dwmac-intel.c 20.0 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020, Intel Corporation
 */

#include <linux/clk-provider.h>
#include <linux/pci.h>
#include <linux/dmi.h>
8
#include "dwmac-intel.h"
9
#include "dwmac4.h"
10 11
#include "stmmac.h"

12 13 14 15
struct intel_priv_data {
	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
};

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/* This struct is used to associate PCI Function of MAC controller on a board,
 * discovered via DMI, with the address of PHY connected to the MAC. The
 * negative value of the address means that MAC controller is not connected
 * with PHY.
 */
struct stmmac_pci_func_data {
	unsigned int func;
	int phy_addr;
};

struct stmmac_pci_dmi_data {
	const struct stmmac_pci_func_data *func;
	size_t nfuncs;
};

struct stmmac_pci_info {
	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
};

static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
				    const struct dmi_system_id *dmi_list)
{
	const struct stmmac_pci_func_data *func_data;
	const struct stmmac_pci_dmi_data *dmi_data;
	const struct dmi_system_id *dmi_id;
	int func = PCI_FUNC(pdev->devfn);
	size_t n;

	dmi_id = dmi_first_match(dmi_list);
	if (!dmi_id)
		return -ENODEV;

	dmi_data = dmi_id->driver_data;
	func_data = dmi_data->func;

	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
		if (func_data->func == func)
			return func_data->phy_addr;

	return -ENODEV;
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
			      int phyreg, u32 mask, u32 val)
{
	unsigned int retries = 10;
	int val_rd;

	do {
		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
		if ((val_rd & mask) == (val & mask))
			return 0;
		udelay(POLL_DELAY_US);
	} while (--retries);

	return -ETIMEDOUT;
}

static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
{
	struct intel_priv_data *intel_priv = priv_data;
	struct stmmac_priv *priv = netdev_priv(ndev);
	int serdes_phy_addr = 0;
	u32 data = 0;

	if (!intel_priv->mdio_adhoc_addr)
		return 0;

	serdes_phy_addr = intel_priv->mdio_adhoc_addr;

	/* assert clk_req */
87
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
88
	data |= SERDES_PLL_CLK;
89
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
90 91 92 93 94 95 96 97 98 99 100 101 102

	/* check for clk_ack assertion */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PLL_CLK,
				  SERDES_PLL_CLK);

	if (data) {
		dev_err(priv->device, "Serdes PLL clk request timeout\n");
		return data;
	}

	/* assert lane reset */
103
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
104
	data |= SERDES_RST;
105
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
106 107 108 109 110 111 112 113 114 115 116 117 118

	/* check for assert lane reset reflection */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_RST,
				  SERDES_RST);

	if (data) {
		dev_err(priv->device, "Serdes assert lane reset timeout\n");
		return data;
	}

	/*  move power state to P0 */
119
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
120 121 122 123

	data &= ~SERDES_PWR_ST_MASK;
	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;

124
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

	/* Check for P0 state */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PWR_ST_MASK,
				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);

	if (data) {
		dev_err(priv->device, "Serdes power state P0 timeout.\n");
		return data;
	}

	return 0;
}

static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
{
	struct intel_priv_data *intel_priv = intel_data;
	struct stmmac_priv *priv = netdev_priv(ndev);
	int serdes_phy_addr = 0;
	u32 data = 0;

	if (!intel_priv->mdio_adhoc_addr)
		return;

	serdes_phy_addr = intel_priv->mdio_adhoc_addr;

	/*  move power state to P3 */
153
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
154 155 156 157

	data &= ~SERDES_PWR_ST_MASK;
	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;

158
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
159 160 161 162 163 164 165 166 167 168 169 170 171

	/* Check for P3 state */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PWR_ST_MASK,
				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);

	if (data) {
		dev_err(priv->device, "Serdes power state P3 timeout\n");
		return;
	}

	/* de-assert clk_req */
172
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
173
	data &= ~SERDES_PLL_CLK;
174
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
175 176 177 178 179 180 181 182 183 184 185 186 187

	/* check for clk_ack de-assert */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PLL_CLK,
				  (u32)~SERDES_PLL_CLK);

	if (data) {
		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
		return;
	}

	/* de-assert lane reset */
188
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
189
	data &= ~SERDES_RST;
190
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
191 192 193 194 195 196 197 198 199 200 201 202 203

	/* check for de-assert lane reset reflection */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_RST,
				  (u32)~SERDES_RST);

	if (data) {
		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
		return;
	}
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static void common_default_data(struct plat_stmmacenet_data *plat)
{
	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
	plat->has_gmac = 1;
	plat->force_sf_dma_mode = 1;

	plat->mdio_bus_data->needs_reset = true;

	/* Set default value for multicast hash bins */
	plat->multicast_filter_bins = HASH_TABLE_SIZE;

	/* Set default value for unicast filter entries */
	plat->unicast_filter_entries = 1;

	/* Set the maxmtu to a default of JUMBO_LEN */
	plat->maxmtu = JUMBO_LEN;

	/* Set default number of RX and TX queues to use */
	plat->tx_queues_to_use = 1;
	plat->rx_queues_to_use = 1;

	/* Disable Priority config by default */
	plat->tx_queues_cfg[0].use_prio = false;
	plat->rx_queues_cfg[0].use_prio = false;

	/* Disable RX queues routing by default */
	plat->rx_queues_cfg[0].pkt_route = 0x0;
}

static int intel_mgbe_common_data(struct pci_dev *pdev,
				  struct plat_stmmacenet_data *plat)
{
236
	int ret;
237 238
	int i;

239
	plat->phy_addr = -1;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	plat->clk_csr = 5;
	plat->has_gmac = 0;
	plat->has_gmac4 = 1;
	plat->force_sf_dma_mode = 0;
	plat->tso_en = 1;

	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;

	for (i = 0; i < plat->rx_queues_to_use; i++) {
		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
		plat->rx_queues_cfg[i].chan = i;

		/* Disable Priority config by default */
		plat->rx_queues_cfg[i].use_prio = false;

		/* Disable RX queues routing by default */
		plat->rx_queues_cfg[i].pkt_route = 0x0;
	}

	for (i = 0; i < plat->tx_queues_to_use; i++) {
		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;

		/* Disable Priority config by default */
		plat->tx_queues_cfg[i].use_prio = false;
	}

	/* FIFO size is 4096 bytes for 1 tx/rx queue */
	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;

	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
	plat->tx_queues_cfg[0].weight = 0x09;
	plat->tx_queues_cfg[1].weight = 0x0A;
	plat->tx_queues_cfg[2].weight = 0x0B;
	plat->tx_queues_cfg[3].weight = 0x0C;
	plat->tx_queues_cfg[4].weight = 0x0D;
	plat->tx_queues_cfg[5].weight = 0x0E;
	plat->tx_queues_cfg[6].weight = 0x0F;
	plat->tx_queues_cfg[7].weight = 0x10;

	plat->dma_cfg->pbl = 32;
	plat->dma_cfg->pblx8 = true;
	plat->dma_cfg->fixed_burst = 0;
	plat->dma_cfg->mixed_burst = 0;
	plat->dma_cfg->aal = 0;

	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
				 GFP_KERNEL);
	if (!plat->axi)
		return -ENOMEM;

	plat->axi->axi_lpi_en = 0;
	plat->axi->axi_xit_frm = 0;
	plat->axi->axi_wr_osr_lmt = 1;
	plat->axi->axi_rd_osr_lmt = 1;
	plat->axi->axi_blen[0] = 4;
	plat->axi->axi_blen[1] = 8;
	plat->axi->axi_blen[2] = 16;

	plat->ptp_max_adj = plat->clk_ptp_rate;
300
	plat->eee_usecs_rate = plat->clk_ptp_rate;
301 302 303 304 305 306 307 308 309 310

	/* Set system clock */
	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
						   "stmmac-clk", NULL, 0,
						   plat->clk_ptp_rate);

	if (IS_ERR(plat->stmmac_clk)) {
		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
		plat->stmmac_clk = NULL;
	}
311 312 313 314 315 316

	ret = clk_prepare_enable(plat->stmmac_clk);
	if (ret) {
		clk_unregister_fixed_rate(plat->stmmac_clk);
		return ret;
	}
317 318 319 320 321 322 323 324 325 326

	/* Set default value for multicast hash bins */
	plat->multicast_filter_bins = HASH_TABLE_SIZE;

	/* Set default value for unicast filter entries */
	plat->unicast_filter_entries = 1;

	/* Set the maxmtu to a default of JUMBO_LEN */
	plat->maxmtu = JUMBO_LEN;

327 328 329 330 331
	plat->vlan_fail_q_en = true;

	/* Use the last Rx queue */
	plat->vlan_fail_q = plat->rx_queues_to_use - 1;

332 333 334 335 336 337 338 339 340 341
	return 0;
}

static int ehl_common_data(struct pci_dev *pdev,
			   struct plat_stmmacenet_data *plat)
{
	plat->rx_queues_to_use = 8;
	plat->tx_queues_to_use = 8;
	plat->clk_ptp_rate = 200000000;

342
	return intel_mgbe_common_data(pdev, plat);
343 344 345 346 347 348 349 350
}

static int ehl_sgmii_data(struct pci_dev *pdev,
			  struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 1;
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;

351 352 353
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;

354 355 356
	return ehl_common_data(pdev, plat);
}

357
static struct stmmac_pci_info ehl_sgmii1g_info = {
358 359 360 361 362 363 364 365 366 367 368 369
	.setup = ehl_sgmii_data,
};

static int ehl_rgmii_data(struct pci_dev *pdev,
			  struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 1;
	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;

	return ehl_common_data(pdev, plat);
}

370
static struct stmmac_pci_info ehl_rgmii1g_info = {
371 372 373
	.setup = ehl_rgmii_data,
};

374 375 376 377
static int ehl_pse0_common_data(struct pci_dev *pdev,
				struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 2;
378
	plat->addr64 = 32;
379 380 381 382 383 384 385 386 387 388
	return ehl_common_data(pdev, plat);
}

static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
	return ehl_pse0_common_data(pdev, plat);
}

389
static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
390 391 392 393 394 395 396
	.setup = ehl_pse0_rgmii1g_data,
};

static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
397 398
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;
399 400 401
	return ehl_pse0_common_data(pdev, plat);
}

402
static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
403 404 405 406 407 408 409
	.setup = ehl_pse0_sgmii1g_data,
};

static int ehl_pse1_common_data(struct pci_dev *pdev,
				struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 3;
410
	plat->addr64 = 32;
411 412 413 414 415 416 417 418 419 420
	return ehl_common_data(pdev, plat);
}

static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
	return ehl_pse1_common_data(pdev, plat);
}

421
static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
422 423 424 425 426 427 428
	.setup = ehl_pse1_rgmii1g_data,
};

static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
429 430
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;
431 432 433
	return ehl_pse1_common_data(pdev, plat);
}

434
static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
435 436 437
	.setup = ehl_pse1_sgmii1g_data,
};

438 439 440 441 442 443 444
static int tgl_common_data(struct pci_dev *pdev,
			   struct plat_stmmacenet_data *plat)
{
	plat->rx_queues_to_use = 6;
	plat->tx_queues_to_use = 4;
	plat->clk_ptp_rate = 200000000;

445
	return intel_mgbe_common_data(pdev, plat);
446 447 448 449 450 451 452
}

static int tgl_sgmii_data(struct pci_dev *pdev,
			  struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 1;
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
453 454
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;
455 456 457
	return tgl_common_data(pdev, plat);
}

458
static struct stmmac_pci_info tgl_sgmii1g_info = {
459 460 461
	.setup = tgl_sgmii_data,
};

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static int adls_sgmii_data(struct pci_dev *pdev,
			   struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 1;
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;

	/* SerDes power up and power down are done in BIOS for ADL */

	return tgl_common_data(pdev, plat);
}

static struct stmmac_pci_info adls_sgmii1g_info = {
	.setup = adls_sgmii_data,
};

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
	{
		.func = 6,
		.phy_addr = 1,
	},
};

static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
	.func = galileo_stmmac_func_data,
	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
};

static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
	{
		.func = 6,
		.phy_addr = 1,
	},
	{
		.func = 7,
		.phy_addr = 1,
	},
};

static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
	.func = iot2040_stmmac_func_data,
	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
};

static const struct dmi_system_id quark_pci_dmi[] = {
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
		},
		.driver_data = (void *)&galileo_stmmac_dmi_data,
	},
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
		},
		.driver_data = (void *)&galileo_stmmac_dmi_data,
	},
	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
	 * has only one pci network device while other asset tags are
	 * for IOT2040 which has two.
	 */
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
					"6ES7647-0AA00-0YA2"),
		},
		.driver_data = (void *)&galileo_stmmac_dmi_data,
	},
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
		},
		.driver_data = (void *)&iot2040_stmmac_dmi_data,
	},
	{}
};

static int quark_default_data(struct pci_dev *pdev,
			      struct plat_stmmacenet_data *plat)
{
	int ret;

	/* Set common default data first */
	common_default_data(plat);

	/* Refuse to load the driver and register net device if MAC controller
	 * does not connect to any PHY interface.
	 */
	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
	if (ret < 0) {
		/* Return error to the caller on DMI enabled boards. */
		if (dmi_get_system_info(DMI_BOARD_NAME))
			return ret;

		/* Galileo boards with old firmware don't support DMI. We always
		 * use 1 here as PHY address, so at least the first found MAC
		 * controller would be probed.
		 */
		ret = 1;
	}

	plat->bus_id = pci_dev_id(pdev);
	plat->phy_addr = ret;
	plat->phy_interface = PHY_INTERFACE_MODE_RMII;

	plat->dma_cfg->pbl = 16;
	plat->dma_cfg->pblx8 = true;
	plat->dma_cfg->fixed_burst = 1;
	/* AXI (TODO) */

	return 0;
}

576
static const struct stmmac_pci_info quark_info = {
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	.setup = quark_default_data,
};

/**
 * intel_eth_pci_probe
 *
 * @pdev: pci device pointer
 * @id: pointer to table of device id/id's.
 *
 * Description: This probing function gets called for all PCI devices which
 * match the ID table and are not "owned" by other driver yet. This function
 * gets passed a "struct pci_dev *" for each device whose entry in the ID table
 * matches the device. The probe functions returns zero when the driver choose
 * to take "ownership" of the device or an error code(-ve no) otherwise.
 */
static int intel_eth_pci_probe(struct pci_dev *pdev,
			       const struct pci_device_id *id)
{
	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
596
	struct intel_priv_data *intel_priv;
597 598 599 600
	struct plat_stmmacenet_data *plat;
	struct stmmac_resources res;
	int ret;

601
	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
602 603 604
	if (!intel_priv)
		return -ENOMEM;

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
	if (!plat)
		return -ENOMEM;

	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
					   sizeof(*plat->mdio_bus_data),
					   GFP_KERNEL);
	if (!plat->mdio_bus_data)
		return -ENOMEM;

	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
				     GFP_KERNEL);
	if (!plat->dma_cfg)
		return -ENOMEM;

	/* Enable pci device */
	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
			__func__);
		return ret;
	}

628 629 630
	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
	if (ret)
		return ret;
631 632 633

	pci_set_master(pdev);

634 635 636
	plat->bsp_priv = intel_priv;
	intel_priv->mdio_adhoc_addr = 0x15;

637 638 639 640
	ret = info->setup(pdev, plat);
	if (ret)
		return ret;

641 642 643
	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
	if (ret < 0)
		return ret;
644 645

	memset(&res, 0, sizeof(res));
646
	res.addr = pcim_iomap_table(pdev)[0];
647 648
	res.wol_irq = pci_irq_vector(pdev, 0);
	res.irq = pci_irq_vector(pdev, 0);
649

650 651 652 653 654 655 656
	if (plat->eee_usecs_rate > 0) {
		u32 tx_lpi_usec;

		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
	}

657 658
	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
	if (ret) {
659
		pci_free_irq_vectors(pdev);
660 661 662 663 664
		clk_disable_unprepare(plat->stmmac_clk);
		clk_unregister_fixed_rate(plat->stmmac_clk);
	}

	return ret;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
}

/**
 * intel_eth_pci_remove
 *
 * @pdev: platform device pointer
 * Description: this function calls the main to free the net resources
 * and releases the PCI resources.
 */
static void intel_eth_pci_remove(struct pci_dev *pdev)
{
	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
	struct stmmac_priv *priv = netdev_priv(ndev);

	stmmac_dvr_remove(&pdev->dev);

681 682
	pci_free_irq_vectors(pdev);

683
	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
684

685
	pcim_iounmap_regions(pdev, BIT(0));
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

	pci_disable_device(pdev);
}

static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int ret;

	ret = stmmac_suspend(dev);
	if (ret)
		return ret;

	ret = pci_save_state(pdev);
	if (ret)
		return ret;

	pci_disable_device(pdev);
	pci_wake_from_d3(pdev, true);
	return 0;
}

static int __maybe_unused intel_eth_pci_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int ret;

	pci_restore_state(pdev);
	pci_set_power_state(pdev, PCI_D0);

	ret = pci_enable_device(pdev);
	if (ret)
		return ret;

	pci_set_master(pdev);

	return stmmac_resume(dev);
}

static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
			 intel_eth_pci_resume);

728 729 730 731
#define PCI_DEVICE_ID_INTEL_QUARK_ID			0x0937
#define PCI_DEVICE_ID_INTEL_EHL_RGMII1G_ID		0x4b30
#define PCI_DEVICE_ID_INTEL_EHL_SGMII1G_ID		0x4b31
#define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5_ID		0x4b32
732 733 734
/* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
 * which are named PSE0 and PSE1
 */
735 736 737 738 739 740
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G_ID		0x4ba0
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G_ID		0x4ba1
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5_ID	0x4ba2
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G_ID		0x4bb0
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G_ID		0x4bb1
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5_ID	0x4bb2
741 742
#define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0_ID		0x43ac
#define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1_ID		0x43a2
743
#define PCI_DEVICE_ID_INTEL_TGL_SGMII1G_ID		0xa0ac
744 745
#define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0_ID		0x7aac
#define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1_ID		0x7aad
746 747

static const struct pci_device_id intel_eth_pci_id_table[] = {
748 749 750 751 752 753 754 755 756 757 758
	{ PCI_DEVICE_DATA(INTEL, QUARK_ID, &quark_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G_ID, &ehl_rgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G_ID, &ehl_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5_ID, &ehl_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G_ID, &ehl_pse0_rgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G_ID, &ehl_pse0_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5_ID, &ehl_pse0_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G_ID, &ehl_pse1_rgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G_ID, &ehl_pse1_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5_ID, &ehl_pse1_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G_ID, &tgl_sgmii1g_info) },
759 760
	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0_ID, &tgl_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1_ID, &tgl_sgmii1g_info) },
761 762
	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0_ID, &adls_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1_ID, &adls_sgmii1g_info) },
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	{}
};
MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);

static struct pci_driver intel_eth_pci_driver = {
	.name = "intel-eth-pci",
	.id_table = intel_eth_pci_id_table,
	.probe = intel_eth_pci_probe,
	.remove = intel_eth_pci_remove,
	.driver         = {
		.pm     = &intel_eth_pm_ops,
	},
};

module_pci_driver(intel_eth_pci_driver);

MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
MODULE_LICENSE("GPL v2");