bpf_jit_32.c 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Just-In-Time compiler for BPF filters on 32bit ARM
 *
 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; version 2 of the License.
 */

#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/filter.h>
#include <linux/moduleloader.h>
#include <linux/netdevice.h>
#include <linux/string.h>
#include <linux/slab.h>
19
#include <linux/if_vlan.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <asm/cacheflush.h>
#include <asm/hwcap.h>

#include "bpf_jit_32.h"

/*
 * ABI:
 *
 * r0	scratch register
 * r4	BPF register A
 * r5	BPF register X
 * r6	pointer to the skb
 * r7	skb->data
 * r8	skb_headlen(skb)
 */

#define r_scratch	ARM_R0
/* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
#define r_off		ARM_R1
#define r_A		ARM_R4
#define r_X		ARM_R5
#define r_skb		ARM_R6
#define r_skb_data	ARM_R7
#define r_skb_hl	ARM_R8

#define SCRATCH_SP_OFFSET	0
46
#define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + 4 * (k))
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

#define SEEN_MEM		((1 << BPF_MEMWORDS) - 1)
#define SEEN_MEM_WORD(k)	(1 << (k))
#define SEEN_X			(1 << BPF_MEMWORDS)
#define SEEN_CALL		(1 << (BPF_MEMWORDS + 1))
#define SEEN_SKB		(1 << (BPF_MEMWORDS + 2))
#define SEEN_DATA		(1 << (BPF_MEMWORDS + 3))

#define FLAG_NEED_X_RESET	(1 << 0)

struct jit_ctx {
	const struct sk_filter *skf;
	unsigned idx;
	unsigned prologue_bytes;
	int ret0_fp_idx;
	u32 seen;
	u32 flags;
	u32 *offsets;
	u32 *target;
#if __LINUX_ARM_ARCH__ < 7
	u16 epilogue_bytes;
	u16 imm_count;
	u32 *imms;
#endif
};

int bpf_jit_enable __read_mostly;

static u64 jit_get_skb_b(struct sk_buff *skb, unsigned offset)
{
	u8 ret;
	int err;

	err = skb_copy_bits(skb, offset, &ret, 1);

	return (u64)err << 32 | ret;
}

static u64 jit_get_skb_h(struct sk_buff *skb, unsigned offset)
{
	u16 ret;
	int err;

	err = skb_copy_bits(skb, offset, &ret, 2);

	return (u64)err << 32 | ntohs(ret);
}

static u64 jit_get_skb_w(struct sk_buff *skb, unsigned offset)
{
	u32 ret;
	int err;

	err = skb_copy_bits(skb, offset, &ret, 4);

	return (u64)err << 32 | ntohl(ret);
}

/*
 * Wrapper that handles both OABI and EABI and assures Thumb2 interworking
 * (where the assembly routines like __aeabi_uidiv could cause problems).
 */
static u32 jit_udiv(u32 dividend, u32 divisor)
{
	return dividend / divisor;
}

static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
{
	if (ctx->target != NULL)
		ctx->target[ctx->idx] = inst | (cond << 28);

	ctx->idx++;
}

/*
 * Emit an instruction that will be executed unconditionally.
 */
static inline void emit(u32 inst, struct jit_ctx *ctx)
{
	_emit(ARM_COND_AL, inst, ctx);
}

static u16 saved_regs(struct jit_ctx *ctx)
{
	u16 ret = 0;

	if ((ctx->skf->len > 1) ||
	    (ctx->skf->insns[0].code == BPF_S_RET_A))
		ret |= 1 << r_A;

#ifdef CONFIG_FRAME_POINTER
	ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
#else
	if (ctx->seen & SEEN_CALL)
		ret |= 1 << ARM_LR;
#endif
	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
		ret |= 1 << r_skb;
	if (ctx->seen & SEEN_DATA)
		ret |= (1 << r_skb_data) | (1 << r_skb_hl);
	if (ctx->seen & SEEN_X)
		ret |= 1 << r_X;

	return ret;
}

static inline int mem_words_used(struct jit_ctx *ctx)
{
	/* yes, we do waste some stack space IF there are "holes" in the set" */
	return fls(ctx->seen & SEEN_MEM);
}

static inline bool is_load_to_a(u16 inst)
{
	switch (inst) {
	case BPF_S_LD_W_LEN:
	case BPF_S_LD_W_ABS:
	case BPF_S_LD_H_ABS:
	case BPF_S_LD_B_ABS:
	case BPF_S_ANC_CPU:
	case BPF_S_ANC_IFINDEX:
	case BPF_S_ANC_MARK:
	case BPF_S_ANC_PROTOCOL:
	case BPF_S_ANC_RXHASH:
172 173
	case BPF_S_ANC_VLAN_TAG:
	case BPF_S_ANC_VLAN_TAG_PRESENT:
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	case BPF_S_ANC_QUEUE:
		return true;
	default:
		return false;
	}
}

static void build_prologue(struct jit_ctx *ctx)
{
	u16 reg_set = saved_regs(ctx);
	u16 first_inst = ctx->skf->insns[0].code;
	u16 off;

#ifdef CONFIG_FRAME_POINTER
	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
	emit(ARM_PUSH(reg_set), ctx);
	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
#else
	if (reg_set)
		emit(ARM_PUSH(reg_set), ctx);
#endif

	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
		emit(ARM_MOV_R(r_skb, ARM_R0), ctx);

	if (ctx->seen & SEEN_DATA) {
		off = offsetof(struct sk_buff, data);
		emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
		/* headlen = len - data_len */
		off = offsetof(struct sk_buff, len);
		emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
		off = offsetof(struct sk_buff, data_len);
		emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
		emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
	}

	if (ctx->flags & FLAG_NEED_X_RESET)
		emit(ARM_MOV_I(r_X, 0), ctx);

	/* do not leak kernel data to userspace */
	if ((first_inst != BPF_S_RET_K) && !(is_load_to_a(first_inst)))
		emit(ARM_MOV_I(r_A, 0), ctx);

	/* stack space for the BPF_MEM words */
	if (ctx->seen & SEEN_MEM)
		emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
}

static void build_epilogue(struct jit_ctx *ctx)
{
	u16 reg_set = saved_regs(ctx);

	if (ctx->seen & SEEN_MEM)
		emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);

	reg_set &= ~(1 << ARM_LR);

#ifdef CONFIG_FRAME_POINTER
	/* the first instruction of the prologue was: mov ip, sp */
	reg_set &= ~(1 << ARM_IP);
	reg_set |= (1 << ARM_SP);
	emit(ARM_LDM(ARM_SP, reg_set), ctx);
#else
	if (reg_set) {
		if (ctx->seen & SEEN_CALL)
			reg_set |= 1 << ARM_PC;
		emit(ARM_POP(reg_set), ctx);
	}

	if (!(ctx->seen & SEEN_CALL))
		emit(ARM_BX(ARM_LR), ctx);
#endif
}

static int16_t imm8m(u32 x)
{
	u32 rot;

	for (rot = 0; rot < 16; rot++)
		if ((x & ~ror32(0xff, 2 * rot)) == 0)
			return rol32(x, 2 * rot) | (rot << 8);

	return -1;
}

#if __LINUX_ARM_ARCH__ < 7

static u16 imm_offset(u32 k, struct jit_ctx *ctx)
{
	unsigned i = 0, offset;
	u16 imm;

	/* on the "fake" run we just count them (duplicates included) */
	if (ctx->target == NULL) {
		ctx->imm_count++;
		return 0;
	}

	while ((i < ctx->imm_count) && ctx->imms[i]) {
		if (ctx->imms[i] == k)
			break;
		i++;
	}

	if (ctx->imms[i] == 0)
		ctx->imms[i] = k;

	/* constants go just after the epilogue */
	offset =  ctx->offsets[ctx->skf->len];
	offset += ctx->prologue_bytes;
	offset += ctx->epilogue_bytes;
	offset += i * 4;

	ctx->target[offset / 4] = k;

	/* PC in ARM mode == address of the instruction + 8 */
	imm = offset - (8 + ctx->idx * 4);

	return imm;
}

#endif /* __LINUX_ARM_ARCH__ */

/*
 * Move an immediate that's not an imm8m to a core register.
 */
static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 7
	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
#else
	emit(ARM_MOVW(rd, val & 0xffff), ctx);
	if (val > 0xffff)
		emit(ARM_MOVT(rd, val >> 16), ctx);
#endif
}

static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
{
	int imm12 = imm8m(val);

	if (imm12 >= 0)
		emit(ARM_MOV_I(rd, imm12), ctx);
	else
		emit_mov_i_no8m(rd, val, ctx);
}

#if __LINUX_ARM_ARCH__ < 6

static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
	_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
	_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
	_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
	_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
	_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
	_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
}

static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
	_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
}

static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
{
344 345 346 347 348 349 350 351 352 353 354
	/* r_dst = (r_src << 8) | (r_src >> 8) */
	emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
	emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);

	/*
	 * we need to mask out the bits set in r_dst[23:16] due to
	 * the first shift instruction.
	 *
	 * note that 0x8ff is the encoded immediate 0x00ff0000.
	 */
	emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
}

#else  /* ARMv6+ */

static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
	_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
#ifdef __LITTLE_ENDIAN
	_emit(cond, ARM_REV(r_res, r_res), ctx);
#endif
}

static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
{
	_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
#ifdef __LITTLE_ENDIAN
	_emit(cond, ARM_REV16(r_res, r_res), ctx);
#endif
}

static inline void emit_swap16(u8 r_dst __maybe_unused,
			       u8 r_src __maybe_unused,
			       struct jit_ctx *ctx __maybe_unused)
{
#ifdef __LITTLE_ENDIAN
	emit(ARM_REV16(r_dst, r_src), ctx);
#endif
}

#endif /* __LINUX_ARM_ARCH__ < 6 */


/* Compute the immediate value for a PC-relative branch. */
static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
{
	u32 imm;

	if (ctx->target == NULL)
		return 0;
	/*
	 * BPF allows only forward jumps and the offset of the target is
	 * still the one computed during the first pass.
	 */
	imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);

	return imm >> 2;
}

#define OP_IMM3(op, r1, r2, imm_val, ctx)				\
	do {								\
		imm12 = imm8m(imm_val);					\
		if (imm12 < 0) {					\
			emit_mov_i_no8m(r_scratch, imm_val, ctx);	\
			emit(op ## _R((r1), (r2), r_scratch), ctx);	\
		} else {						\
			emit(op ## _I((r1), (r2), imm12), ctx);		\
		}							\
	} while (0)

static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
{
	if (ctx->ret0_fp_idx >= 0) {
		_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
		/* NOP to keep the size constant between passes */
		emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
	} else {
		_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
		_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
	}
}

static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 5
	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);

	if (elf_hwcap & HWCAP_THUMB)
		emit(ARM_BX(tgt_reg), ctx);
	else
		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
#else
	emit(ARM_BLX_R(tgt_reg), ctx);
#endif
}

static inline void emit_udiv(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ == 7
	if (elf_hwcap & HWCAP_IDIVA) {
		emit(ARM_UDIV(rd, rm, rn), ctx);
		return;
	}
#endif
	if (rm != ARM_R0)
		emit(ARM_MOV_R(ARM_R0, rm), ctx);
	if (rn != ARM_R1)
		emit(ARM_MOV_R(ARM_R1, rn), ctx);

	ctx->seen |= SEEN_CALL;
	emit_mov_i(ARM_R3, (u32)jit_udiv, ctx);
	emit_blx_r(ARM_R3, ctx);

	if (rd != ARM_R0)
		emit(ARM_MOV_R(rd, ARM_R0), ctx);
}

static inline void update_on_xread(struct jit_ctx *ctx)
{
	if (!(ctx->seen & SEEN_X))
		ctx->flags |= FLAG_NEED_X_RESET;

	ctx->seen |= SEEN_X;
}

static int build_body(struct jit_ctx *ctx)
{
	void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
	const struct sk_filter *prog = ctx->skf;
	const struct sock_filter *inst;
	unsigned i, load_order, off, condt;
	int imm12;
	u32 k;

	for (i = 0; i < prog->len; i++) {
		inst = &(prog->insns[i]);
		/* K as an immediate value operand */
		k = inst->k;

		/* compute offsets only in the fake pass */
		if (ctx->target == NULL)
			ctx->offsets[i] = ctx->idx * 4;

		switch (inst->code) {
		case BPF_S_LD_IMM:
			emit_mov_i(r_A, k, ctx);
			break;
		case BPF_S_LD_W_LEN:
			ctx->seen |= SEEN_SKB;
			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
			emit(ARM_LDR_I(r_A, r_skb,
				       offsetof(struct sk_buff, len)), ctx);
			break;
		case BPF_S_LD_MEM:
			/* A = scratch[k] */
			ctx->seen |= SEEN_MEM_WORD(k);
			emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
			break;
		case BPF_S_LD_W_ABS:
			load_order = 2;
			goto load;
		case BPF_S_LD_H_ABS:
			load_order = 1;
			goto load;
		case BPF_S_LD_B_ABS:
			load_order = 0;
load:
			/* the interpreter will deal with the negative K */
			if ((int)k < 0)
				return -ENOTSUPP;
			emit_mov_i(r_off, k, ctx);
load_common:
			ctx->seen |= SEEN_DATA | SEEN_CALL;

			if (load_order > 0) {
				emit(ARM_SUB_I(r_scratch, r_skb_hl,
					       1 << load_order), ctx);
				emit(ARM_CMP_R(r_scratch, r_off), ctx);
				condt = ARM_COND_HS;
			} else {
				emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
				condt = ARM_COND_HI;
			}

			_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
			      ctx);

			if (load_order == 0)
				_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
				      ctx);
			else if (load_order == 1)
				emit_load_be16(condt, r_A, r_scratch, ctx);
			else if (load_order == 2)
				emit_load_be32(condt, r_A, r_scratch, ctx);

			_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);

			/* the slowpath */
			emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
			/* the offset is already in R1 */
			emit_blx_r(ARM_R3, ctx);
			/* check the result of skb_copy_bits */
			emit(ARM_CMP_I(ARM_R1, 0), ctx);
			emit_err_ret(ARM_COND_NE, ctx);
			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
			break;
		case BPF_S_LD_W_IND:
			load_order = 2;
			goto load_ind;
		case BPF_S_LD_H_IND:
			load_order = 1;
			goto load_ind;
		case BPF_S_LD_B_IND:
			load_order = 0;
load_ind:
			OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
			goto load_common;
		case BPF_S_LDX_IMM:
			ctx->seen |= SEEN_X;
			emit_mov_i(r_X, k, ctx);
			break;
		case BPF_S_LDX_W_LEN:
			ctx->seen |= SEEN_X | SEEN_SKB;
			emit(ARM_LDR_I(r_X, r_skb,
				       offsetof(struct sk_buff, len)), ctx);
			break;
		case BPF_S_LDX_MEM:
			ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
			emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
			break;
		case BPF_S_LDX_B_MSH:
			/* x = ((*(frame + k)) & 0xf) << 2; */
			ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
			/* the interpreter should deal with the negative K */
			if (k < 0)
				return -1;
			/* offset in r1: we might have to take the slow path */
			emit_mov_i(r_off, k, ctx);
			emit(ARM_CMP_R(r_skb_hl, r_off), ctx);

			/* load in r0: common with the slowpath */
			_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
						      ARM_R1), ctx);
			/*
			 * emit_mov_i() might generate one or two instructions,
			 * the same holds for emit_blx_r()
			 */
			_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);

			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
			/* r_off is r1 */
			emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
			emit_blx_r(ARM_R3, ctx);
			/* check the return value of skb_copy_bits */
			emit(ARM_CMP_I(ARM_R1, 0), ctx);
			emit_err_ret(ARM_COND_NE, ctx);

			emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
			emit(ARM_LSL_I(r_X, r_X, 2), ctx);
			break;
		case BPF_S_ST:
			ctx->seen |= SEEN_MEM_WORD(k);
			emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
			break;
		case BPF_S_STX:
			update_on_xread(ctx);
			ctx->seen |= SEEN_MEM_WORD(k);
			emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
			break;
		case BPF_S_ALU_ADD_K:
			/* A += K */
			OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
			break;
		case BPF_S_ALU_ADD_X:
			update_on_xread(ctx);
			emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
			break;
		case BPF_S_ALU_SUB_K:
			/* A -= K */
			OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
			break;
		case BPF_S_ALU_SUB_X:
			update_on_xread(ctx);
			emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
			break;
		case BPF_S_ALU_MUL_K:
			/* A *= K */
			emit_mov_i(r_scratch, k, ctx);
			emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
			break;
		case BPF_S_ALU_MUL_X:
			update_on_xread(ctx);
			emit(ARM_MUL(r_A, r_A, r_X), ctx);
			break;
		case BPF_S_ALU_DIV_K:
			/* current k == reciprocal_value(userspace k) */
			emit_mov_i(r_scratch, k, ctx);
			/* A = top 32 bits of the product */
			emit(ARM_UMULL(r_scratch, r_A, r_A, r_scratch), ctx);
			break;
		case BPF_S_ALU_DIV_X:
			update_on_xread(ctx);
			emit(ARM_CMP_I(r_X, 0), ctx);
			emit_err_ret(ARM_COND_EQ, ctx);
			emit_udiv(r_A, r_A, r_X, ctx);
			break;
		case BPF_S_ALU_OR_K:
			/* A |= K */
			OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
			break;
		case BPF_S_ALU_OR_X:
			update_on_xread(ctx);
			emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
			break;
659 660 661 662 663 664 665 666 667 668
		case BPF_S_ALU_XOR_K:
			/* A ^= K; */
			OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
			break;
		case BPF_S_ANC_ALU_XOR_X:
		case BPF_S_ALU_XOR_X:
			/* A ^= X */
			update_on_xread(ctx);
			emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
			break;
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
		case BPF_S_ALU_AND_K:
			/* A &= K */
			OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
			break;
		case BPF_S_ALU_AND_X:
			update_on_xread(ctx);
			emit(ARM_AND_R(r_A, r_A, r_X), ctx);
			break;
		case BPF_S_ALU_LSH_K:
			if (unlikely(k > 31))
				return -1;
			emit(ARM_LSL_I(r_A, r_A, k), ctx);
			break;
		case BPF_S_ALU_LSH_X:
			update_on_xread(ctx);
			emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
			break;
		case BPF_S_ALU_RSH_K:
			if (unlikely(k > 31))
				return -1;
			emit(ARM_LSR_I(r_A, r_A, k), ctx);
			break;
		case BPF_S_ALU_RSH_X:
			update_on_xread(ctx);
			emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
			break;
		case BPF_S_ALU_NEG:
			/* A = -A */
			emit(ARM_RSB_I(r_A, r_A, 0), ctx);
			break;
		case BPF_S_JMP_JA:
			/* pc += K */
			emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
			break;
		case BPF_S_JMP_JEQ_K:
			/* pc += (A == K) ? pc->jt : pc->jf */
			condt  = ARM_COND_EQ;
			goto cmp_imm;
		case BPF_S_JMP_JGT_K:
			/* pc += (A > K) ? pc->jt : pc->jf */
			condt  = ARM_COND_HI;
			goto cmp_imm;
		case BPF_S_JMP_JGE_K:
			/* pc += (A >= K) ? pc->jt : pc->jf */
			condt  = ARM_COND_HS;
cmp_imm:
			imm12 = imm8m(k);
			if (imm12 < 0) {
				emit_mov_i_no8m(r_scratch, k, ctx);
				emit(ARM_CMP_R(r_A, r_scratch), ctx);
			} else {
				emit(ARM_CMP_I(r_A, imm12), ctx);
			}
cond_jump:
			if (inst->jt)
				_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
						   ctx)), ctx);
			if (inst->jf)
				_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
							     ctx)), ctx);
			break;
		case BPF_S_JMP_JEQ_X:
			/* pc += (A == X) ? pc->jt : pc->jf */
			condt   = ARM_COND_EQ;
			goto cmp_x;
		case BPF_S_JMP_JGT_X:
			/* pc += (A > X) ? pc->jt : pc->jf */
			condt   = ARM_COND_HI;
			goto cmp_x;
		case BPF_S_JMP_JGE_X:
			/* pc += (A >= X) ? pc->jt : pc->jf */
			condt   = ARM_COND_CS;
cmp_x:
			update_on_xread(ctx);
			emit(ARM_CMP_R(r_A, r_X), ctx);
			goto cond_jump;
		case BPF_S_JMP_JSET_K:
			/* pc += (A & K) ? pc->jt : pc->jf */
			condt  = ARM_COND_NE;
			/* not set iff all zeroes iff Z==1 iff EQ */

			imm12 = imm8m(k);
			if (imm12 < 0) {
				emit_mov_i_no8m(r_scratch, k, ctx);
				emit(ARM_TST_R(r_A, r_scratch), ctx);
			} else {
				emit(ARM_TST_I(r_A, imm12), ctx);
			}
			goto cond_jump;
		case BPF_S_JMP_JSET_X:
			/* pc += (A & X) ? pc->jt : pc->jf */
			update_on_xread(ctx);
			condt  = ARM_COND_NE;
			emit(ARM_TST_R(r_A, r_X), ctx);
			goto cond_jump;
		case BPF_S_RET_A:
			emit(ARM_MOV_R(ARM_R0, r_A), ctx);
			goto b_epilogue;
		case BPF_S_RET_K:
			if ((k == 0) && (ctx->ret0_fp_idx < 0))
				ctx->ret0_fp_idx = i;
			emit_mov_i(ARM_R0, k, ctx);
b_epilogue:
			if (i != ctx->skf->len - 1)
				emit(ARM_B(b_imm(prog->len, ctx)), ctx);
			break;
		case BPF_S_MISC_TAX:
			/* X = A */
			ctx->seen |= SEEN_X;
			emit(ARM_MOV_R(r_X, r_A), ctx);
			break;
		case BPF_S_MISC_TXA:
			/* A = X */
			update_on_xread(ctx);
			emit(ARM_MOV_R(r_A, r_X), ctx);
			break;
		case BPF_S_ANC_PROTOCOL:
			/* A = ntohs(skb->protocol) */
			ctx->seen |= SEEN_SKB;
			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
						  protocol) != 2);
			off = offsetof(struct sk_buff, protocol);
			emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
			emit_swap16(r_A, r_scratch, ctx);
			break;
		case BPF_S_ANC_CPU:
			/* r_scratch = current_thread_info() */
			OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
			/* A = current_thread_info()->cpu */
			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
			off = offsetof(struct thread_info, cpu);
			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
			break;
		case BPF_S_ANC_IFINDEX:
			/* A = skb->dev->ifindex */
			ctx->seen |= SEEN_SKB;
			off = offsetof(struct sk_buff, dev);
			emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);

			emit(ARM_CMP_I(r_scratch, 0), ctx);
			emit_err_ret(ARM_COND_EQ, ctx);

			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
						  ifindex) != 4);
			off = offsetof(struct net_device, ifindex);
			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
			break;
		case BPF_S_ANC_MARK:
			ctx->seen |= SEEN_SKB;
			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
			off = offsetof(struct sk_buff, mark);
			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
			break;
		case BPF_S_ANC_RXHASH:
			ctx->seen |= SEEN_SKB;
			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
			off = offsetof(struct sk_buff, rxhash);
			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
			break;
828 829 830 831 832 833 834 835 836 837 838
		case BPF_S_ANC_VLAN_TAG:
		case BPF_S_ANC_VLAN_TAG_PRESENT:
			ctx->seen |= SEEN_SKB;
			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
			off = offsetof(struct sk_buff, vlan_tci);
			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
			if (inst->code == BPF_S_ANC_VLAN_TAG)
				OP_IMM3(ARM_AND, r_A, r_A, VLAN_VID_MASK, ctx);
			else
				OP_IMM3(ARM_AND, r_A, r_A, VLAN_TAG_PRESENT, ctx);
			break;
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
		case BPF_S_ANC_QUEUE:
			ctx->seen |= SEEN_SKB;
			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
						  queue_mapping) != 2);
			BUILD_BUG_ON(offsetof(struct sk_buff,
					      queue_mapping) > 0xff);
			off = offsetof(struct sk_buff, queue_mapping);
			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
			break;
		default:
			return -1;
		}
	}

	/* compute offsets only during the first pass */
	if (ctx->target == NULL)
		ctx->offsets[i] = ctx->idx * 4;

	return 0;
}


void bpf_jit_compile(struct sk_filter *fp)
{
	struct jit_ctx ctx;
	unsigned tmp_idx;
	unsigned alloc_size;

	if (!bpf_jit_enable)
		return;

	memset(&ctx, 0, sizeof(ctx));
	ctx.skf		= fp;
	ctx.ret0_fp_idx = -1;

874
	ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	if (ctx.offsets == NULL)
		return;

	/* fake pass to fill in the ctx->seen */
	if (unlikely(build_body(&ctx)))
		goto out;

	tmp_idx = ctx.idx;
	build_prologue(&ctx);
	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;

#if __LINUX_ARM_ARCH__ < 7
	tmp_idx = ctx.idx;
	build_epilogue(&ctx);
	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;

	ctx.idx += ctx.imm_count;
	if (ctx.imm_count) {
893
		ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
		if (ctx.imms == NULL)
			goto out;
	}
#else
	/* there's nothing after the epilogue on ARMv7 */
	build_epilogue(&ctx);
#endif

	alloc_size = 4 * ctx.idx;
	ctx.target = module_alloc(max(sizeof(struct work_struct),
				      alloc_size));
	if (unlikely(ctx.target == NULL))
		goto out;

	ctx.idx = 0;
	build_prologue(&ctx);
	build_body(&ctx);
	build_epilogue(&ctx);

	flush_icache_range((u32)ctx.target, (u32)(ctx.target + ctx.idx));

#if __LINUX_ARM_ARCH__ < 7
	if (ctx.imm_count)
		kfree(ctx.imms);
#endif

	if (bpf_jit_enable > 1)
		print_hex_dump(KERN_INFO, "BPF JIT code: ",
			       DUMP_PREFIX_ADDRESS, 16, 4, ctx.target,
			       alloc_size, false);

	fp->bpf_func = (void *)ctx.target;
out:
	kfree(ctx.offsets);
	return;
}

static void bpf_jit_free_worker(struct work_struct *work)
{
	module_free(NULL, work);
}

void bpf_jit_free(struct sk_filter *fp)
{
	struct work_struct *work;

	if (fp->bpf_func != sk_run_filter) {
		work = (struct work_struct *)fp->bpf_func;

		INIT_WORK(work, bpf_jit_free_worker);
		schedule_work(work);
	}
}