1733 1734 1735 1736

	if (!is_valid_clean_head(ring, head)) {
		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
			   ring->next_to_use, ring->next_to_clean);

		u64_stats_update_begin(&ring->syncp);
		ring->stats.io_err_cnt++;
		u64_stats_update_end(&ring->syncp);
1737
		return true;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	}

	bytes = 0;
	pkts = 0;
	while (head != ring->next_to_clean && budget) {
		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
		/* Issue prefetch for next Tx descriptor */
		prefetch(&ring->desc_cb[ring->next_to_clean]);
		budget--;
	}

	ring->tqp_vector->tx_group.total_bytes += bytes;
	ring->tqp_vector->tx_group.total_packets += pkts;

	u64_stats_update_begin(&ring->syncp);
	ring->stats.tx_bytes += bytes;
	ring->stats.tx_pkts += pkts;
	u64_stats_update_end(&ring->syncp);

	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
	netdev_tx_completed_queue(dev_queue, pkts, bytes);

	if (unlikely(pkts && netif_carrier_ok(netdev) &&
		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (netif_tx_queue_stopped(dev_queue)) {
			netif_tx_wake_queue(dev_queue);
			ring->stats.restart_queue++;
		}
	}

	return !!budget;
}

static int hns3_desc_unused(struct hns3_enet_ring *ring)
{
	int ntc = ring->next_to_clean;
	int ntu = ring->next_to_use;

	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}

static void
hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
{
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc_cb res_cbs;
	int i, ret;

	for (i = 0; i < cleand_count; i++) {
		desc_cb = &ring->desc_cb[ring->next_to_use];
		if (desc_cb->reuse_flag) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.reuse_pg_cnt++;
			u64_stats_update_end(&ring->syncp);

			hns3_reuse_buffer(ring, ring->next_to_use);
		} else {
			ret = hns3_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);

				netdev_err(ring->tqp->handle->kinfo.netdev,
					   "hnae reserve buffer map failed.\n");
				break;
			}
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
		}

		ring_ptr_move_fw(ring, next_to_use);
	}

	wmb(); /* Make all data has been write before submit */
	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
}

/* hns3_nic_get_headlen - determine size of header for LRO/GRO
 * @data: pointer to the start of the headers
 * @max: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 */
static unsigned int hns3_nic_get_headlen(unsigned char *data, u32 flag,
					 unsigned int max_size)
{
	unsigned char *network;
	u8 hlen;

	/* This should never happen, but better safe than sorry */
	if (max_size < ETH_HLEN)
		return max_size;

	/* Initialize network frame pointer */
	network = data;

	/* Set first protocol and move network header forward */
	network += ETH_HLEN;

	/* Handle any vlan tag if present */
	if (hnae_get_field(flag, HNS3_RXD_VLAN_M, HNS3_RXD_VLAN_S)
		== HNS3_RX_FLAG_VLAN_PRESENT) {
		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
			return max_size;

		network += VLAN_HLEN;
	}

	/* Handle L3 protocols */
	if (hnae_get_field(flag, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S)
		== HNS3_RX_FLAG_L3ID_IPV4) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct iphdr)))
			return max_size;

		/* Access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (network[0] & 0x0F) << 2;

		/* Verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return network - data;

		/* Record next protocol if header is present */
	} else if (hnae_get_field(flag, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S)
		== HNS3_RX_FLAG_L3ID_IPV6) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct ipv6hdr)))
			return max_size;

		/* Record next protocol */
		hlen = sizeof(struct ipv6hdr);
	} else {
		return network - data;
	}

	/* Relocate pointer to start of L4 header */
	network += hlen;

	/* Finally sort out TCP/UDP */
	if (hnae_get_field(flag, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S)
		== HNS3_RX_FLAG_L4ID_TCP) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct tcphdr)))
			return max_size;

		/* Access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (network[12] & 0xF0) >> 2;

		/* Verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return network - data;

		network += hlen;
	} else if (hnae_get_field(flag, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S)
		== HNS3_RX_FLAG_L4ID_UDP) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct udphdr)))
			return max_size;

		network += sizeof(struct udphdr);
	}

	/* If everything has gone correctly network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((typeof(max_size))(network - data) < max_size)
		return network - data;
	else
		return max_size;
}

static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
				struct hns3_enet_ring *ring, int pull_len,
				struct hns3_desc_cb *desc_cb)
{
	struct hns3_desc *desc;
	int truesize, size;
	int last_offset;
	bool twobufs;

	twobufs = ((PAGE_SIZE < 8192) &&
		hnae_buf_size(ring) == HNS3_BUFFER_SIZE_2048);

	desc = &ring->desc[ring->next_to_clean];
	size = le16_to_cpu(desc->rx.size);

	if (twobufs) {
		truesize = hnae_buf_size(ring);
	} else {
		truesize = ALIGN(size, L1_CACHE_BYTES);
		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
	}

	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
			size - pull_len, truesize - pull_len);

	 /* Avoid re-using remote pages,flag default unreuse */
	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
		return;

	if (twobufs) {
		/* If we are only owner of page we can reuse it */
		if (likely(page_count(desc_cb->priv) == 1)) {
			/* Flip page offset to other buffer */
			desc_cb->page_offset ^= truesize;

			desc_cb->reuse_flag = 1;
			/* bump ref count on page before it is given*/
			get_page(desc_cb->priv);
		}
		return;
	}

	/* Move offset up to the next cache line */
	desc_cb->page_offset += truesize;

	if (desc_cb->page_offset <= last_offset) {
		desc_cb->reuse_flag = 1;
		/* Bump ref count on page before it is given*/
		get_page(desc_cb->priv);
	}
}

static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
			     struct hns3_desc *desc)
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	int l3_type, l4_type;
	u32 bd_base_info;
	int ol4_type;
	u32 l234info;

	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	l234info = le32_to_cpu(desc->rx.l234_info);

	skb->ip_summed = CHECKSUM_NONE;

	skb_checksum_none_assert(skb);

	if (!(netdev->features & NETIF_F_RXCSUM))
		return;

	/* check if hardware has done checksum */
	if (!hnae_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
		return;

	if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L3E_B) ||
		     hnae_get_bit(l234info, HNS3_RXD_L4E_B) ||
		     hnae_get_bit(l234info, HNS3_RXD_OL3E_B) ||
		     hnae_get_bit(l234info, HNS3_RXD_OL4E_B))) {
		netdev_err(netdev, "L3/L4 error pkt\n");
		u64_stats_update_begin(&ring->syncp);
		ring->stats.l3l4_csum_err++;
		u64_stats_update_end(&ring->syncp);

		return;
	}

	l3_type = hnae_get_field(l234info, HNS3_RXD_L3ID_M,
				 HNS3_RXD_L3ID_S);
	l4_type = hnae_get_field(l234info, HNS3_RXD_L4ID_M,
				 HNS3_RXD_L4ID_S);

	ol4_type = hnae_get_field(l234info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S);
	switch (ol4_type) {
	case HNS3_OL4_TYPE_MAC_IN_UDP:
	case HNS3_OL4_TYPE_NVGRE:
		skb->csum_level = 1;
	case HNS3_OL4_TYPE_NO_TUN:
		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
		if (l3_type == HNS3_L3_TYPE_IPV4 ||
		    (l3_type == HNS3_L3_TYPE_IPV6 &&
		     (l4_type == HNS3_L4_TYPE_UDP ||
		      l4_type == HNS3_L4_TYPE_TCP ||
		      l4_type == HNS3_L4_TYPE_SCTP)))
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		break;
	}
}

2028 2029 2030 2031 2032
static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
	napi_gro_receive(&ring->tqp_vector->napi, skb);
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
			     struct sk_buff **out_skb, int *out_bnum)
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc *desc;
	struct sk_buff *skb;
	unsigned char *va;
	u32 bd_base_info;
	int pull_len;
	u32 l234info;
	int length;
	int bnum;

	desc = &ring->desc[ring->next_to_clean];
	desc_cb = &ring->desc_cb[ring->next_to_clean];

	prefetch(desc);

	length = le16_to_cpu(desc->rx.pkt_len);
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	l234info = le32_to_cpu(desc->rx.l234_info);

	/* Check valid BD */
	if (!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))
		return -EFAULT;

	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;

	/* Prefetch first cache line of first page
	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
	 * line size is 64B so need to prefetch twice to make it 128B. But in
	 * actual we can have greater size of caches with 128B Level 1 cache
	 * lines. In such a case, single fetch would suffice to cache in the
	 * relevant part of the header.
	 */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif

	skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
					HNS3_RX_HEAD_SIZE);
	if (unlikely(!skb)) {
		netdev_err(netdev, "alloc rx skb fail\n");

		u64_stats_update_begin(&ring->syncp);
		ring->stats.sw_err_cnt++;
		u64_stats_update_end(&ring->syncp);

		return -ENOMEM;
	}

	prefetchw(skb->data);

	bnum = 1;
	if (length <= HNS3_RX_HEAD_SIZE) {
		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));

		/* We can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
			desc_cb->reuse_flag = 1;
		else /* This page cannot be reused so discard it */
			put_page(desc_cb->priv);

		ring_ptr_move_fw(ring, next_to_clean);
	} else {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.seg_pkt_cnt++;
		u64_stats_update_end(&ring->syncp);

		pull_len = hns3_nic_get_headlen(va, l234info,
						HNS3_RX_HEAD_SIZE);
		memcpy(__skb_put(skb, pull_len), va,
		       ALIGN(pull_len, sizeof(long)));

		hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
		ring_ptr_move_fw(ring, next_to_clean);

		while (!hnae_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
			desc = &ring->desc[ring->next_to_clean];
			desc_cb = &ring->desc_cb[ring->next_to_clean];
			bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
			hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
			ring_ptr_move_fw(ring, next_to_clean);
			bnum++;
		}
	}

	*out_bnum = bnum;

	if (unlikely(!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
		netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
		u64_stats_update_begin(&ring->syncp);
		ring->stats.non_vld_descs++;
		u64_stats_update_end(&ring->syncp);

		dev_kfree_skb_any(skb);
		return -EINVAL;
	}

	if (unlikely((!desc->rx.pkt_len) ||
		     hnae_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
		netdev_err(netdev, "truncated pkt\n");
		u64_stats_update_begin(&ring->syncp);
		ring->stats.err_pkt_len++;
		u64_stats_update_end(&ring->syncp);

		dev_kfree_skb_any(skb);
		return -EFAULT;
	}

	if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L2E_B))) {
		netdev_err(netdev, "L2 error pkt\n");
		u64_stats_update_begin(&ring->syncp);
		ring->stats.l2_err++;
		u64_stats_update_end(&ring->syncp);

		dev_kfree_skb_any(skb);
		return -EFAULT;
	}

	u64_stats_update_begin(&ring->syncp);
	ring->stats.rx_pkts++;
	ring->stats.rx_bytes += skb->len;
	u64_stats_update_end(&ring->syncp);

	ring->tqp_vector->rx_group.total_bytes += skb->len;

	hns3_rx_checksum(ring, skb, desc);
	return 0;
}

2167 2168 2169
int hns3_clean_rx_ring(
		struct hns3_enet_ring *ring, int budget,
		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
{
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	int recv_pkts, recv_bds, clean_count, err;
	int unused_count = hns3_desc_unused(ring);
	struct sk_buff *skb = NULL;
	int num, bnum = 0;

	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
	rmb(); /* Make sure num taken effect before the other data is touched */

	recv_pkts = 0, recv_bds = 0, clean_count = 0;
	num -= unused_count;

	while (recv_pkts < budget && recv_bds < num) {
		/* Reuse or realloc buffers */
		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
			hns3_nic_alloc_rx_buffers(ring,
						  clean_count + unused_count);
			clean_count = 0;
			unused_count = hns3_desc_unused(ring);
		}

		/* Poll one pkt */
		err = hns3_handle_rx_bd(ring, &skb, &bnum);
		if (unlikely(!skb)) /* This fault cannot be repaired */
			goto out;

		recv_bds += bnum;
		clean_count += bnum;
		if (unlikely(err)) {  /* Do jump the err */
			recv_pkts++;
			continue;
		}

		/* Do update ip stack process */
		skb->protocol = eth_type_trans(skb, netdev);
2207
		rx_fn(ring, skb);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

		recv_pkts++;
	}

out:
	/* Make all data has been write before submit */
	if (clean_count + unused_count > 0)
		hns3_nic_alloc_rx_buffers(ring,
					  clean_count + unused_count);

	return recv_pkts;
}

static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
{
#define HNS3_RX_ULTRA_PACKET_RATE 40000
	enum hns3_flow_level_range new_flow_level;
	struct hns3_enet_tqp_vector *tqp_vector;
	int packets_per_secs;
	int bytes_per_usecs;
	u16 new_int_gl;
	int usecs;

	if (!ring_group->int_gl)
		return false;

	if (ring_group->total_packets == 0) {
		ring_group->int_gl = HNS3_INT_GL_50K;
		ring_group->flow_level = HNS3_FLOW_LOW;
		return true;
	}

	/* Simple throttlerate management
	 * 0-10MB/s   lower     (50000 ints/s)
	 * 10-20MB/s   middle    (20000 ints/s)
	 * 20-1249MB/s high      (18000 ints/s)
	 * > 40000pps  ultra     (8000 ints/s)
	 */
	new_flow_level = ring_group->flow_level;
	new_int_gl = ring_group->int_gl;
	tqp_vector = ring_group->ring->tqp_vector;
	usecs = (ring_group->int_gl << 1);
	bytes_per_usecs = ring_group->total_bytes / usecs;
	/* 1000000 microseconds */
	packets_per_secs = ring_group->total_packets * 1000000 / usecs;

	switch (new_flow_level) {
	case HNS3_FLOW_LOW:
		if (bytes_per_usecs > 10)
			new_flow_level = HNS3_FLOW_MID;
		break;
	case HNS3_FLOW_MID:
		if (bytes_per_usecs > 20)
			new_flow_level = HNS3_FLOW_HIGH;
		else if (bytes_per_usecs <= 10)
			new_flow_level = HNS3_FLOW_LOW;
		break;
	case HNS3_FLOW_HIGH:
	case HNS3_FLOW_ULTRA:
	default:
		if (bytes_per_usecs <= 20)
			new_flow_level = HNS3_FLOW_MID;
		break;
	}

	if ((packets_per_secs > HNS3_RX_ULTRA_PACKET_RATE) &&
	    (&tqp_vector->rx_group == ring_group))
		new_flow_level = HNS3_FLOW_ULTRA;

	switch (new_flow_level) {
	case HNS3_FLOW_LOW:
		new_int_gl = HNS3_INT_GL_50K;
		break;
	case HNS3_FLOW_MID:
		new_int_gl = HNS3_INT_GL_20K;
		break;
	case HNS3_FLOW_HIGH:
		new_int_gl = HNS3_INT_GL_18K;
		break;
	case HNS3_FLOW_ULTRA:
		new_int_gl = HNS3_INT_GL_8K;
		break;
	default:
		break;
	}

	ring_group->total_bytes = 0;
	ring_group->total_packets = 0;
	ring_group->flow_level = new_flow_level;
	if (new_int_gl != ring_group->int_gl) {
		ring_group->int_gl = new_int_gl;
		return true;
	}
	return false;
}

static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
{
	u16 rx_int_gl, tx_int_gl;
	bool rx, tx;

	rx = hns3_get_new_int_gl(&tqp_vector->rx_group);
	tx = hns3_get_new_int_gl(&tqp_vector->tx_group);
	rx_int_gl = tqp_vector->rx_group.int_gl;
	tx_int_gl = tqp_vector->tx_group.int_gl;
	if (rx && tx) {
		if (rx_int_gl > tx_int_gl) {
			tqp_vector->tx_group.int_gl = rx_int_gl;
			tqp_vector->tx_group.flow_level =
				tqp_vector->rx_group.flow_level;
			hns3_set_vector_coalesc_gl(tqp_vector, rx_int_gl);
		} else {
			tqp_vector->rx_group.int_gl = tx_int_gl;
			tqp_vector->rx_group.flow_level =
				tqp_vector->tx_group.flow_level;
			hns3_set_vector_coalesc_gl(tqp_vector, tx_int_gl);
		}
	}
}

static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
{
	struct hns3_enet_ring *ring;
	int rx_pkt_total = 0;

	struct hns3_enet_tqp_vector *tqp_vector =
		container_of(napi, struct hns3_enet_tqp_vector, napi);
	bool clean_complete = true;
	int rx_budget;

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
	hns3_for_each_ring(ring, tqp_vector->tx_group) {
		if (!hns3_clean_tx_ring(ring, budget))
			clean_complete = false;
	}

	/* make sure rx ring budget not smaller than 1 */
	rx_budget = max(budget / tqp_vector->num_tqps, 1);

	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2350 2351
		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
						    hns3_rx_skb);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

		if (rx_cleaned >= rx_budget)
			clean_complete = false;

		rx_pkt_total += rx_cleaned;
	}

	tqp_vector->rx_group.total_packets += rx_pkt_total;

	if (!clean_complete)
		return budget;

	napi_complete(napi);
	hns3_update_new_int_gl(tqp_vector);
	hns3_mask_vector_irq(tqp_vector, 1);

	return rx_pkt_total;
}

static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *cur_chain = head;
	struct hnae3_ring_chain_node *chain;
	struct hns3_enet_ring *tx_ring;
	struct hns3_enet_ring *rx_ring;

	tx_ring = tqp_vector->tx_group.ring;
	if (tx_ring) {
		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
		hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			     HNAE3_RING_TYPE_TX);

		cur_chain->next = NULL;

		while (tx_ring->next) {
			tx_ring = tx_ring->next;

			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
					     GFP_KERNEL);
			if (!chain)
				return -ENOMEM;

			cur_chain->next = chain;
			chain->tqp_index = tx_ring->tqp->tqp_index;
			hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
				     HNAE3_RING_TYPE_TX);

			cur_chain = chain;
		}
	}

	rx_ring = tqp_vector->rx_group.ring;
	if (!tx_ring && rx_ring) {
		cur_chain->next = NULL;
		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
		hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			     HNAE3_RING_TYPE_RX);

		rx_ring = rx_ring->next;
	}

	while (rx_ring) {
		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
		if (!chain)
			return -ENOMEM;

		cur_chain->next = chain;
		chain->tqp_index = rx_ring->tqp->tqp_index;
		hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
			     HNAE3_RING_TYPE_RX);
		cur_chain = chain;

		rx_ring = rx_ring->next;
	}

	return 0;
}

static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
					struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *chain_tmp, *chain;

	chain = head->next;

	while (chain) {
		chain_tmp = chain->next;
		devm_kfree(&pdev->dev, chain);
		chain = chain_tmp;
	}
}

static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
				   struct hns3_enet_ring *ring)
{
	ring->next = group->ring;
	group->ring = ring;

	group->count++;
}

static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	struct hnae3_vector_info *vector;
	struct pci_dev *pdev = h->pdev;
	u16 tqp_num = h->kinfo.num_tqps;
	u16 vector_num;
	int ret = 0;
	u16 i;

	/* RSS size, cpu online and vector_num should be the same */
	/* Should consider 2p/4p later */
	vector_num = min_t(u16, num_online_cpus(), tqp_num);
	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
			      GFP_KERNEL);
	if (!vector)
		return -ENOMEM;

	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);

	priv->vector_num = vector_num;
	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
			     GFP_KERNEL);
	if (!priv->tqp_vector)
		return -ENOMEM;

	for (i = 0; i < tqp_num; i++) {
		u16 vector_i = i % vector_num;

		tqp_vector = &priv->tqp_vector[vector_i];

		hns3_add_ring_to_group(&tqp_vector->tx_group,
				       priv->ring_data[i].ring);

		hns3_add_ring_to_group(&tqp_vector->rx_group,
				       priv->ring_data[i + tqp_num].ring);

		tqp_vector->idx = vector_i;
		tqp_vector->mask_addr = vector[vector_i].io_addr;
		tqp_vector->vector_irq = vector[vector_i].vector;
		tqp_vector->num_tqps++;

		priv->ring_data[i].ring->tqp_vector = tqp_vector;
		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
	}

	for (i = 0; i < vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];

		tqp_vector->rx_group.total_bytes = 0;
		tqp_vector->rx_group.total_packets = 0;
		tqp_vector->tx_group.total_bytes = 0;
		tqp_vector->tx_group.total_packets = 0;
		hns3_vector_gl_rl_init(tqp_vector);
		tqp_vector->handle = h;

		ret = hns3_get_vector_ring_chain(tqp_vector,
						 &vector_ring_chain);
		if (ret)
			goto out;

		ret = h->ae_algo->ops->map_ring_to_vector(h,
			tqp_vector->vector_irq, &vector_ring_chain);
		if (ret)
			goto out;

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

		netif_napi_add(priv->netdev, &tqp_vector->napi,
			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
	}

out:
	devm_kfree(&pdev->dev, vector);
	return ret;
}

static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];

		ret = hns3_get_vector_ring_chain(tqp_vector,
						 &vector_ring_chain);
		if (ret)
			return ret;

		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
			tqp_vector->vector_irq, &vector_ring_chain);
		if (ret)
			return ret;

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

		if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
			(void)irq_set_affinity_hint(
				priv->tqp_vector[i].vector_irq,
						    NULL);
2563 2564
			free_irq(priv->tqp_vector[i].vector_irq,
				 &priv->tqp_vector[i]);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		}

		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;

		netif_napi_del(&priv->tqp_vector[i].napi);
	}

	devm_kfree(&pdev->dev, priv->tqp_vector);

	return 0;
}

static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
			     int ring_type)
{
	struct hns3_nic_ring_data *ring_data = priv->ring_data;
	int queue_num = priv->ae_handle->kinfo.num_tqps;
	struct pci_dev *pdev = priv->ae_handle->pdev;
	struct hns3_enet_ring *ring;

	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
	if (!ring)
		return -ENOMEM;

	if (ring_type == HNAE3_RING_TYPE_TX) {
		ring_data[q->tqp_index].ring = ring;
2591
		ring_data[q->tqp_index].queue_index = q->tqp_index;
2592 2593 2594
		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
	} else {
		ring_data[q->tqp_index + queue_num].ring = ring;
2595
		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		ring->io_base = q->io_base;
	}

	hnae_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);

	ring->tqp = q;
	ring->desc = NULL;
	ring->desc_cb = NULL;
	ring->dev = priv->dev;
	ring->desc_dma_addr = 0;
	ring->buf_size = q->buf_size;
	ring->desc_num = q->desc_num;
	ring->next_to_use = 0;
	ring->next_to_clean = 0;

	return 0;
}

static int hns3_queue_to_ring(struct hnae3_queue *tqp,
			      struct hns3_nic_priv *priv)
{
	int ret;

	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
	if (ret)
		return ret;

	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
	if (ret)
		return ret;

	return 0;
}

static int hns3_get_ring_config(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

	priv->ring_data =  devm_kzalloc(&pdev->dev, h->kinfo.num_tqps *
					sizeof(*priv->ring_data) * 2,
					GFP_KERNEL);
	if (!priv->ring_data)
		return -ENOMEM;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
		if (ret)
			goto err;
	}

	return 0;
err:
	devm_kfree(&pdev->dev, priv->ring_data);
	return ret;
}

static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
{
	int ret;

	if (ring->desc_num <= 0 || ring->buf_size <= 0)
		return -EINVAL;

	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
				GFP_KERNEL);
	if (!ring->desc_cb) {
		ret = -ENOMEM;
		goto out;
	}

	ret = hns3_alloc_desc(ring);
	if (ret)
		goto out_with_desc_cb;

	if (!HNAE3_IS_TX_RING(ring)) {
		ret = hns3_alloc_ring_buffers(ring);
		if (ret)
			goto out_with_desc;
	}

	return 0;

out_with_desc:
	hns3_free_desc(ring);
out_with_desc_cb:
	kfree(ring->desc_cb);
	ring->desc_cb = NULL;
out:
	return ret;
}

static void hns3_fini_ring(struct hns3_enet_ring *ring)
{
	hns3_free_desc(ring);
	kfree(ring->desc_cb);
	ring->desc_cb = NULL;
	ring->next_to_clean = 0;
	ring->next_to_use = 0;
}

2698
static int hns3_buf_size2type(u32 buf_size)
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
{
	int bd_size_type;

	switch (buf_size) {
	case 512:
		bd_size_type = HNS3_BD_SIZE_512_TYPE;
		break;
	case 1024:
		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
		break;
	case 2048:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
		break;
	case 4096:
		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
		break;
	default:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
	}

	return bd_size_type;
}

static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
{
	dma_addr_t dma = ring->desc_dma_addr;
	struct hnae3_queue *q = ring->tqp;

	if (!HNAE3_IS_TX_RING(ring)) {
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
			       (u32)dma);
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
			       hns3_buf_size2type(ring->buf_size));
		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);

	} else {
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
			       (u32)dma);
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_TX_RING_BD_LEN_REG,
			       hns3_buf_size2type(ring->buf_size));
		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);
	}
}

L
Lipeng 已提交
2751
int hns3_init_all_ring(struct hns3_nic_priv *priv)
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
{
	struct hnae3_handle *h = priv->ae_handle;
	int ring_num = h->kinfo.num_tqps * 2;
	int i, j;
	int ret;

	for (i = 0; i < ring_num; i++) {
		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
		if (ret) {
			dev_err(priv->dev,
				"Alloc ring memory fail! ret=%d\n", ret);
			goto out_when_alloc_ring_memory;
		}

		hns3_init_ring_hw(priv->ring_data[i].ring);

		u64_stats_init(&priv->ring_data[i].ring->syncp);
	}

	return 0;

out_when_alloc_ring_memory:
	for (j = i - 1; j >= 0; j--)
2775
		hns3_fini_ring(priv->ring_data[j].ring);
2776 2777 2778 2779

	return -ENOMEM;
}

L
Lipeng 已提交
2780
int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
{
	struct hnae3_handle *h = priv->ae_handle;
	int i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		if (h->ae_algo->ops->reset_queue)
			h->ae_algo->ops->reset_queue(h, i);

		hns3_fini_ring(priv->ring_data[i].ring);
		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
	}

	return 0;
}

/* Set mac addr if it is configured. or leave it to the AE driver */
static void hns3_init_mac_addr(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	u8 mac_addr_temp[ETH_ALEN];

	if (h->ae_algo->ops->get_mac_addr) {
		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
	}

	/* Check if the MAC address is valid, if not get a random one */
	if (!is_valid_ether_addr(netdev->dev_addr)) {
		eth_hw_addr_random(netdev);
		dev_warn(priv->dev, "using random MAC address %pM\n",
			 netdev->dev_addr);
	}
2814 2815 2816 2817

	if (h->ae_algo->ops->set_mac_addr)
		h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr);

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
}

static void hns3_nic_set_priv_ops(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);

	if ((netdev->features & NETIF_F_TSO) ||
	    (netdev->features & NETIF_F_TSO6)) {
		priv->ops.fill_desc = hns3_fill_desc_tso;
		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
	} else {
		priv->ops.fill_desc = hns3_fill_desc;
		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
	}
}

static int hns3_client_init(struct hnae3_handle *handle)
{
	struct pci_dev *pdev = handle->pdev;
	struct hns3_nic_priv *priv;
	struct net_device *netdev;
	int ret;

	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
				   handle->kinfo.num_tqps);
	if (!netdev)
		return -ENOMEM;

	priv = netdev_priv(netdev);
	priv->dev = &pdev->dev;
	priv->netdev = netdev;
	priv->ae_handle = handle;
2850 2851 2852
	priv->last_reset_time = jiffies;
	priv->reset_level = HNAE3_FUNC_RESET;
	priv->tx_timeout_count = 0;
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894

	handle->kinfo.netdev = netdev;
	handle->priv = (void *)priv;

	hns3_init_mac_addr(netdev);

	hns3_set_default_feature(netdev);

	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
	netdev->priv_flags |= IFF_UNICAST_FLT;
	netdev->netdev_ops = &hns3_nic_netdev_ops;
	SET_NETDEV_DEV(netdev, &pdev->dev);
	hns3_ethtool_set_ops(netdev);
	hns3_nic_set_priv_ops(netdev);

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

	ret = hns3_get_ring_config(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_get_ring_cfg;
	}

	ret = hns3_nic_init_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_vector_data;
	}

	ret = hns3_init_all_ring(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_ring_data;
	}

	ret = register_netdev(netdev);
	if (ret) {
		dev_err(priv->dev, "probe register netdev fail!\n");
		goto out_reg_netdev_fail;
	}

2895 2896
	hns3_dcbnl_setup(handle);

2897 2898 2899
	/* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
	netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	return ret;

out_reg_netdev_fail:
out_init_ring_data:
	(void)hns3_nic_uninit_vector_data(priv);
	priv->ring_data = NULL;
out_init_vector_data:
out_get_ring_cfg:
	priv->ae_handle = NULL;
	free_netdev(netdev);
	return ret;
}

static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	if (netdev->reg_state != NETREG_UNINITIALIZED)
		unregister_netdev(netdev);

	ret = hns3_nic_uninit_vector_data(priv);
	if (ret)
		netdev_err(netdev, "uninit vector error\n");

	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

	priv->ring_data = NULL;

	free_netdev(netdev);
}

static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
{
	struct net_device *netdev = handle->kinfo.netdev;

	if (!netdev)
		return;

	if (linkup) {
		netif_carrier_on(netdev);
		netif_tx_wake_all_queues(netdev);
		netdev_info(netdev, "link up\n");
	} else {
		netif_carrier_off(netdev);
		netif_tx_stop_all_queues(netdev);
		netdev_info(netdev, "link down\n");
	}
}

2953 2954 2955 2956
static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;
2957
	bool if_running;
2958 2959 2960 2961 2962 2963 2964 2965 2966
	int ret;
	u8 i;

	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!ndev)
		return -ENODEV;

2967 2968
	if_running = netif_running(ndev);

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	ret = netdev_set_num_tc(ndev, tc);
	if (ret)
		return ret;

	if (if_running) {
		(void)hns3_nic_net_stop(ndev);
		msleep(100);
	}

	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
	if (ret)
		goto err_out;

	if (tc <= 1) {
		netdev_reset_tc(ndev);
		goto out;
	}

	for (i = 0; i < HNAE3_MAX_TC; i++) {
		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];

		if (tc_info->enable)
			netdev_set_tc_queue(ndev,
					    tc_info->tc,
					    tc_info->tqp_count,
					    tc_info->tqp_offset);
	}

	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
		netdev_set_prio_tc_map(ndev, i,
				       kinfo->prio_tc[i]);
	}

out:
	ret = hns3_nic_set_real_num_queue(ndev);

err_out:
	if (if_running)
		(void)hns3_nic_net_open(ndev);

	return ret;
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
static void hns3_recover_hw_addr(struct net_device *ndev)
{
	struct netdev_hw_addr_list *list;
	struct netdev_hw_addr *ha, *tmp;

	/* go through and sync uc_addr entries to the device */
	list = &ndev->uc;
	list_for_each_entry_safe(ha, tmp, &list->list, list)
		hns3_nic_uc_sync(ndev, ha->addr);

	/* go through and sync mc_addr entries to the device */
	list = &ndev->mc;
	list_for_each_entry_safe(ha, tmp, &list->list, list)
		hns3_nic_mc_sync(ndev, ha->addr);
}

static void hns3_drop_skb_data(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
	dev_kfree_skb_any(skb);
}

static void hns3_clear_all_ring(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		struct netdev_queue *dev_queue;
		struct hns3_enet_ring *ring;

		ring = priv->ring_data[i].ring;
		hns3_clean_tx_ring(ring, ring->desc_num);
		dev_queue = netdev_get_tx_queue(ndev,
						priv->ring_data[i].queue_index);
		netdev_tx_reset_queue(dev_queue);

		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
		hns3_clean_rx_ring(ring, ring->desc_num, hns3_drop_skb_data);
	}
}

static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;

	if (!netif_running(ndev))
		return -EIO;

	return hns3_nic_net_stop(ndev);
}

static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
	int ret = 0;

	if (netif_running(kinfo->netdev)) {
		ret = hns3_nic_net_up(kinfo->netdev);
		if (ret) {
			netdev_err(kinfo->netdev,
				   "hns net up fail, ret=%d!\n", ret);
			return ret;
		}

		priv->last_reset_time = jiffies;
	}

	return ret;
}

static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	priv->reset_level = 1;
	hns3_init_mac_addr(netdev);
	hns3_nic_set_rx_mode(netdev);
	hns3_recover_hw_addr(netdev);

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

	ret = hns3_get_ring_config(priv);
	if (ret)
		return ret;

	ret = hns3_nic_init_vector_data(priv);
	if (ret)
		return ret;

	ret = hns3_init_all_ring(priv);
	if (ret) {
		hns3_nic_uninit_vector_data(priv);
		priv->ring_data = NULL;
	}

	return ret;
}

static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	hns3_clear_all_ring(handle);

	ret = hns3_nic_uninit_vector_data(priv);
	if (ret) {
		netdev_err(netdev, "uninit vector error\n");
		return ret;
	}

	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

	priv->ring_data = NULL;

	return ret;
}

static int hns3_reset_notify(struct hnae3_handle *handle,
			     enum hnae3_reset_notify_type type)
{
	int ret = 0;

	switch (type) {
	case HNAE3_UP_CLIENT:
                ret = hns3_reset_notify_up_enet(handle);
                break;
	case HNAE3_DOWN_CLIENT:
		ret = hns3_reset_notify_down_enet(handle);
		break;
	case HNAE3_INIT_CLIENT:
		ret = hns3_reset_notify_init_enet(handle);
		break;
	case HNAE3_UNINIT_CLIENT:
		ret = hns3_reset_notify_uninit_enet(handle);
		break;
	default:
		break;
	}

	return ret;
}

3165
static const struct hnae3_client_ops client_ops = {
3166 3167 3168
	.init_instance = hns3_client_init,
	.uninit_instance = hns3_client_uninit,
	.link_status_change = hns3_link_status_change,
3169
	.setup_tc = hns3_client_setup_tc,
3170
	.reset_notify = hns3_reset_notify,
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
};

/* hns3_init_module - Driver registration routine
 * hns3_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init hns3_init_module(void)
{
	int ret;

	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);

	client.type = HNAE3_CLIENT_KNIC;
	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
		 hns3_driver_name);

	client.ops = &client_ops;

	ret = hnae3_register_client(&client);
	if (ret)
		return ret;

	ret = pci_register_driver(&hns3_driver);
	if (ret)
		hnae3_unregister_client(&client);

	return ret;
}
module_init(hns3_init_module);

/* hns3_exit_module - Driver exit cleanup routine
 * hns3_exit_module is called just before the driver is removed
 * from memory.
 */
static void __exit hns3_exit_module(void)
{
	pci_unregister_driver(&hns3_driver);
	hnae3_unregister_client(&client);
}
module_exit(hns3_exit_module);

MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("pci:hns-nic");