hcd_ddma.c 34.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * hcd_ddma.c - DesignWare HS OTG Controller descriptor DMA routines
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The names of the above-listed copyright holders may not be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * This file contains the Descriptor DMA implementation for Host mode
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>

#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>

#include "core.h"
#include "hcd.h"

static u16 dwc2_frame_list_idx(u16 frame)
{
	return frame & (FRLISTEN_64_SIZE - 1);
}

static u16 dwc2_desclist_idx_inc(u16 idx, u16 inc, u8 speed)
{
	return (idx + inc) &
		((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
		  MAX_DMA_DESC_NUM_GENERIC) - 1);
}

static u16 dwc2_desclist_idx_dec(u16 idx, u16 inc, u8 speed)
{
	return (idx - inc) &
		((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
		  MAX_DMA_DESC_NUM_GENERIC) - 1);
}

static u16 dwc2_max_desc_num(struct dwc2_qh *qh)
{
	return (qh->ep_type == USB_ENDPOINT_XFER_ISOC &&
		qh->dev_speed == USB_SPEED_HIGH) ?
		MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC;
}

static u16 dwc2_frame_incr_val(struct dwc2_qh *qh)
{
	return qh->dev_speed == USB_SPEED_HIGH ?
	       (qh->interval + 8 - 1) / 8 : qh->interval;
}

static int dwc2_desc_list_alloc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
				gfp_t flags)
{
	qh->desc_list = dma_alloc_coherent(hsotg->dev,
				sizeof(struct dwc2_hcd_dma_desc) *
				dwc2_max_desc_num(qh), &qh->desc_list_dma,
				flags);

	if (!qh->desc_list)
		return -ENOMEM;

	memset(qh->desc_list, 0,
	       sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh));

	qh->n_bytes = kzalloc(sizeof(u32) * dwc2_max_desc_num(qh), flags);
	if (!qh->n_bytes) {
		dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc)
				  * dwc2_max_desc_num(qh), qh->desc_list,
				  qh->desc_list_dma);
		qh->desc_list = NULL;
		return -ENOMEM;
	}

	return 0;
}

static void dwc2_desc_list_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
	if (qh->desc_list) {
		dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc)
				  * dwc2_max_desc_num(qh), qh->desc_list,
				  qh->desc_list_dma);
		qh->desc_list = NULL;
	}

	kfree(qh->n_bytes);
	qh->n_bytes = NULL;
}

static int dwc2_frame_list_alloc(struct dwc2_hsotg *hsotg, gfp_t mem_flags)
{
	if (hsotg->frame_list)
		return 0;

	hsotg->frame_list = dma_alloc_coherent(hsotg->dev,
					       4 * FRLISTEN_64_SIZE,
					       &hsotg->frame_list_dma,
					       mem_flags);
	if (!hsotg->frame_list)
		return -ENOMEM;

	memset(hsotg->frame_list, 0, 4 * FRLISTEN_64_SIZE);
	return 0;
}

static void dwc2_frame_list_free(struct dwc2_hsotg *hsotg)
{
	u32 *frame_list;
	dma_addr_t frame_list_dma;
	unsigned long flags;

	spin_lock_irqsave(&hsotg->lock, flags);

	if (!hsotg->frame_list) {
		spin_unlock_irqrestore(&hsotg->lock, flags);
		return;
	}

	frame_list = hsotg->frame_list;
	frame_list_dma = hsotg->frame_list_dma;
	hsotg->frame_list = NULL;

	spin_unlock_irqrestore(&hsotg->lock, flags);

	dma_free_coherent(hsotg->dev, 4 * FRLISTEN_64_SIZE, frame_list,
			  frame_list_dma);
}

static void dwc2_per_sched_enable(struct dwc2_hsotg *hsotg, u32 fr_list_en)
{
	u32 hcfg;
	unsigned long flags;

	spin_lock_irqsave(&hsotg->lock, flags);

172
	hcfg = dwc2_readl(hsotg->regs + HCFG);
173 174 175 176 177 178
	if (hcfg & HCFG_PERSCHEDENA) {
		/* already enabled */
		spin_unlock_irqrestore(&hsotg->lock, flags);
		return;
	}

179
	dwc2_writel(hsotg->frame_list_dma, hsotg->regs + HFLBADDR);
180 181 182 183

	hcfg &= ~HCFG_FRLISTEN_MASK;
	hcfg |= fr_list_en | HCFG_PERSCHEDENA;
	dev_vdbg(hsotg->dev, "Enabling Periodic schedule\n");
184
	dwc2_writel(hcfg, hsotg->regs + HCFG);
185 186 187 188 189 190 191 192 193 194 195

	spin_unlock_irqrestore(&hsotg->lock, flags);
}

static void dwc2_per_sched_disable(struct dwc2_hsotg *hsotg)
{
	u32 hcfg;
	unsigned long flags;

	spin_lock_irqsave(&hsotg->lock, flags);

196
	hcfg = dwc2_readl(hsotg->regs + HCFG);
197 198 199 200 201 202 203 204
	if (!(hcfg & HCFG_PERSCHEDENA)) {
		/* already disabled */
		spin_unlock_irqrestore(&hsotg->lock, flags);
		return;
	}

	hcfg &= ~HCFG_PERSCHEDENA;
	dev_vdbg(hsotg->dev, "Disabling Periodic schedule\n");
205
	dwc2_writel(hcfg, hsotg->regs + HCFG);
206 207 208 209 210 211 212 213 214 215 216 217 218 219

	spin_unlock_irqrestore(&hsotg->lock, flags);
}

/*
 * Activates/Deactivates FrameList entries for the channel based on endpoint
 * servicing period
 */
static void dwc2_update_frame_list(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
				   int enable)
{
	struct dwc2_host_chan *chan;
	u16 i, j, inc;

220
	if (!hsotg) {
221
		pr_err("hsotg = %p\n", hsotg);
222 223 224
		return;
	}

225
	if (!qh->channel) {
226
		dev_err(hsotg->dev, "qh->channel = %p\n", qh->channel);
227 228 229 230
		return;
	}

	if (!hsotg->frame_list) {
231
		dev_err(hsotg->dev, "hsotg->frame_list = %p\n",
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
			hsotg->frame_list);
		return;
	}

	chan = qh->channel;
	inc = dwc2_frame_incr_val(qh);
	if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
		i = dwc2_frame_list_idx(qh->sched_frame);
	else
		i = 0;

	j = i;
	do {
		if (enable)
			hsotg->frame_list[j] |= 1 << chan->hc_num;
		else
			hsotg->frame_list[j] &= ~(1 << chan->hc_num);
		j = (j + inc) & (FRLISTEN_64_SIZE - 1);
	} while (j != i);

	if (!enable)
		return;

	chan->schinfo = 0;
	if (chan->speed == USB_SPEED_HIGH && qh->interval) {
		j = 1;
		/* TODO - check this */
		inc = (8 + qh->interval - 1) / qh->interval;
		for (i = 0; i < inc; i++) {
			chan->schinfo |= j;
			j = j << qh->interval;
		}
	} else {
		chan->schinfo = 0xff;
	}
}

static void dwc2_release_channel_ddma(struct dwc2_hsotg *hsotg,
				      struct dwc2_qh *qh)
{
	struct dwc2_host_chan *chan = qh->channel;

274 275 276 277 278 279
	if (dwc2_qh_is_non_per(qh)) {
		if (hsotg->core_params->uframe_sched > 0)
			hsotg->available_host_channels++;
		else
			hsotg->non_periodic_channels--;
	} else {
280
		dwc2_update_frame_list(hsotg, qh, 0);
281
		hsotg->available_host_channels++;
282
	}
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	/*
	 * The condition is added to prevent double cleanup try in case of
	 * device disconnect. See channel cleanup in dwc2_hcd_disconnect().
	 */
	if (chan->qh) {
		if (!list_empty(&chan->hc_list_entry))
			list_del(&chan->hc_list_entry);
		dwc2_hc_cleanup(hsotg, chan);
		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
		chan->qh = NULL;
	}

	qh->channel = NULL;
	qh->ntd = 0;

	if (qh->desc_list)
		memset(qh->desc_list, 0, sizeof(struct dwc2_hcd_dma_desc) *
		       dwc2_max_desc_num(qh));
}

/**
 * dwc2_hcd_qh_init_ddma() - Initializes a QH structure's Descriptor DMA
 * related members
 *
 * @hsotg: The HCD state structure for the DWC OTG controller
 * @qh:    The QH to init
 *
 * Return: 0 if successful, negative error code otherwise
 *
 * Allocates memory for the descriptor list. For the first periodic QH,
 * allocates memory for the FrameList and enables periodic scheduling.
 */
int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
			  gfp_t mem_flags)
{
	int retval;

	if (qh->do_split) {
		dev_err(hsotg->dev,
			"SPLIT Transfers are not supported in Descriptor DMA mode.\n");
		retval = -EINVAL;
		goto err0;
	}

	retval = dwc2_desc_list_alloc(hsotg, qh, mem_flags);
	if (retval)
		goto err0;

	if (qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
	    qh->ep_type == USB_ENDPOINT_XFER_INT) {
		if (!hsotg->frame_list) {
			retval = dwc2_frame_list_alloc(hsotg, mem_flags);
			if (retval)
				goto err1;
			/* Enable periodic schedule on first periodic QH */
			dwc2_per_sched_enable(hsotg, HCFG_FRLISTEN_64);
		}
	}

	qh->ntd = 0;
	return 0;

err1:
	dwc2_desc_list_free(hsotg, qh);
err0:
	return retval;
}

/**
 * dwc2_hcd_qh_free_ddma() - Frees a QH structure's Descriptor DMA related
 * members
 *
 * @hsotg: The HCD state structure for the DWC OTG controller
 * @qh:    The QH to free
 *
 * Frees descriptor list memory associated with the QH. If QH is periodic and
 * the last, frees FrameList memory and disables periodic scheduling.
 */
void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
364 365
	unsigned long flags;

366 367 368 369 370 371 372 373 374
	dwc2_desc_list_free(hsotg, qh);

	/*
	 * Channel still assigned due to some reasons.
	 * Seen on Isoc URB dequeue. Channel halted but no subsequent
	 * ChHalted interrupt to release the channel. Afterwards
	 * when it comes here from endpoint disable routine
	 * channel remains assigned.
	 */
375
	spin_lock_irqsave(&hsotg->lock, flags);
376 377
	if (qh->channel)
		dwc2_release_channel_ddma(hsotg, qh);
378
	spin_unlock_irqrestore(&hsotg->lock, flags);
379 380 381

	if ((qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
	     qh->ep_type == USB_ENDPOINT_XFER_INT) &&
382 383
	    (hsotg->core_params->uframe_sched > 0 ||
	     !hsotg->periodic_channels) && hsotg->frame_list) {
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
		dwc2_per_sched_disable(hsotg);
		dwc2_frame_list_free(hsotg);
	}
}

static u8 dwc2_frame_to_desc_idx(struct dwc2_qh *qh, u16 frame_idx)
{
	if (qh->dev_speed == USB_SPEED_HIGH)
		/* Descriptor set (8 descriptors) index which is 8-aligned */
		return (frame_idx & ((MAX_DMA_DESC_NUM_HS_ISOC / 8) - 1)) * 8;
	else
		return frame_idx & (MAX_DMA_DESC_NUM_GENERIC - 1);
}

/*
 * Determine starting frame for Isochronous transfer.
 * Few frames skipped to prevent race condition with HC.
 */
static u16 dwc2_calc_starting_frame(struct dwc2_hsotg *hsotg,
				    struct dwc2_qh *qh, u16 *skip_frames)
{
	u16 frame;

	hsotg->frame_number = dwc2_hcd_get_frame_number(hsotg);

	/* sched_frame is always frame number (not uFrame) both in FS and HS! */

	/*
	 * skip_frames is used to limit activated descriptors number
	 * to avoid the situation when HC services the last activated
	 * descriptor firstly.
	 * Example for FS:
	 * Current frame is 1, scheduled frame is 3. Since HC always fetches
	 * the descriptor corresponding to curr_frame+1, the descriptor
	 * corresponding to frame 2 will be fetched. If the number of
	 * descriptors is max=64 (or greather) the list will be fully programmed
	 * with Active descriptors and it is possible case (rare) that the
	 * latest descriptor(considering rollback) corresponding to frame 2 will
	 * be serviced first. HS case is more probable because, in fact, up to
	 * 11 uframes (16 in the code) may be skipped.
	 */
	if (qh->dev_speed == USB_SPEED_HIGH) {
		/*
		 * Consider uframe counter also, to start xfer asap. If half of
		 * the frame elapsed skip 2 frames otherwise just 1 frame.
		 * Starting descriptor index must be 8-aligned, so if the
		 * current frame is near to complete the next one is skipped as
		 * well.
		 */
		if (dwc2_micro_frame_num(hsotg->frame_number) >= 5) {
			*skip_frames = 2 * 8;
			frame = dwc2_frame_num_inc(hsotg->frame_number,
						   *skip_frames);
		} else {
			*skip_frames = 1 * 8;
			frame = dwc2_frame_num_inc(hsotg->frame_number,
						   *skip_frames);
		}

		frame = dwc2_full_frame_num(frame);
	} else {
		/*
		 * Two frames are skipped for FS - the current and the next.
		 * But for descriptor programming, 1 frame (descriptor) is
		 * enough, see example above.
		 */
		*skip_frames = 1;
		frame = dwc2_frame_num_inc(hsotg->frame_number, 2);
	}

	return frame;
}

/*
 * Calculate initial descriptor index for isochronous transfer based on
 * scheduled frame
 */
static u16 dwc2_recalc_initial_desc_idx(struct dwc2_hsotg *hsotg,
					struct dwc2_qh *qh)
{
	u16 frame, fr_idx, fr_idx_tmp, skip_frames;

	/*
	 * With current ISOC processing algorithm the channel is being released
	 * when no more QTDs in the list (qh->ntd == 0). Thus this function is
	 * called only when qh->ntd == 0 and qh->channel == 0.
	 *
	 * So qh->channel != NULL branch is not used and just not removed from
	 * the source file. It is required for another possible approach which
	 * is, do not disable and release the channel when ISOC session
	 * completed, just move QH to inactive schedule until new QTD arrives.
	 * On new QTD, the QH moved back to 'ready' schedule, starting frame and
	 * therefore starting desc_index are recalculated. In this case channel
	 * is released only on ep_disable.
	 */

	/*
	 * Calculate starting descriptor index. For INTERRUPT endpoint it is
	 * always 0.
	 */
	if (qh->channel) {
		frame = dwc2_calc_starting_frame(hsotg, qh, &skip_frames);
		/*
		 * Calculate initial descriptor index based on FrameList current
		 * bitmap and servicing period
		 */
		fr_idx_tmp = dwc2_frame_list_idx(frame);
		fr_idx = (FRLISTEN_64_SIZE +
			  dwc2_frame_list_idx(qh->sched_frame) - fr_idx_tmp)
			 % dwc2_frame_incr_val(qh);
		fr_idx = (fr_idx + fr_idx_tmp) % FRLISTEN_64_SIZE;
	} else {
		qh->sched_frame = dwc2_calc_starting_frame(hsotg, qh,
							   &skip_frames);
		fr_idx = dwc2_frame_list_idx(qh->sched_frame);
	}

	qh->td_first = qh->td_last = dwc2_frame_to_desc_idx(qh, fr_idx);

	return skip_frames;
}

#define ISOC_URB_GIVEBACK_ASAP

#define MAX_ISOC_XFER_SIZE_FS	1023
#define MAX_ISOC_XFER_SIZE_HS	3072
#define DESCNUM_THRESHOLD	4

static void dwc2_fill_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
					 struct dwc2_qtd *qtd,
					 struct dwc2_qh *qh, u32 max_xfer_size,
					 u16 idx)
{
	struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx];
	struct dwc2_hcd_iso_packet_desc *frame_desc;

	memset(dma_desc, 0, sizeof(*dma_desc));
	frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];

	if (frame_desc->length > max_xfer_size)
		qh->n_bytes[idx] = max_xfer_size;
	else
		qh->n_bytes[idx] = frame_desc->length;

	dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
	dma_desc->status = qh->n_bytes[idx] << HOST_DMA_ISOC_NBYTES_SHIFT &
			   HOST_DMA_ISOC_NBYTES_MASK;

532 533 534
	/* Set active bit */
	dma_desc->status |= HOST_DMA_A;

535 536 537
	qh->ntd++;
	qtd->isoc_frame_index_last++;

538 539 540 541 542 543 544 545 546 547 548 549 550
#ifdef ISOC_URB_GIVEBACK_ASAP
	/* Set IOC for each descriptor corresponding to last frame of URB */
	if (qtd->isoc_frame_index_last == qtd->urb->packet_count)
		dma_desc->status |= HOST_DMA_IOC;
#endif

}

static void dwc2_init_isoc_dma_desc(struct dwc2_hsotg *hsotg,
				    struct dwc2_qh *qh, u16 skip_frames)
{
	struct dwc2_qtd *qtd;
	u32 max_xfer_size;
551 552 553
	u16 idx, inc, n_desc = 0, ntd_max = 0;
	u16 cur_idx;
	u16 next_idx;
554 555 556

	idx = qh->td_last;
	inc = qh->interval;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	hsotg->frame_number = dwc2_hcd_get_frame_number(hsotg);
	cur_idx = dwc2_frame_list_idx(hsotg->frame_number);
	next_idx = dwc2_desclist_idx_inc(qh->td_last, inc, qh->dev_speed);

	/*
	 * Ensure current frame number didn't overstep last scheduled
	 * descriptor. If it happens, the only way to recover is to move
	 * qh->td_last to current frame number + 1.
	 * So that next isoc descriptor will be scheduled on frame number + 1
	 * and not on a past frame.
	 */
	if (dwc2_frame_idx_num_gt(cur_idx, next_idx) || (cur_idx == next_idx)) {
		if (inc < 32) {
			dev_vdbg(hsotg->dev,
				 "current frame number overstep last descriptor\n");
			qh->td_last = dwc2_desclist_idx_inc(cur_idx, inc,
							    qh->dev_speed);
			idx = qh->td_last;
		}
	}
577 578 579 580 581 582 583 584 585 586 587 588

	if (qh->interval) {
		ntd_max = (dwc2_max_desc_num(qh) + qh->interval - 1) /
				qh->interval;
		if (skip_frames && !qh->channel)
			ntd_max -= skip_frames / qh->interval;
	}

	max_xfer_size = qh->dev_speed == USB_SPEED_HIGH ?
			MAX_ISOC_XFER_SIZE_HS : MAX_ISOC_XFER_SIZE_FS;

	list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
589 590 591 592 593 594
		if (qtd->in_process &&
		    qtd->isoc_frame_index_last ==
		    qtd->urb->packet_count)
			continue;

		qtd->isoc_td_first = idx;
595 596 597 598 599 600 601
		while (qh->ntd < ntd_max && qtd->isoc_frame_index_last <
						qtd->urb->packet_count) {
			dwc2_fill_host_isoc_dma_desc(hsotg, qtd, qh,
						     max_xfer_size, idx);
			idx = dwc2_desclist_idx_inc(idx, inc, qh->dev_speed);
			n_desc++;
		}
602
		qtd->isoc_td_last = idx;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		qtd->in_process = 1;
	}

	qh->td_last = idx;

#ifdef ISOC_URB_GIVEBACK_ASAP
	/* Set IOC for last descriptor if descriptor list is full */
	if (qh->ntd == ntd_max) {
		idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
		qh->desc_list[idx].status |= HOST_DMA_IOC;
	}
#else
	/*
	 * Set IOC bit only for one descriptor. Always try to be ahead of HW
	 * processing, i.e. on IOC generation driver activates next descriptor
	 * but core continues to process descriptors following the one with IOC
	 * set.
	 */

	if (n_desc > DESCNUM_THRESHOLD)
		/*
		 * Move IOC "up". Required even if there is only one QTD
		 * in the list, because QTDs might continue to be queued,
		 * but during the activation it was only one queued.
		 * Actually more than one QTD might be in the list if this
		 * function called from XferCompletion - QTDs was queued during
		 * HW processing of the previous descriptor chunk.
		 */
		idx = dwc2_desclist_idx_dec(idx, inc * ((qh->ntd + 1) / 2),
					    qh->dev_speed);
	else
		/*
		 * Set the IOC for the latest descriptor if either number of
		 * descriptors is not greater than threshold or no more new
		 * descriptors activated
		 */
		idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);

	qh->desc_list[idx].status |= HOST_DMA_IOC;
#endif
}

static void dwc2_fill_host_dma_desc(struct dwc2_hsotg *hsotg,
				    struct dwc2_host_chan *chan,
				    struct dwc2_qtd *qtd, struct dwc2_qh *qh,
				    int n_desc)
{
	struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[n_desc];
	int len = chan->xfer_len;

653 654
	if (len > MAX_DMA_DESC_SIZE - (chan->max_packet - 1))
		len = MAX_DMA_DESC_SIZE - (chan->max_packet - 1);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

	if (chan->ep_is_in) {
		int num_packets;

		if (len > 0 && chan->max_packet)
			num_packets = (len + chan->max_packet - 1)
					/ chan->max_packet;
		else
			/* Need 1 packet for transfer length of 0 */
			num_packets = 1;

		/* Always program an integral # of packets for IN transfers */
		len = num_packets * chan->max_packet;
	}

	dma_desc->status = len << HOST_DMA_NBYTES_SHIFT & HOST_DMA_NBYTES_MASK;
	qh->n_bytes[n_desc] = len;

	if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL &&
	    qtd->control_phase == DWC2_CONTROL_SETUP)
		dma_desc->status |= HOST_DMA_SUP;

	dma_desc->buf = (u32)chan->xfer_dma;

	/*
	 * Last (or only) descriptor of IN transfer with actual size less
	 * than MaxPacket
	 */
	if (len > chan->xfer_len) {
		chan->xfer_len = 0;
	} else {
		chan->xfer_dma += len;
		chan->xfer_len -= len;
	}
}

static void dwc2_init_non_isoc_dma_desc(struct dwc2_hsotg *hsotg,
					struct dwc2_qh *qh)
{
	struct dwc2_qtd *qtd;
	struct dwc2_host_chan *chan = qh->channel;
	int n_desc = 0;

	dev_vdbg(hsotg->dev, "%s(): qh=%p dma=%08lx len=%d\n", __func__, qh,
		 (unsigned long)chan->xfer_dma, chan->xfer_len);

	/*
	 * Start with chan->xfer_dma initialized in assign_and_init_hc(), then
	 * if SG transfer consists of multiple URBs, this pointer is re-assigned
	 * to the buffer of the currently processed QTD. For non-SG request
	 * there is always one QTD active.
	 */

	list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
		dev_vdbg(hsotg->dev, "qtd=%p\n", qtd);

		if (n_desc) {
			/* SG request - more than 1 QTD */
			chan->xfer_dma = qtd->urb->dma +
					qtd->urb->actual_length;
			chan->xfer_len = qtd->urb->length -
					qtd->urb->actual_length;
			dev_vdbg(hsotg->dev, "buf=%08lx len=%d\n",
				 (unsigned long)chan->xfer_dma, chan->xfer_len);
		}

		qtd->n_desc = 0;
		do {
			if (n_desc > 1) {
				qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
				dev_vdbg(hsotg->dev,
					 "set A bit in desc %d (%p)\n",
					 n_desc - 1,
					 &qh->desc_list[n_desc - 1]);
			}
			dwc2_fill_host_dma_desc(hsotg, chan, qtd, qh, n_desc);
			dev_vdbg(hsotg->dev,
				 "desc %d (%p) buf=%08x status=%08x\n",
				 n_desc, &qh->desc_list[n_desc],
				 qh->desc_list[n_desc].buf,
				 qh->desc_list[n_desc].status);
			qtd->n_desc++;
			n_desc++;
		} while (chan->xfer_len > 0 &&
			 n_desc != MAX_DMA_DESC_NUM_GENERIC);

		dev_vdbg(hsotg->dev, "n_desc=%d\n", n_desc);
		qtd->in_process = 1;
		if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL)
			break;
		if (n_desc == MAX_DMA_DESC_NUM_GENERIC)
			break;
	}

	if (n_desc) {
		qh->desc_list[n_desc - 1].status |=
				HOST_DMA_IOC | HOST_DMA_EOL | HOST_DMA_A;
		dev_vdbg(hsotg->dev, "set IOC/EOL/A bits in desc %d (%p)\n",
			 n_desc - 1, &qh->desc_list[n_desc - 1]);
		if (n_desc > 1) {
			qh->desc_list[0].status |= HOST_DMA_A;
			dev_vdbg(hsotg->dev, "set A bit in desc 0 (%p)\n",
				 &qh->desc_list[0]);
		}
		chan->ntd = n_desc;
	}
}

/**
 * dwc2_hcd_start_xfer_ddma() - Starts a transfer in Descriptor DMA mode
 *
 * @hsotg: The HCD state structure for the DWC OTG controller
 * @qh:    The QH to init
 *
 * Return: 0 if successful, negative error code otherwise
 *
 * For Control and Bulk endpoints, initializes descriptor list and starts the
 * transfer. For Interrupt and Isochronous endpoints, initializes descriptor
 * list then updates FrameList, marking appropriate entries as active.
 *
 * For Isochronous endpoints the starting descriptor index is calculated based
 * on the scheduled frame, but only on the first transfer descriptor within a
 * session. Then the transfer is started via enabling the channel.
 *
 * For Isochronous endpoints the channel is not halted on XferComplete
 * interrupt so remains assigned to the endpoint(QH) until session is done.
 */
void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
	/* Channel is already assigned */
	struct dwc2_host_chan *chan = qh->channel;
	u16 skip_frames = 0;

	switch (chan->ep_type) {
	case USB_ENDPOINT_XFER_CONTROL:
	case USB_ENDPOINT_XFER_BULK:
		dwc2_init_non_isoc_dma_desc(hsotg, qh);
		dwc2_hc_start_transfer_ddma(hsotg, chan);
		break;
	case USB_ENDPOINT_XFER_INT:
		dwc2_init_non_isoc_dma_desc(hsotg, qh);
		dwc2_update_frame_list(hsotg, qh, 1);
		dwc2_hc_start_transfer_ddma(hsotg, chan);
		break;
	case USB_ENDPOINT_XFER_ISOC:
		if (!qh->ntd)
			skip_frames = dwc2_recalc_initial_desc_idx(hsotg, qh);
		dwc2_init_isoc_dma_desc(hsotg, qh, skip_frames);

		if (!chan->xfer_started) {
			dwc2_update_frame_list(hsotg, qh, 1);

			/*
			 * Always set to max, instead of actual size. Otherwise
			 * ntd will be changed with channel being enabled. Not
			 * recommended.
			 */
			chan->ntd = dwc2_max_desc_num(qh);

			/* Enable channel only once for ISOC */
			dwc2_hc_start_transfer_ddma(hsotg, chan);
		}

		break;
	default:
		break;
	}
}

#define DWC2_CMPL_DONE		1
#define DWC2_CMPL_STOP		2

static int dwc2_cmpl_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
					struct dwc2_host_chan *chan,
					struct dwc2_qtd *qtd,
					struct dwc2_qh *qh, u16 idx)
{
	struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx];
	struct dwc2_hcd_iso_packet_desc *frame_desc;
	u16 remain = 0;
	int rc = 0;

837 838 839
	if (!qtd->urb)
		return -EINVAL;

840 841 842
	frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
	dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
	if (chan->ep_is_in)
843 844
		remain = (dma_desc->status & HOST_DMA_ISOC_NBYTES_MASK) >>
			 HOST_DMA_ISOC_NBYTES_SHIFT;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

	if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
		/*
		 * XactError, or unable to complete all the transactions
		 * in the scheduled micro-frame/frame, both indicated by
		 * HOST_DMA_STS_PKTERR
		 */
		qtd->urb->error_count++;
		frame_desc->actual_length = qh->n_bytes[idx] - remain;
		frame_desc->status = -EPROTO;
	} else {
		/* Success */
		frame_desc->actual_length = qh->n_bytes[idx] - remain;
		frame_desc->status = 0;
	}

	if (++qtd->isoc_frame_index == qtd->urb->packet_count) {
		/*
		 * urb->status is not used for isoc transfers here. The
		 * individual frame_desc status are used instead.
		 */
866
		dwc2_host_complete(hsotg, qtd, 0);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);

		/*
		 * This check is necessary because urb_dequeue can be called
		 * from urb complete callback (sound driver for example). All
		 * pending URBs are dequeued there, so no need for further
		 * processing.
		 */
		if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE)
			return -1;
		rc = DWC2_CMPL_DONE;
	}

	qh->ntd--;

	/* Stop if IOC requested descriptor reached */
	if (dma_desc->status & HOST_DMA_IOC)
		rc = DWC2_CMPL_STOP;

	return rc;
}

static void dwc2_complete_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
					 struct dwc2_host_chan *chan,
					 enum dwc2_halt_status halt_status)
{
	struct dwc2_hcd_iso_packet_desc *frame_desc;
	struct dwc2_qtd *qtd, *qtd_tmp;
	struct dwc2_qh *qh;
	u16 idx;
	int rc;

	qh = chan->qh;
	idx = qh->td_first;

	if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
		list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
			qtd->in_process = 0;
		return;
	}

	if (halt_status == DWC2_HC_XFER_AHB_ERR ||
	    halt_status == DWC2_HC_XFER_BABBLE_ERR) {
		/*
		 * Channel is halted in these error cases, considered as serious
		 * issues.
		 * Complete all URBs marking all frames as failed, irrespective
		 * whether some of the descriptors (frames) succeeded or not.
		 * Pass error code to completion routine as well, to update
		 * urb->status, some of class drivers might use it to stop
		 * queing transfer requests.
		 */
		int err = halt_status == DWC2_HC_XFER_AHB_ERR ?
			  -EIO : -EOVERFLOW;

		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
					 qtd_list_entry) {
924 925 926 927 928 929 930 931
			if (qtd->urb) {
				for (idx = 0; idx < qtd->urb->packet_count;
				     idx++) {
					frame_desc = &qtd->urb->iso_descs[idx];
					frame_desc->status = err;
				}

				dwc2_host_complete(hsotg, qtd, err);
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
			}

			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
		}

		return;
	}

	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
		if (!qtd->in_process)
			break;
		do {
			rc = dwc2_cmpl_host_isoc_dma_desc(hsotg, chan, qtd, qh,
							  idx);
			if (rc < 0)
				return;
			idx = dwc2_desclist_idx_inc(idx, qh->interval,
						    chan->speed);
			if (rc == DWC2_CMPL_STOP)
				goto stop_scan;
			if (rc == DWC2_CMPL_DONE)
				break;
		} while (idx != qh->td_first);
	}

stop_scan:
	qh->td_first = idx;
}

static int dwc2_update_non_isoc_urb_state_ddma(struct dwc2_hsotg *hsotg,
					struct dwc2_host_chan *chan,
					struct dwc2_qtd *qtd,
					struct dwc2_hcd_dma_desc *dma_desc,
					enum dwc2_halt_status halt_status,
					u32 n_bytes, int *xfer_done)
{
	struct dwc2_hcd_urb *urb = qtd->urb;
	u16 remain = 0;

	if (chan->ep_is_in)
972 973
		remain = (dma_desc->status & HOST_DMA_NBYTES_MASK) >>
			 HOST_DMA_NBYTES_SHIFT;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	dev_vdbg(hsotg->dev, "remain=%d dwc2_urb=%p\n", remain, urb);

	if (halt_status == DWC2_HC_XFER_AHB_ERR) {
		dev_err(hsotg->dev, "EIO\n");
		urb->status = -EIO;
		return 1;
	}

	if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
		switch (halt_status) {
		case DWC2_HC_XFER_STALL:
			dev_vdbg(hsotg->dev, "Stall\n");
			urb->status = -EPIPE;
			break;
		case DWC2_HC_XFER_BABBLE_ERR:
			dev_err(hsotg->dev, "Babble\n");
			urb->status = -EOVERFLOW;
			break;
		case DWC2_HC_XFER_XACT_ERR:
			dev_err(hsotg->dev, "XactErr\n");
			urb->status = -EPROTO;
			break;
		default:
			dev_err(hsotg->dev,
				"%s: Unhandled descriptor error status (%d)\n",
				__func__, halt_status);
			break;
		}
		return 1;
	}

	if (dma_desc->status & HOST_DMA_A) {
		dev_vdbg(hsotg->dev,
			 "Active descriptor encountered on channel %d\n",
			 chan->hc_num);
		return 0;
	}

	if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL) {
		if (qtd->control_phase == DWC2_CONTROL_DATA) {
			urb->actual_length += n_bytes - remain;
			if (remain || urb->actual_length >= urb->length) {
				/*
				 * For Control Data stage do not set urb->status
				 * to 0, to prevent URB callback. Set it when
				 * Status phase is done. See below.
				 */
				*xfer_done = 1;
			}
		} else if (qtd->control_phase == DWC2_CONTROL_STATUS) {
			urb->status = 0;
			*xfer_done = 1;
		}
		/* No handling for SETUP stage */
	} else {
		/* BULK and INTR */
		urb->actual_length += n_bytes - remain;
		dev_vdbg(hsotg->dev, "length=%d actual=%d\n", urb->length,
			 urb->actual_length);
		if (remain || urb->actual_length >= urb->length) {
			urb->status = 0;
			*xfer_done = 1;
		}
	}

	return 0;
}

static int dwc2_process_non_isoc_desc(struct dwc2_hsotg *hsotg,
				      struct dwc2_host_chan *chan,
				      int chnum, struct dwc2_qtd *qtd,
				      int desc_num,
				      enum dwc2_halt_status halt_status,
				      int *xfer_done)
{
	struct dwc2_qh *qh = chan->qh;
	struct dwc2_hcd_urb *urb = qtd->urb;
	struct dwc2_hcd_dma_desc *dma_desc;
	u32 n_bytes;
	int failed;

	dev_vdbg(hsotg->dev, "%s()\n", __func__);

1058 1059 1060
	if (!urb)
		return -EINVAL;

1061 1062 1063 1064 1065 1066 1067 1068
	dma_desc = &qh->desc_list[desc_num];
	n_bytes = qh->n_bytes[desc_num];
	dev_vdbg(hsotg->dev,
		 "qtd=%p dwc2_urb=%p desc_num=%d desc=%p n_bytes=%d\n",
		 qtd, urb, desc_num, dma_desc, n_bytes);
	failed = dwc2_update_non_isoc_urb_state_ddma(hsotg, chan, qtd, dma_desc,
						     halt_status, n_bytes,
						     xfer_done);
1069 1070 1071 1072
	if (*xfer_done && urb->status != -EINPROGRESS)
		failed = 1;

	if (failed) {
1073
		dwc2_host_complete(hsotg, qtd, urb->status);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
		dev_vdbg(hsotg->dev, "failed=%1x xfer_done=%1x status=%08x\n",
			 failed, *xfer_done, urb->status);
		return failed;
	}

	if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL) {
		switch (qtd->control_phase) {
		case DWC2_CONTROL_SETUP:
			if (urb->length > 0)
				qtd->control_phase = DWC2_CONTROL_DATA;
			else
				qtd->control_phase = DWC2_CONTROL_STATUS;
			dev_vdbg(hsotg->dev,
				 "  Control setup transaction done\n");
			break;
		case DWC2_CONTROL_DATA:
			if (*xfer_done) {
				qtd->control_phase = DWC2_CONTROL_STATUS;
				dev_vdbg(hsotg->dev,
					 "  Control data transfer done\n");
			} else if (desc_num + 1 == qtd->n_desc) {
				/*
				 * Last descriptor for Control data stage which
				 * is not completed yet
				 */
				dwc2_hcd_save_data_toggle(hsotg, chan, chnum,
							  qtd);
			}
			break;
		default:
			break;
		}
	}

	return 0;
}

static void dwc2_complete_non_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
					     struct dwc2_host_chan *chan,
					     int chnum,
					     enum dwc2_halt_status halt_status)
{
	struct list_head *qtd_item, *qtd_tmp;
	struct dwc2_qh *qh = chan->qh;
	struct dwc2_qtd *qtd = NULL;
	int xfer_done;
	int desc_num = 0;

	if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
		list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
			qtd->in_process = 0;
		return;
	}

	list_for_each_safe(qtd_item, qtd_tmp, &qh->qtd_list) {
		int i;

		qtd = list_entry(qtd_item, struct dwc2_qtd, qtd_list_entry);
		xfer_done = 0;

		for (i = 0; i < qtd->n_desc; i++) {
			if (dwc2_process_non_isoc_desc(hsotg, chan, chnum, qtd,
						       desc_num, halt_status,
1138 1139
						       &xfer_done)) {
				qtd = NULL;
1140
				break;
1141
			}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			desc_num++;
		}
	}

	if (qh->ep_type != USB_ENDPOINT_XFER_CONTROL) {
		/*
		 * Resetting the data toggle for bulk and interrupt endpoints
		 * in case of stall. See handle_hc_stall_intr().
		 */
		if (halt_status == DWC2_HC_XFER_STALL)
			qh->data_toggle = DWC2_HC_PID_DATA0;
		else if (qtd)
			dwc2_hcd_save_data_toggle(hsotg, chan, chnum, qtd);
	}

	if (halt_status == DWC2_HC_XFER_COMPLETE) {
		if (chan->hcint & HCINTMSK_NYET) {
			/*
			 * Got a NYET on the last transaction of the transfer.
			 * It means that the endpoint should be in the PING
			 * state at the beginning of the next transfer.
			 */
			qh->ping_state = 1;
		}
	}
}

/**
 * dwc2_hcd_complete_xfer_ddma() - Scans the descriptor list, updates URB's
 * status and calls completion routine for the URB if it's done. Called from
 * interrupt handlers.
 *
 * @hsotg:       The HCD state structure for the DWC OTG controller
 * @chan:        Host channel the transfer is completed on
 * @chnum:       Index of Host channel registers
 * @halt_status: Reason the channel is being halted or just XferComplete
 *               for isochronous transfers
 *
 * Releases the channel to be used by other transfers.
 * In case of Isochronous endpoint the channel is not halted until the end of
 * the session, i.e. QTD list is empty.
 * If periodic channel released the FrameList is updated accordingly.
 * Calls transaction selection routines to activate pending transfers.
 */
void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
				 struct dwc2_host_chan *chan, int chnum,
				 enum dwc2_halt_status halt_status)
{
	struct dwc2_qh *qh = chan->qh;
	int continue_isoc_xfer = 0;
	enum dwc2_transaction_type tr_type;

	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
		dwc2_complete_isoc_xfer_ddma(hsotg, chan, halt_status);

		/* Release the channel if halted or session completed */
		if (halt_status != DWC2_HC_XFER_COMPLETE ||
		    list_empty(&qh->qtd_list)) {
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
			struct dwc2_qtd *qtd, *qtd_tmp;

			/*
			 * Kill all remainings QTDs since channel has been
			 * halted.
			 */
			list_for_each_entry_safe(qtd, qtd_tmp,
						 &qh->qtd_list,
						 qtd_list_entry) {
				dwc2_host_complete(hsotg, qtd,
						   -ECONNRESET);
				dwc2_hcd_qtd_unlink_and_free(hsotg,
							     qtd, qh);
			}

1215 1216 1217 1218 1219 1220 1221 1222 1223
			/* Halt the channel if session completed */
			if (halt_status == DWC2_HC_XFER_COMPLETE)
				dwc2_hc_halt(hsotg, chan, halt_status);
			dwc2_release_channel_ddma(hsotg, qh);
			dwc2_hcd_qh_unlink(hsotg, qh);
		} else {
			/* Keep in assigned schedule to continue transfer */
			list_move(&qh->qh_list_entry,
				  &hsotg->periodic_sched_assigned);
1224 1225 1226 1227 1228 1229
			/*
			 * If channel has been halted during giveback of urb
			 * then prevent any new scheduling.
			 */
			if (!chan->halt_status)
				continue_isoc_xfer = 1;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		}
		/*
		 * Todo: Consider the case when period exceeds FrameList size.
		 * Frame Rollover interrupt should be used.
		 */
	} else {
		/*
		 * Scan descriptor list to complete the URB(s), then release
		 * the channel
		 */
		dwc2_complete_non_isoc_xfer_ddma(hsotg, chan, chnum,
						 halt_status);
		dwc2_release_channel_ddma(hsotg, qh);
		dwc2_hcd_qh_unlink(hsotg, qh);

		if (!list_empty(&qh->qtd_list)) {
			/*
			 * Add back to inactive non-periodic schedule on normal
			 * completion
			 */
			dwc2_hcd_qh_add(hsotg, qh);
		}
	}

	tr_type = dwc2_hcd_select_transactions(hsotg);
	if (tr_type != DWC2_TRANSACTION_NONE || continue_isoc_xfer) {
		if (continue_isoc_xfer) {
			if (tr_type == DWC2_TRANSACTION_NONE)
				tr_type = DWC2_TRANSACTION_PERIODIC;
			else if (tr_type == DWC2_TRANSACTION_NON_PERIODIC)
				tr_type = DWC2_TRANSACTION_ALL;
		}
		dwc2_hcd_queue_transactions(hsotg, tr_type);
	}
}