kfd_events.c 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/mm_types.h>
#include <linux/slab.h>
#include <linux/types.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/mm.h>
28 29 30 31 32
#include <linux/uaccess.h>
#include <linux/mman.h>
#include <linux/memory.h>
#include "kfd_priv.h"
#include "kfd_events.h"
33
#include <linux/device.h>
34 35

/*
36
 * Wrapper around wait_queue_entry_t
37 38
 */
struct kfd_event_waiter {
39 40 41
	wait_queue_entry_t wait;
	struct kfd_event *event; /* Event to wait for */
	bool activated;		 /* Becomes true when event is signaled */
42 43 44 45
};

/*
 * Each signal event needs a 64-bit signal slot where the signaler will write
46
 * a 1 before sending an interrupt. (This is needed because some interrupts
47
 * do not contain enough spare data bits to identify an event.)
48 49
 * We get whole pages and map them to the process VA.
 * Individual signal events use their event_id as slot index.
50
 */
51
struct kfd_signal_page {
52 53 54 55 56
	uint64_t *kernel_address;
	uint64_t __user *user_address;
};


57
static uint64_t *page_slots(struct kfd_signal_page *page)
58 59 60 61
{
	return page->kernel_address;
}

62
static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
63 64
{
	void *backing_store;
65
	struct kfd_signal_page *page;
66

67
	page = kzalloc(sizeof(*page), GFP_KERNEL);
68
	if (!page)
69
		return NULL;
70

71
	backing_store = (void *) __get_free_pages(GFP_KERNEL,
72 73 74 75
					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
	if (!backing_store)
		goto fail_alloc_signal_store;

76
	/* Initialize all events to unsignaled */
77
	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
78
	       KFD_SIGNAL_EVENT_LIMIT * 8);
79 80

	page->kernel_address = backing_store;
81
	pr_debug("Allocated new event signal page at %p, for process %p\n",
82 83
			page, p);

84
	return page;
85 86 87

fail_alloc_signal_store:
	kfree(page);
88
	return NULL;
89 90
}

91 92
static int allocate_event_notification_slot(struct kfd_process *p,
					    struct kfd_event *ev)
93
{
94 95
	int id;

96 97 98
	if (!p->signal_page) {
		p->signal_page = allocate_signal_page(p);
		if (!p->signal_page)
99
			return -ENOMEM;
100 101
	}

102 103 104 105
	id = idr_alloc(&p->event_idr, ev, 0, KFD_SIGNAL_EVENT_LIMIT,
		       GFP_KERNEL);
	if (id < 0)
		return id;
106

107 108
	ev->event_id = id;
	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
109

110
	return 0;
111 112 113 114 115 116 117 118
}

/*
 * Assumes that p->event_mutex is held and of course that p is not going
 * away (current or locked).
 */
static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
{
119
	return idr_find(&p->event_idr, id);
120 121
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
 * @p:     Pointer to struct kfd_process
 * @id:    ID to look up
 * @bits:  Number of valid bits in @id
 *
 * Finds the first signaled event with a matching partial ID. If no
 * matching signaled event is found, returns NULL. In that case the
 * caller should assume that the partial ID is invalid and do an
 * exhaustive search of all siglaned events.
 *
 * If multiple events with the same partial ID signal at the same
 * time, they will be found one interrupt at a time, not necessarily
 * in the same order the interrupts occurred. As long as the number of
 * interrupts is correct, all signaled events will be seen by the
 * driver.
 */
static struct kfd_event *lookup_signaled_event_by_partial_id(
	struct kfd_process *p, uint32_t id, uint32_t bits)
{
	struct kfd_event *ev;

	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
		return NULL;

	/* Fast path for the common case that @id is not a partial ID
	 * and we only need a single lookup.
	 */
	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
			return NULL;

		return idr_find(&p->event_idr, id);
	}

	/* General case for partial IDs: Iterate over all matching IDs
	 * and find the first one that has signaled.
	 */
	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
			continue;

		ev = idr_find(&p->event_idr, id);
	}

	return ev;
}

170 171 172 173
static int create_signal_event(struct file *devkfd,
				struct kfd_process *p,
				struct kfd_event *ev)
{
174 175
	int ret;

176
	if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) {
177 178 179 180
		if (!p->signal_event_limit_reached) {
			pr_warn("Signal event wasn't created because limit was reached\n");
			p->signal_event_limit_reached = true;
		}
181
		return -ENOSPC;
182 183
	}

184 185
	ret = allocate_event_notification_slot(p, ev);
	if (ret) {
186
		pr_warn("Signal event wasn't created because out of kernel memory\n");
187
		return ret;
188 189 190 191
	}

	p->signal_event_count++;

192
	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
193
	pr_debug("Signal event number %zu created with id %d, address %p\n",
194 195 196
			p->signal_event_count, ev->event_id,
			ev->user_signal_address);

197 198 199 200 201
	return 0;
}

static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
{
202 203 204 205 206 207 208 209 210 211 212 213
	/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
	 * intentional integer overflow to -1 without a compiler
	 * warning. idr_alloc treats a negative value as "maximum
	 * signed integer".
	 */
	int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
			   (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
			   GFP_KERNEL);

	if (id < 0)
		return id;
	ev->event_id = id;
214 215 216 217 218 219 220

	return 0;
}

void kfd_event_init_process(struct kfd_process *p)
{
	mutex_init(&p->event_mutex);
221
	idr_init(&p->event_idr);
222
	p->signal_page = NULL;
223 224 225 226 227
	p->signal_event_count = 0;
}

static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
{
228
	struct kfd_event_waiter *waiter;
229

230 231
	/* Wake up pending waiters. They will return failure */
	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
232
		waiter->event = NULL;
233
	wake_up_all(&ev->wq);
234

235 236
	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
	    ev->type == KFD_EVENT_TYPE_DEBUG)
237 238
		p->signal_event_count--;

239
	idr_remove(&p->event_idr, ev->event_id);
240 241 242 243 244 245
	kfree(ev);
}

static void destroy_events(struct kfd_process *p)
{
	struct kfd_event *ev;
246
	uint32_t id;
247

248
	idr_for_each_entry(&p->event_idr, ev, id)
249
		destroy_event(p, ev);
250
	idr_destroy(&p->event_idr);
251 252 253 254 255 256
}

/*
 * We assume that the process is being destroyed and there is no need to
 * unmap the pages or keep bookkeeping data in order.
 */
257
static void shutdown_signal_page(struct kfd_process *p)
258
{
259
	struct kfd_signal_page *page = p->signal_page;
260

261
	if (page) {
262 263 264 265 266 267 268 269 270
		free_pages((unsigned long)page->kernel_address,
				get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
		kfree(page);
	}
}

void kfd_event_free_process(struct kfd_process *p)
{
	destroy_events(p);
271
	shutdown_signal_page(p);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
}

static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
{
	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
					ev->type == KFD_EVENT_TYPE_DEBUG;
}

static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
{
	return ev->type == KFD_EVENT_TYPE_SIGNAL;
}

int kfd_event_create(struct file *devkfd, struct kfd_process *p,
		     uint32_t event_type, bool auto_reset, uint32_t node_id,
		     uint32_t *event_id, uint32_t *event_trigger_data,
		     uint64_t *event_page_offset, uint32_t *event_slot_index)
{
	int ret = 0;
	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);

	if (!ev)
		return -ENOMEM;

	ev->type = event_type;
	ev->auto_reset = auto_reset;
	ev->signaled = false;

300
	init_waitqueue_head(&ev->wq);
301 302 303 304 305 306 307 308 309 310

	*event_page_offset = 0;

	mutex_lock(&p->event_mutex);

	switch (event_type) {
	case KFD_EVENT_TYPE_SIGNAL:
	case KFD_EVENT_TYPE_DEBUG:
		ret = create_signal_event(devkfd, p, ev);
		if (!ret) {
311
			*event_page_offset = KFD_MMAP_EVENTS_MASK;
312
			*event_page_offset <<= PAGE_SHIFT;
313
			*event_slot_index = ev->event_id;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		}
		break;
	default:
		ret = create_other_event(p, ev);
		break;
	}

	if (!ret) {
		*event_id = ev->event_id;
		*event_trigger_data = ev->event_id;
	} else {
		kfree(ev);
	}

	mutex_unlock(&p->event_mutex);

	return ret;
}

/* Assumes that p is current. */
int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
{
	struct kfd_event *ev;
	int ret = 0;

	mutex_lock(&p->event_mutex);

	ev = lookup_event_by_id(p, event_id);

	if (ev)
		destroy_event(p, ev);
	else
		ret = -EINVAL;

	mutex_unlock(&p->event_mutex);
	return ret;
}

static void set_event(struct kfd_event *ev)
{
	struct kfd_event_waiter *waiter;

356 357 358 359 360 361
	/* Auto reset if the list is non-empty and we're waking
	 * someone. waitqueue_active is safe here because we're
	 * protected by the p->event_mutex, which is also held when
	 * updating the wait queues in kfd_wait_on_events.
	 */
	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
362

363
	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
364 365
		waiter->activated = true;

366
	wake_up_all(&ev->wq);
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

/* Assumes that p is current. */
int kfd_set_event(struct kfd_process *p, uint32_t event_id)
{
	int ret = 0;
	struct kfd_event *ev;

	mutex_lock(&p->event_mutex);

	ev = lookup_event_by_id(p, event_id);

	if (ev && event_can_be_cpu_signaled(ev))
		set_event(ev);
	else
		ret = -EINVAL;

	mutex_unlock(&p->event_mutex);
	return ret;
}

static void reset_event(struct kfd_event *ev)
{
	ev->signaled = false;
}

/* Assumes that p is current. */
int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
{
	int ret = 0;
	struct kfd_event *ev;

	mutex_lock(&p->event_mutex);

	ev = lookup_event_by_id(p, event_id);

	if (ev && event_can_be_cpu_signaled(ev))
		reset_event(ev);
	else
		ret = -EINVAL;

	mutex_unlock(&p->event_mutex);
	return ret;

}

static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
{
415
	page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
416 417 418 419 420 421 422 423 424 425 426 427 428 429
}

static void set_event_from_interrupt(struct kfd_process *p,
					struct kfd_event *ev)
{
	if (ev && event_can_be_gpu_signaled(ev)) {
		acknowledge_signal(p, ev);
		set_event(ev);
	}
}

void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
				uint32_t valid_id_bits)
{
430
	struct kfd_event *ev = NULL;
431 432 433 434 435 436 437 438 439 440 441 442 443

	/*
	 * Because we are called from arbitrary context (workqueue) as opposed
	 * to process context, kfd_process could attempt to exit while we are
	 * running so the lookup function returns a locked process.
	 */
	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);

	if (!p)
		return; /* Presumably process exited. */

	mutex_lock(&p->event_mutex);

444 445 446 447
	if (valid_id_bits)
		ev = lookup_signaled_event_by_partial_id(p, partial_id,
							 valid_id_bits);
	if (ev) {
448
		set_event_from_interrupt(p, ev);
449
	} else if (p->signal_page) {
450
		/*
451 452 453
		 * Partial ID lookup failed. Assume that the event ID
		 * in the interrupt payload was invalid and do an
		 * exhaustive search of signaled events.
454
		 */
455 456
		uint64_t *slots = page_slots(p->signal_page);
		uint32_t id;
457

458 459 460 461
		if (valid_id_bits)
			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
					     partial_id, valid_id_bits);

462 463 464 465 466 467 468 469 470 471
		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT/2) {
			/* With relatively few events, it's faster to
			 * iterate over the event IDR
			 */
			idr_for_each_entry(&p->event_idr, ev, id) {
				if (id >= KFD_SIGNAL_EVENT_LIMIT)
					break;

				if (slots[id] != UNSIGNALED_EVENT_SLOT)
					set_event_from_interrupt(p, ev);
472
			}
473 474 475 476 477 478 479 480 481 482 483
		} else {
			/* With relatively many events, it's faster to
			 * iterate over the signal slots and lookup
			 * only signaled events from the IDR.
			 */
			for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
				if (slots[id] != UNSIGNALED_EVENT_SLOT) {
					ev = lookup_event_by_id(p, id);
					set_event_from_interrupt(p, ev);
				}
		}
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	}

	mutex_unlock(&p->event_mutex);
	mutex_unlock(&p->mutex);
}

static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
{
	struct kfd_event_waiter *event_waiters;
	uint32_t i;

	event_waiters = kmalloc_array(num_events,
					sizeof(struct kfd_event_waiter),
					GFP_KERNEL);

	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
500
		init_wait(&event_waiters[i].wait);
501 502 503 504 505 506
		event_waiters[i].activated = false;
	}

	return event_waiters;
}

507
static int init_event_waiter_get_status(struct kfd_process *p,
508
		struct kfd_event_waiter *waiter,
509
		uint32_t event_id)
510 511 512 513 514 515
{
	struct kfd_event *ev = lookup_event_by_id(p, event_id);

	if (!ev)
		return -EINVAL;

516
	waiter->event = ev;
517 518 519 520 521 522
	waiter->activated = ev->signaled;
	ev->signaled = ev->signaled && !ev->auto_reset;

	return 0;
}

523 524 525 526 527 528 529 530
static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
{
	struct kfd_event *ev = waiter->event;

	/* Only add to the wait list if we actually need to
	 * wait on this event.
	 */
	if (!waiter->activated)
531
		add_wait_queue(&ev->wq, &waiter->wait);
532 533
}

534 535 536 537 538 539 540 541 542 543 544
/* test_event_condition - Test condition of events being waited for
 * @all:           Return completion only if all events have signaled
 * @num_events:    Number of events to wait for
 * @event_waiters: Array of event waiters, one per event
 *
 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
 * the events have been destroyed.
 */
static uint32_t test_event_condition(bool all, uint32_t num_events,
545 546 547 548 549 550
				struct kfd_event_waiter *event_waiters)
{
	uint32_t i;
	uint32_t activated_count = 0;

	for (i = 0; i < num_events; i++) {
551 552 553
		if (!event_waiters[i].event)
			return KFD_IOC_WAIT_RESULT_FAIL;

554 555
		if (event_waiters[i].activated) {
			if (!all)
556
				return KFD_IOC_WAIT_RESULT_COMPLETE;
557 558 559 560 561

			activated_count++;
		}
	}

562 563
	return activated_count == num_events ?
		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
564 565
}

566 567 568 569
/*
 * Copy event specific data, if defined.
 * Currently only memory exception events have additional data to copy to user
 */
570
static int copy_signaled_event_data(uint32_t num_events,
571 572 573 574 575 576 577 578 579 580 581 582 583
		struct kfd_event_waiter *event_waiters,
		struct kfd_event_data __user *data)
{
	struct kfd_hsa_memory_exception_data *src;
	struct kfd_hsa_memory_exception_data __user *dst;
	struct kfd_event_waiter *waiter;
	struct kfd_event *event;
	uint32_t i;

	for (i = 0; i < num_events; i++) {
		waiter = &event_waiters[i];
		event = waiter->event;
		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
584
			dst = &data[i].memory_exception_data;
585 586 587
			src = &event->memory_exception_data;
			if (copy_to_user(dst, src,
				sizeof(struct kfd_hsa_memory_exception_data)))
588
				return -EFAULT;
589 590 591
		}
	}

592
	return 0;
593 594 595 596 597

}



598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
{
	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
		return 0;

	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
		return MAX_SCHEDULE_TIMEOUT;

	/*
	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
	 * but we consider them finite.
	 * This hack is wrong, but nobody is likely to notice.
	 */
	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);

	return msecs_to_jiffies(user_timeout_ms) + 1;
}

static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
{
	uint32_t i;

	for (i = 0; i < num_events; i++)
621 622 623
		if (waiters[i].event)
			remove_wait_queue(&waiters[i].event->wq,
					  &waiters[i].wait);
624 625 626 627 628

	kfree(waiters);
}

int kfd_wait_on_events(struct kfd_process *p,
629
		       uint32_t num_events, void __user *data,
630
		       bool all, uint32_t user_timeout_ms,
631
		       uint32_t *wait_result)
632
{
633 634
	struct kfd_event_data __user *events =
			(struct kfd_event_data __user *) data;
635 636
	uint32_t i;
	int ret = 0;
637

638 639 640
	struct kfd_event_waiter *event_waiters = NULL;
	long timeout = user_timeout_to_jiffies(user_timeout_ms);

641 642 643 644 645 646
	event_waiters = alloc_event_waiters(num_events);
	if (!event_waiters) {
		ret = -ENOMEM;
		goto out;
	}

647 648 649
	mutex_lock(&p->event_mutex);

	for (i = 0; i < num_events; i++) {
650
		struct kfd_event_data event_data;
651

652
		if (copy_from_user(&event_data, &events[i],
653 654
				sizeof(struct kfd_event_data))) {
			ret = -EFAULT;
655
			goto out_unlock;
656
		}
657

658
		ret = init_event_waiter_get_status(p, &event_waiters[i],
659
				event_data.event_id);
660
		if (ret)
661
			goto out_unlock;
662 663
	}

664
	/* Check condition once. */
665 666
	*wait_result = test_event_condition(all, num_events, event_waiters);
	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
667 668 669
		ret = copy_signaled_event_data(num_events,
					       event_waiters, events);
		goto out_unlock;
670 671 672 673 674
	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
		/* This should not happen. Events shouldn't be
		 * destroyed while we're holding the event_mutex
		 */
		goto out_unlock;
675 676
	}

677 678 679 680
	/* Add to wait lists if we need to wait. */
	for (i = 0; i < num_events; i++)
		init_event_waiter_add_to_waitlist(&event_waiters[i]);

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	mutex_unlock(&p->event_mutex);

	while (true) {
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

		if (signal_pending(current)) {
			/*
			 * This is wrong when a nonzero, non-infinite timeout
			 * is specified. We need to use
			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
			 * contains a union with data for each user and it's
			 * in generic kernel code that I don't want to
			 * touch yet.
			 */
			ret = -ERESTARTSYS;
			break;
		}

702 703 704 705 706 707 708 709 710 711 712
		/* Set task state to interruptible sleep before
		 * checking wake-up conditions. A concurrent wake-up
		 * will put the task back into runnable state. In that
		 * case schedule_timeout will not put the task to
		 * sleep and we'll get a chance to re-check the
		 * updated conditions almost immediately. Otherwise,
		 * this race condition would lead to a soft hang or a
		 * very long sleep.
		 */
		set_current_state(TASK_INTERRUPTIBLE);

713 714 715
		*wait_result = test_event_condition(all, num_events,
						    event_waiters);
		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
716 717
			break;

718
		if (timeout <= 0)
719 720
			break;

721
		timeout = schedule_timeout(timeout);
722 723 724
	}
	__set_current_state(TASK_RUNNING);

725 726 727 728 729 730 731
	/* copy_signaled_event_data may sleep. So this has to happen
	 * after the task state is set back to RUNNING.
	 */
	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
		ret = copy_signaled_event_data(num_events,
					       event_waiters, events);

732
	mutex_lock(&p->event_mutex);
733
out_unlock:
734 735
	free_waiters(num_events, event_waiters);
	mutex_unlock(&p->event_mutex);
736 737 738
out:
	if (ret)
		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
739 740
	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
		ret = -EIO;
741 742 743 744 745 746 747 748

	return ret;
}

int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
{

	unsigned long pfn;
749
	struct kfd_signal_page *page;
750 751 752 753

	/* check required size is logical */
	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) !=
			get_order(vma->vm_end - vma->vm_start)) {
754
		pr_err("Event page mmap requested illegal size\n");
755 756 757
		return -EINVAL;
	}

758
	page = p->signal_page;
759 760
	if (!page) {
		/* Probably KFD bug, but mmap is user-accessible. */
761
		pr_debug("Signal page could not be found\n");
762 763 764 765 766 767 768 769 770
		return -EINVAL;
	}

	pfn = __pa(page->kernel_address);
	pfn >>= PAGE_SHIFT;

	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
		       | VM_DONTDUMP | VM_PFNMAP;

771
	pr_debug("Mapping signal page\n");
772 773 774 775 776 777 778 779 780 781 782 783 784
	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
	pr_debug("     pfn                 == 0x%016lX\n", pfn);
	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
	pr_debug("     size                == 0x%08lX\n",
			vma->vm_end - vma->vm_start);

	page->user_address = (uint64_t __user *)vma->vm_start;

	/* mapping the page to user process */
	return remap_pfn_range(vma, vma->vm_start, pfn,
			vma->vm_end - vma->vm_start, vma->vm_page_prot);
}
785 786 787 788 789 790 791 792 793 794

/*
 * Assumes that p->event_mutex is held and of course
 * that p is not going away (current or locked).
 */
static void lookup_events_by_type_and_signal(struct kfd_process *p,
		int type, void *event_data)
{
	struct kfd_hsa_memory_exception_data *ev_data;
	struct kfd_event *ev;
795
	uint32_t id;
796 797 798 799
	bool send_signal = true;

	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;

800 801
	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
	idr_for_each_entry_continue(&p->event_idr, ev, id)
802 803 804 805 806 807 808 809 810 811 812 813
		if (ev->type == type) {
			send_signal = false;
			dev_dbg(kfd_device,
					"Event found: id %X type %d",
					ev->event_id, ev->type);
			set_event(ev);
			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
				ev->memory_exception_data = *ev_data;
		}

	/* Send SIGTERM no event of type "type" has been found*/
	if (send_signal) {
814 815 816 817 818 819 820 821
		if (send_sigterm) {
			dev_warn(kfd_device,
				"Sending SIGTERM to HSA Process with PID %d ",
					p->lead_thread->pid);
			send_sig(SIGTERM, p->lead_thread, 0);
		} else {
			dev_err(kfd_device,
				"HSA Process (PID %d) got unhandled exception",
822
				p->lead_thread->pid);
823
		}
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	}
}

void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
		unsigned long address, bool is_write_requested,
		bool is_execute_requested)
{
	struct kfd_hsa_memory_exception_data memory_exception_data;
	struct vm_area_struct *vma;

	/*
	 * Because we are called from arbitrary context (workqueue) as opposed
	 * to process context, kfd_process could attempt to exit while we are
	 * running so the lookup function returns a locked process.
	 */
	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
840
	struct mm_struct *mm;
841 842 843 844

	if (!p)
		return; /* Presumably process exited. */

845 846 847 848 849 850 851 852 853
	/* Take a safe reference to the mm_struct, which may otherwise
	 * disappear even while the kfd_process is still referenced.
	 */
	mm = get_task_mm(p->lead_thread);
	if (!mm) {
		mutex_unlock(&p->mutex);
		return; /* Process is exiting */
	}

854 855
	memset(&memory_exception_data, 0, sizeof(memory_exception_data));

856 857
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, address);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

	memory_exception_data.gpu_id = dev->id;
	memory_exception_data.va = address;
	/* Set failure reason */
	memory_exception_data.failure.NotPresent = 1;
	memory_exception_data.failure.NoExecute = 0;
	memory_exception_data.failure.ReadOnly = 0;
	if (vma) {
		if (vma->vm_start > address) {
			memory_exception_data.failure.NotPresent = 1;
			memory_exception_data.failure.NoExecute = 0;
			memory_exception_data.failure.ReadOnly = 0;
		} else {
			memory_exception_data.failure.NotPresent = 0;
			if (is_write_requested && !(vma->vm_flags & VM_WRITE))
				memory_exception_data.failure.ReadOnly = 1;
			else
				memory_exception_data.failure.ReadOnly = 0;
			if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
				memory_exception_data.failure.NoExecute = 1;
			else
				memory_exception_data.failure.NoExecute = 0;
		}
	}

883 884
	up_read(&mm->mmap_sem);
	mmput(mm);
885 886 887 888 889 890 891 892 893 894

	mutex_lock(&p->event_mutex);

	/* Lookup events by type and signal them */
	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
			&memory_exception_data);

	mutex_unlock(&p->event_mutex);
	mutex_unlock(&p->mutex);
}
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

void kfd_signal_hw_exception_event(unsigned int pasid)
{
	/*
	 * Because we are called from arbitrary context (workqueue) as opposed
	 * to process context, kfd_process could attempt to exit while we are
	 * running so the lookup function returns a locked process.
	 */
	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);

	if (!p)
		return; /* Presumably process exited. */

	mutex_lock(&p->event_mutex);

	/* Lookup events by type and signal them */
	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);

	mutex_unlock(&p->event_mutex);
	mutex_unlock(&p->mutex);
}