rdma.c 51.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * NVMe over Fabrics RDMA host code.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
22
#include <linux/blk-mq-rdma.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>

#include "nvme.h"
#include "fabrics.h"


38
#define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
39 40 41 42 43 44

#define NVME_RDMA_MAX_SEGMENTS		256

#define NVME_RDMA_MAX_INLINE_SEGMENTS	1

struct nvme_rdma_device {
45 46
	struct ib_device	*dev;
	struct ib_pd		*pd;
47 48 49 50 51 52 53 54 55 56 57 58
	struct kref		ref;
	struct list_head	entry;
};

struct nvme_rdma_qe {
	struct ib_cqe		cqe;
	void			*data;
	u64			dma;
};

struct nvme_rdma_queue;
struct nvme_rdma_request {
59
	struct nvme_request	req;
60 61
	struct ib_mr		*mr;
	struct nvme_rdma_qe	sqe;
62 63 64
	union nvme_result	result;
	__le16			status;
	refcount_t		ref;
65 66 67 68 69 70 71 72 73 74 75 76
	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
	u32			num_sge;
	int			nents;
	bool			inline_data;
	struct ib_reg_wr	reg_wr;
	struct ib_cqe		reg_cqe;
	struct nvme_rdma_queue  *queue;
	struct sg_table		sg_table;
	struct scatterlist	first_sgl[];
};

enum nvme_rdma_queue_flags {
77 78
	NVME_RDMA_Q_ALLOCATED		= 0,
	NVME_RDMA_Q_LIVE		= 1,
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
};

struct nvme_rdma_queue {
	struct nvme_rdma_qe	*rsp_ring;
	int			queue_size;
	size_t			cmnd_capsule_len;
	struct nvme_rdma_ctrl	*ctrl;
	struct nvme_rdma_device	*device;
	struct ib_cq		*ib_cq;
	struct ib_qp		*qp;

	unsigned long		flags;
	struct rdma_cm_id	*cm_id;
	int			cm_error;
	struct completion	cm_done;
};

struct nvme_rdma_ctrl {
	/* read only in the hot path */
	struct nvme_rdma_queue	*queues;

	/* other member variables */
	struct blk_mq_tag_set	tag_set;
	struct work_struct	err_work;

	struct nvme_rdma_qe	async_event_sqe;

	struct delayed_work	reconnect_work;

	struct list_head	list;

	struct blk_mq_tag_set	admin_tag_set;
	struct nvme_rdma_device	*device;

	u32			max_fr_pages;

115 116
	struct sockaddr_storage addr;
	struct sockaddr_storage src_addr;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

	struct nvme_ctrl	ctrl;
};

static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);

/*
 * Disabling this option makes small I/O goes faster, but is fundamentally
 * unsafe.  With it turned off we will have to register a global rkey that
 * allows read and write access to all physical memory.
 */
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
	 "Use memory registration even for contiguous memory regions");

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);

146 147 148
static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* XXX: really should move to a generic header sooner or later.. */
static inline void put_unaligned_le24(u32 val, u8 *p)
{
	*p++ = val;
	*p++ = val >> 8;
	*p++ = val >> 16;
}

static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
	return queue - queue->ctrl->queues;
}

static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}

static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
	kfree(qe->data);
}

static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	qe->data = kzalloc(capsule_size, GFP_KERNEL);
	if (!qe->data)
		return -ENOMEM;

	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
	if (ib_dma_mapping_error(ibdev, qe->dma)) {
		kfree(qe->data);
		return -ENOMEM;
	}

	return 0;
}

static void nvme_rdma_free_ring(struct ib_device *ibdev,
		struct nvme_rdma_qe *ring, size_t ib_queue_size,
		size_t capsule_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ib_queue_size; i++)
		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
	kfree(ring);
}

static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
		size_t ib_queue_size, size_t capsule_size,
		enum dma_data_direction dir)
{
	struct nvme_rdma_qe *ring;
	int i;

	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
	if (!ring)
		return NULL;

	for (i = 0; i < ib_queue_size; i++) {
		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
			goto out_free_ring;
	}

	return ring;

out_free_ring:
	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
	return NULL;
}

static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
226 227 228
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
}

static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
	wait_for_completion_interruptible_timeout(&queue->cm_done,
			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
	return queue->cm_error;
}

static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
	struct nvme_rdma_device *dev = queue->device;
	struct ib_qp_init_attr init_attr;
	int ret;

	memset(&init_attr, 0, sizeof(init_attr));
	init_attr.event_handler = nvme_rdma_qp_event;
	/* +1 for drain */
	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
	/* +1 for drain */
	init_attr.cap.max_recv_wr = queue->queue_size + 1;
	init_attr.cap.max_recv_sge = 1;
	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	init_attr.qp_type = IB_QPT_RC;
	init_attr.send_cq = queue->ib_cq;
	init_attr.recv_cq = queue->ib_cq;

	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);

	queue->qp = queue->cm_id->qp;
	return ret;
}

static int nvme_rdma_reinit_request(void *data, struct request *rq)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_device *dev = ctrl->device;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	int ret = 0;

270 271 272
	if (WARN_ON_ONCE(!req->mr))
		return 0;

273 274 275 276 277 278
	ib_dereg_mr(req->mr);

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
279
		req->mr = NULL;
280
		goto out;
281 282
	}

283
	req->mr->need_inval = false;
284 285 286 287 288

out:
	return ret;
}

289 290
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx)
291
{
292
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
293
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
294
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
295 296 297 298 299 300 301 302 303 304
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;

	if (req->mr)
		ib_dereg_mr(req->mr);

	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
}

305 306 307
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx,
		unsigned int numa_node)
308
{
309
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
310
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
311
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int ret;

	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (ret)
		return ret;

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
		goto out_free_qe;
	}

	req->queue = queue;

	return 0;

out_free_qe:
	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	return -ENOMEM;
}

static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];

345
	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	hctx->driver_data = queue;
	return 0;
}

static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[0];

	BUG_ON(hctx_idx != 0);

	hctx->driver_data = queue;
	return 0;
}

static void nvme_rdma_free_dev(struct kref *ref)
{
	struct nvme_rdma_device *ndev =
		container_of(ref, struct nvme_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	ib_dealloc_pd(ndev->pd);
	kfree(ndev);
}

static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
	kref_put(&dev->ref, nvme_rdma_free_dev);
}

static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
	return kref_get_unless_zero(&dev->ref);
}

static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
	struct nvme_rdma_device *ndev;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev->node_guid == cm_id->device->node_guid &&
		    nvme_rdma_dev_get(ndev))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

	ndev->dev = cm_id->device;
	kref_init(&ndev->ref);

405 406
	ndev->pd = ib_alloc_pd(ndev->dev,
		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
407 408 409 410 411 412 413
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (!(ndev->dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		dev_err(&ndev->dev->dev,
			"Memory registrations not supported.\n");
414
		goto out_free_pd;
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
433 434
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
435 436 437 438 439 440 441 442 443 444

	rdma_destroy_qp(queue->cm_id);
	ib_free_cq(queue->ib_cq);

	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);

	nvme_rdma_dev_put(dev);
}

445
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
446
{
447
	struct ib_device *ibdev;
448 449 450 451 452
	const int send_wr_factor = 3;			/* MR, SEND, INV */
	const int cq_factor = send_wr_factor + 1;	/* + RECV */
	int comp_vector, idx = nvme_rdma_queue_idx(queue);
	int ret;

453 454 455 456 457 458 459
	queue->device = nvme_rdma_find_get_device(queue->cm_id);
	if (!queue->device) {
		dev_err(queue->cm_id->device->dev.parent,
			"no client data found!\n");
		return -ECONNREFUSED;
	}
	ibdev = queue->device->dev;
460 461

	/*
462 463
	 * Spread I/O queues completion vectors according their queue index.
	 * Admin queues can always go on completion vector 0.
464
	 */
465
	comp_vector = idx == 0 ? idx : idx - 1;
466 467

	/* +1 for ib_stop_cq */
468 469 470
	queue->ib_cq = ib_alloc_cq(ibdev, queue,
				cq_factor * queue->queue_size + 1,
				comp_vector, IB_POLL_SOFTIRQ);
471 472
	if (IS_ERR(queue->ib_cq)) {
		ret = PTR_ERR(queue->ib_cq);
473
		goto out_put_dev;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	}

	ret = nvme_rdma_create_qp(queue, send_wr_factor);
	if (ret)
		goto out_destroy_ib_cq;

	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
	if (!queue->rsp_ring) {
		ret = -ENOMEM;
		goto out_destroy_qp;
	}

	return 0;

out_destroy_qp:
490
	rdma_destroy_qp(queue->cm_id);
491 492
out_destroy_ib_cq:
	ib_free_cq(queue->ib_cq);
493 494
out_put_dev:
	nvme_rdma_dev_put(queue->device);
495 496 497
	return ret;
}

498
static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
499 500 501
		int idx, size_t queue_size)
{
	struct nvme_rdma_queue *queue;
502
	struct sockaddr *src_addr = NULL;
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	int ret;

	queue = &ctrl->queues[idx];
	queue->ctrl = ctrl;
	init_completion(&queue->cm_done);

	if (idx > 0)
		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
	else
		queue->cmnd_capsule_len = sizeof(struct nvme_command);

	queue->queue_size = queue_size;

	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(queue->cm_id)) {
		dev_info(ctrl->ctrl.device,
			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
		return PTR_ERR(queue->cm_id);
	}

524
	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
525
		src_addr = (struct sockaddr *)&ctrl->src_addr;
526

527 528 529
	queue->cm_error = -ETIMEDOUT;
	ret = rdma_resolve_addr(queue->cm_id, src_addr,
			(struct sockaddr *)&ctrl->addr,
530 531 532 533 534 535 536 537 538 539
			NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

	ret = nvme_rdma_wait_for_cm(queue);
	if (ret) {
		dev_info(ctrl->ctrl.device,
540
			"rdma connection establishment failed (%d)\n", ret);
541 542 543
		goto out_destroy_cm_id;
	}

544
	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
545 546 547 548 549 550 551 552 553 554

	return 0;

out_destroy_cm_id:
	rdma_destroy_id(queue->cm_id);
	return ret;
}

static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
555 556 557
	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
		return;

558 559 560 561 562 563
	rdma_disconnect(queue->cm_id);
	ib_drain_qp(queue->qp);
}

static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
564
	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
565 566
		return;

567 568 569 570 571 572
	if (nvme_rdma_queue_idx(queue) == 0) {
		nvme_rdma_free_qe(queue->device->dev,
			&queue->ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
	}

573 574 575 576
	nvme_rdma_destroy_queue_ib(queue);
	rdma_destroy_id(queue->cm_id);
}

577
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
578
{
579 580 581 582
	int i;

	for (i = 1; i < ctrl->ctrl.queue_count; i++)
		nvme_rdma_free_queue(&ctrl->queues[i]);
583 584
}

585
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
586 587 588
{
	int i;

589
	for (i = 1; i < ctrl->ctrl.queue_count; i++)
590
		nvme_rdma_stop_queue(&ctrl->queues[i]);
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
{
	int ret;

	if (idx)
		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
	else
		ret = nvmf_connect_admin_queue(&ctrl->ctrl);

	if (!ret)
		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
	else
		dev_info(ctrl->ctrl.device,
			"failed to connect queue: %d ret=%d\n", idx, ret);
	return ret;
}

static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
611 612 613
{
	int i, ret = 0;

614
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
615 616
		ret = nvme_rdma_start_queue(ctrl, i);
		if (ret)
617
			goto out_stop_queues;
618 619
	}

620 621
	return 0;

622
out_stop_queues:
623 624
	for (i--; i >= 1; i--)
		nvme_rdma_stop_queue(&ctrl->queues[i]);
625 626 627
	return ret;
}

628
static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
629
{
630
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
631
	struct ib_device *ibdev = ctrl->device->dev;
632
	unsigned int nr_io_queues;
633 634
	int i, ret;

635
	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
636 637 638 639 640 641 642 643 644

	/*
	 * we map queues according to the device irq vectors for
	 * optimal locality so we don't need more queues than
	 * completion vectors.
	 */
	nr_io_queues = min_t(unsigned int, nr_io_queues,
				ibdev->num_comp_vectors);

645 646 647 648
	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
	if (ret)
		return ret;

649 650
	ctrl->ctrl.queue_count = nr_io_queues + 1;
	if (ctrl->ctrl.queue_count < 2)
651 652 653 654 655
		return 0;

	dev_info(ctrl->ctrl.device,
		"creating %d I/O queues.\n", nr_io_queues);

656
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
657 658 659
		ret = nvme_rdma_alloc_queue(ctrl, i,
				ctrl->ctrl.sqsize + 1);
		if (ret)
660 661 662 663 664 665
			goto out_free_queues;
	}

	return 0;

out_free_queues:
666
	for (i--; i >= 1; i--)
667
		nvme_rdma_free_queue(&ctrl->queues[i]);
668 669 670 671

	return ret;
}

672 673
static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
		struct blk_mq_tag_set *set)
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	blk_mq_free_tag_set(set);
	nvme_rdma_dev_put(ctrl->device);
}

static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
		bool admin)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
	struct blk_mq_tag_set *set;
	int ret;

	if (admin) {
		set = &ctrl->admin_tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_admin_mq_ops;
K
Keith Busch 已提交
692
		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
693 694 695 696 697 698 699
		set->reserved_tags = 2; /* connect + keep-alive */
		set->numa_node = NUMA_NO_NODE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = 1;
		set->timeout = ADMIN_TIMEOUT;
700
		set->flags = BLK_MQ_F_NO_SCHED;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	} else {
		set = &ctrl->tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_mq_ops;
		set->queue_depth = nctrl->opts->queue_size;
		set->reserved_tags = 1; /* fabric connect */
		set->numa_node = NUMA_NO_NODE;
		set->flags = BLK_MQ_F_SHOULD_MERGE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = nctrl->queue_count - 1;
		set->timeout = NVME_IO_TIMEOUT;
	}

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		goto out;

	/*
	 * We need a reference on the device as long as the tag_set is alive,
	 * as the MRs in the request structures need a valid ib_device.
	 */
	ret = nvme_rdma_dev_get(ctrl->device);
	if (!ret) {
		ret = -EINVAL;
		goto out_free_tagset;
	}

	return set;

out_free_tagset:
	blk_mq_free_tag_set(set);
out:
	return ERR_PTR(ret);
}

738 739
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool remove)
740
{
741
	nvme_rdma_stop_queue(&ctrl->queues[0]);
742 743
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.admin_q);
744
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
745
	}
746
	nvme_rdma_free_queue(&ctrl->queues[0]);
747 748
}

749 750
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool new)
751 752 753
{
	int error;

754
	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
755 756 757 758 759 760 761 762
	if (error)
		return error;

	ctrl->device = ctrl->queues[0].device;

	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
		ctrl->device->dev->attrs.max_fast_reg_page_list_len);

763 764
	if (new) {
		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
765 766
		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
			error = PTR_ERR(ctrl->ctrl.admin_tagset);
767
			goto out_free_queue;
768
		}
769

770 771 772 773 774 775
		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
		if (IS_ERR(ctrl->ctrl.admin_q)) {
			error = PTR_ERR(ctrl->ctrl.admin_q);
			goto out_free_tagset;
		}
	} else {
S
Sagi Grimberg 已提交
776
		error = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
777 778
		if (error)
			goto out_free_queue;
779 780
	}

781
	error = nvme_rdma_start_queue(ctrl, 0);
782 783 784
	if (error)
		goto out_cleanup_queue;

785
	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
			&ctrl->ctrl.cap);
	if (error) {
		dev_err(ctrl->ctrl.device,
			"prop_get NVME_REG_CAP failed\n");
		goto out_cleanup_queue;
	}

	ctrl->ctrl.sqsize =
		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);

	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
	if (error)
		goto out_cleanup_queue;

	ctrl->ctrl.max_hw_sectors =
801
		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
802 803 804 805 806 807 808 809 810 811 812 813 814 815

	error = nvme_init_identify(&ctrl->ctrl);
	if (error)
		goto out_cleanup_queue;

	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
			&ctrl->async_event_sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (error)
		goto out_cleanup_queue;

	return 0;

out_cleanup_queue:
816 817
	if (new)
		blk_cleanup_queue(ctrl->ctrl.admin_q);
818
out_free_tagset:
819
	if (new)
820
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
821 822 823 824 825
out_free_queue:
	nvme_rdma_free_queue(&ctrl->queues[0]);
	return error;
}

826 827 828 829 830 831
static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
	nvme_rdma_stop_io_queues(ctrl);
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.connect_q);
832
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
833 834 835 836 837 838 839 840
	}
	nvme_rdma_free_io_queues(ctrl);
}

static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
	int ret;

841
	ret = nvme_rdma_alloc_io_queues(ctrl);
842 843 844 845 846
	if (ret)
		return ret;

	if (new) {
		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
847 848
		if (IS_ERR(ctrl->ctrl.tagset)) {
			ret = PTR_ERR(ctrl->ctrl.tagset);
849
			goto out_free_io_queues;
850
		}
851 852 853 854 855 856 857

		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
		if (IS_ERR(ctrl->ctrl.connect_q)) {
			ret = PTR_ERR(ctrl->ctrl.connect_q);
			goto out_free_tag_set;
		}
	} else {
S
Sagi Grimberg 已提交
858
		ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
859 860 861 862 863 864 865
		if (ret)
			goto out_free_io_queues;

		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
			ctrl->ctrl.queue_count - 1);
	}

866
	ret = nvme_rdma_start_io_queues(ctrl);
867 868 869 870 871 872 873 874 875 876
	if (ret)
		goto out_cleanup_connect_q;

	return 0;

out_cleanup_connect_q:
	if (new)
		blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
	if (new)
877
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
878 879 880
out_free_io_queues:
	nvme_rdma_free_io_queues(ctrl);
	return ret;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
}

static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (list_empty(&ctrl->list))
		goto free_ctrl;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_del(&ctrl->list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	kfree(ctrl->queues);
	nvmf_free_options(nctrl->opts);
free_ctrl:
	kfree(ctrl);
}

S
Sagi Grimberg 已提交
900 901 902 903 904 905 906 907 908 909 910 911
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
{
	/* If we are resetting/deleting then do nothing */
	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
			ctrl->ctrl.state == NVME_CTRL_LIVE);
		return;
	}

	if (nvmf_should_reconnect(&ctrl->ctrl)) {
		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
			ctrl->ctrl.opts->reconnect_delay);
912
		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
S
Sagi Grimberg 已提交
913 914 915
				ctrl->ctrl.opts->reconnect_delay * HZ);
	} else {
		dev_info(ctrl->ctrl.device, "Removing controller...\n");
916
		nvme_delete_ctrl(&ctrl->ctrl);
S
Sagi Grimberg 已提交
917 918 919
	}
}

920 921 922 923 924 925 926
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_rdma_ctrl, reconnect_work);
	bool changed;
	int ret;

927
	++ctrl->ctrl.nr_reconnects;
S
Sagi Grimberg 已提交
928

929
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
930
	if (ret)
931
		goto requeue;
932

933
	if (ctrl->ctrl.queue_count > 1) {
934
		ret = nvme_rdma_configure_io_queues(ctrl, false);
935
		if (ret)
936
			goto destroy_admin;
937 938 939
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
940 941 942 943 944 945
	if (!changed) {
		/* state change failure is ok if we're in DELETING state */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
		return;
	}

946
	nvme_start_ctrl(&ctrl->ctrl);
947

948 949 950 951
	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
			ctrl->ctrl.nr_reconnects);

	ctrl->ctrl.nr_reconnects = 0;
952 953 954

	return;

955 956
destroy_admin:
	nvme_rdma_destroy_admin_queue(ctrl, false);
957
requeue:
S
Sagi Grimberg 已提交
958
	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
959
			ctrl->ctrl.nr_reconnects);
S
Sagi Grimberg 已提交
960
	nvme_rdma_reconnect_or_remove(ctrl);
961 962 963 964 965 966 967
}

static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
			struct nvme_rdma_ctrl, err_work);

968
	nvme_stop_keep_alive(&ctrl->ctrl);
969

970
	if (ctrl->ctrl.queue_count > 1) {
971 972 973
		nvme_stop_queues(&ctrl->ctrl);
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
974 975 976 977
		nvme_rdma_destroy_io_queues(ctrl, false);
	}

	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
978 979
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);
980
	nvme_rdma_destroy_admin_queue(ctrl, false);
981

982 983 984 985
	/*
	 * queues are not a live anymore, so restart the queues to fail fast
	 * new IO
	 */
986
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
987 988
	nvme_start_queues(&ctrl->ctrl);

S
Sagi Grimberg 已提交
989
	nvme_rdma_reconnect_or_remove(ctrl);
990 991 992 993 994 995 996
}

static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
		return;

997
	queue_work(nvme_wq, &ctrl->err_work);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
}

static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
		const char *op)
{
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
		dev_info(ctrl->ctrl.device,
			     "%s for CQE 0x%p failed with status %s (%d)\n",
			     op, wc->wr_cqe,
			     ib_wc_status_msg(wc->status), wc->status);
	nvme_rdma_error_recovery(ctrl);
}

static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "MEMREG");
}

static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
1022 1023 1024 1025 1026
	struct nvme_rdma_request *req =
		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
	struct request *rq = blk_mq_rq_from_pdu(req);

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1027
		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1028 1029 1030 1031 1032 1033
		return;
	}

	if (refcount_dec_and_test(&req->ref))
		nvme_end_request(rq, req->status, req->result);

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req)
{
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
1044
		.send_flags	    = IB_SEND_SIGNALED,
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		.ex.invalidate_rkey = req->mr->rkey,
	};

	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
	wr.wr_cqe = &req->reg_cqe;

	return ib_post_send(queue->qp, &wr, &bad_wr);
}

static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;

	if (!blk_rq_bytes(rq))
		return;

	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
			req->nents, rq_data_dir(rq) ==
				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

	nvme_cleanup_cmd(rq);
	sg_free_table_chained(&req->sg_table, true);
}

static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = 0;
	put_unaligned_le24(0, sg->length);
	put_unaligned_le32(0, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;

	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
	req->sge[1].lkey = queue->device->pd->local_dma_lkey;

	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;

	req->inline_data = true;
	req->num_sge++;
	return 0;
}

static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1108
	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

1120 1121 1122 1123 1124
	/*
	 * Align the MR to a 4K page size to match the ctrl page size and
	 * the block virtual boundary.
	 */
	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1125
	if (unlikely(nr < count)) {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		if (nr < 0)
			return nr;
		return -EINVAL;
	}

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_memreg_done;
	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
	req->reg_wr.wr.opcode = IB_WR_REG_MR;
	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
	req->reg_wr.wr.num_sge = 0;
	req->reg_wr.mr = req->mr;
	req->reg_wr.key = req->mr->rkey;
	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
			     IB_ACCESS_REMOTE_READ |
			     IB_ACCESS_REMOTE_WRITE;

1144
	req->mr->need_inval = true;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
			NVME_SGL_FMT_INVALIDATE;

	return 0;
}

static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1156
		struct request *rq, struct nvme_command *c)
1157 1158 1159 1160
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
1161
	int count, ret;
1162 1163 1164

	req->num_sge = 1;
	req->inline_data = false;
1165
	req->mr->need_inval = false;
1166
	refcount_set(&req->ref, 2); /* send and recv completions */
1167 1168 1169 1170 1171 1172 1173

	c->common.flags |= NVME_CMD_SGL_METABUF;

	if (!blk_rq_bytes(rq))
		return nvme_rdma_set_sg_null(c);

	req->sg_table.sgl = req->first_sgl;
1174 1175
	ret = sg_alloc_table_chained(&req->sg_table,
			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1176 1177 1178
	if (ret)
		return -ENOMEM;

1179
	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1180

1181
	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1182 1183 1184 1185 1186 1187 1188
		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	if (unlikely(count <= 0)) {
		sg_free_table_chained(&req->sg_table, true);
		return -EIO;
	}

	if (count == 1) {
1189 1190 1191
		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
		    blk_rq_payload_bytes(rq) <=
				nvme_rdma_inline_data_size(queue))
1192 1193
			return nvme_rdma_map_sg_inline(queue, req, c);

1194
		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1195 1196 1197 1198 1199 1200 1201 1202
			return nvme_rdma_map_sg_single(queue, req, c);
	}

	return nvme_rdma_map_sg_fr(queue, req, c, count);
}

static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
1203 1204 1205 1206 1207 1208 1209
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_request *req =
		container_of(qe, struct nvme_rdma_request, sqe);
	struct request *rq = blk_mq_rq_from_pdu(req);

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1210
		nvme_rdma_wr_error(cq, wc, "SEND");
1211 1212 1213 1214 1215
		return;
	}

	if (refcount_dec_and_test(&req->ref))
		nvme_end_request(rq, req->status, req->result);
1216 1217 1218 1219
}

static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1220
		struct ib_send_wr *first)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	struct ib_send_wr wr, *bad_wr;
	int ret;

	sge->addr   = qe->dma;
	sge->length = sizeof(struct nvme_command),
	sge->lkey   = queue->device->pd->local_dma_lkey;

	wr.next       = NULL;
	wr.wr_cqe     = &qe->cqe;
	wr.sg_list    = sge;
	wr.num_sge    = num_sge;
	wr.opcode     = IB_WR_SEND;
1234
	wr.send_flags = IB_SEND_SIGNALED;
1235 1236 1237 1238 1239 1240 1241

	if (first)
		first->next = &wr;
	else
		first = &wr;

	ret = ib_post_send(queue->qp, first, &bad_wr);
1242
	if (unlikely(ret)) {
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		dev_err(queue->ctrl->ctrl.device,
			     "%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe)
{
	struct ib_recv_wr wr, *bad_wr;
	struct ib_sge list;
	int ret;

	list.addr   = qe->dma;
	list.length = sizeof(struct nvme_completion);
	list.lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_recv_done;

	wr.next     = NULL;
	wr.wr_cqe   = &qe->cqe;
	wr.sg_list  = &list;
	wr.num_sge  = 1;

	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1268
	if (unlikely(ret)) {
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		dev_err(queue->ctrl->ctrl.device,
			"%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
	u32 queue_idx = nvme_rdma_queue_idx(queue);

	if (queue_idx == 0)
		return queue->ctrl->admin_tag_set.tags[queue_idx];
	return queue->ctrl->tag_set.tags[queue_idx - 1];
}

1284 1285 1286 1287 1288 1289
static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "ASYNC");
}

1290
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];
	struct ib_device *dev = queue->device->dev;
	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
	struct nvme_command *cmd = sqe->data;
	struct ib_sge sge;
	int ret;

	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);

	memset(cmd, 0, sizeof(*cmd));
	cmd->common.opcode = nvme_admin_async_event;
K
Keith Busch 已提交
1304
	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1305 1306 1307
	cmd->common.flags |= NVME_CMD_SGL_METABUF;
	nvme_rdma_set_sg_null(cmd);

1308 1309
	sqe->cqe.done = nvme_rdma_async_done;

1310 1311 1312
	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
			DMA_TO_DEVICE);

1313
	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	WARN_ON_ONCE(ret);
}

static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
{
	struct request *rq;
	struct nvme_rdma_request *req;
	int ret = 0;

	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
	if (!rq) {
		dev_err(queue->ctrl->ctrl.device,
			"tag 0x%x on QP %#x not found\n",
			cqe->command_id, queue->qp->qp_num);
		nvme_rdma_error_recovery(queue->ctrl);
		return ret;
	}
	req = blk_mq_rq_to_pdu(rq);

1334 1335
	req->status = cqe->status;
	req->result = cqe->result;
1336

1337 1338 1339 1340 1341 1342 1343
	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
			dev_err(queue->ctrl->ctrl.device,
				"Bogus remote invalidation for rkey %#x\n",
				req->mr->rkey);
			nvme_rdma_error_recovery(queue->ctrl);
		}
1344
		req->mr->need_inval = false;
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	} else if (req->mr->need_inval) {
		ret = nvme_rdma_inv_rkey(queue, req);
		if (unlikely(ret < 0)) {
			dev_err(queue->ctrl->ctrl.device,
				"Queueing INV WR for rkey %#x failed (%d)\n",
				req->mr->rkey, ret);
			nvme_rdma_error_recovery(queue->ctrl);
		}
		/* the local invalidation completion will end the request */
		return 0;
	}
1356

1357 1358 1359 1360 1361 1362
	if (refcount_dec_and_test(&req->ref)) {
		if (rq->tag == tag)
			ret = 1;
		nvme_end_request(rq, req->status, req->result);
	}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	return ret;
}

static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct ib_device *ibdev = queue->device->dev;
	struct nvme_completion *cqe = qe->data;
	const size_t len = sizeof(struct nvme_completion);
	int ret = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvme_rdma_wr_error(cq, wc, "RECV");
		return 0;
	}

	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
	/*
	 * AEN requests are special as they don't time out and can
	 * survive any kind of queue freeze and often don't respond to
	 * aborts.  We don't even bother to allocate a struct request
	 * for them but rather special case them here.
	 */
	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
K
Keith Busch 已提交
1389
			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1390 1391
		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
				&cqe->result);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	else
		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);

	nvme_rdma_post_recv(queue, qe);
	return ret;
}

static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	__nvme_rdma_recv_done(cq, wc, -1);
}

static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
	int ret, i;

	for (i = 0; i < queue->queue_size; i++) {
		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
		if (ret)
			goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
		struct rdma_cm_event *ev)
{
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	struct rdma_cm_id *cm_id = queue->cm_id;
	int status = ev->status;
	const char *rej_msg;
	const struct nvme_rdma_cm_rej *rej_data;
	u8 rej_data_len;

	rej_msg = rdma_reject_msg(cm_id, status);
	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);

	if (rej_data && rej_data_len >= sizeof(u16)) {
		u16 sts = le16_to_cpu(rej_data->sts);
1436 1437

		dev_err(queue->ctrl->ctrl.device,
1438 1439
		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1440 1441
	} else {
		dev_err(queue->ctrl->ctrl.device,
1442
			"Connect rejected: status %d (%s).\n", status, rej_msg);
1443 1444 1445 1446 1447 1448 1449 1450 1451
	}

	return -ECONNRESET;
}

static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
	int ret;

1452 1453 1454
	ret = nvme_rdma_create_queue_ib(queue);
	if (ret)
		return ret;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"rdma_resolve_route failed (%d).\n",
			queue->cm_error);
		goto out_destroy_queue;
	}

	return 0;

out_destroy_queue:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct rdma_conn_param param = { };
1475
	struct nvme_rdma_cm_req priv = { };
1476 1477 1478 1479 1480 1481
	int ret;

	param.qp_num = queue->qp->qp_num;
	param.flow_control = 1;

	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1482 1483
	/* maximum retry count */
	param.retry_count = 7;
1484 1485 1486 1487 1488 1489
	param.rnr_retry_count = 7;
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);

	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1490 1491 1492 1493 1494
	/*
	 * set the admin queue depth to the minimum size
	 * specified by the Fabrics standard.
	 */
	if (priv.qid == 0) {
1495 1496
		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1497
	} else {
1498 1499 1500 1501 1502
		/*
		 * current interpretation of the fabrics spec
		 * is at minimum you make hrqsize sqsize+1, or a
		 * 1's based representation of sqsize.
		 */
1503
		priv.hrqsize = cpu_to_le16(queue->queue_size);
1504
		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1505
	}
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	ret = rdma_connect(queue->cm_id, &param);
	if (ret) {
		dev_err(ctrl->ctrl.device,
			"rdma_connect failed (%d).\n", ret);
		goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *ev)
{
	struct nvme_rdma_queue *queue = cm_id->context;
	int cm_error = 0;

	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
		rdma_event_msg(ev->event), ev->event,
		ev->status, cm_id);

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_error = nvme_rdma_addr_resolved(queue);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_error = nvme_rdma_route_resolved(queue);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		queue->cm_error = nvme_rdma_conn_established(queue);
		/* complete cm_done regardless of success/failure */
		complete(&queue->cm_done);
		return 0;
	case RDMA_CM_EVENT_REJECTED:
1544
		nvme_rdma_destroy_queue_ib(queue);
1545 1546 1547 1548 1549
		cm_error = nvme_rdma_conn_rejected(queue, ev);
		break;
	case RDMA_CM_EVENT_ROUTE_ERROR:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
1550 1551
		nvme_rdma_destroy_queue_ib(queue);
	case RDMA_CM_EVENT_ADDR_ERROR:
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		dev_dbg(queue->ctrl->ctrl.device,
			"CM error event %d\n", ev->event);
		cm_error = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
		dev_dbg(queue->ctrl->ctrl.device,
			"disconnect received - connection closed\n");
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1564 1565
		/* device removal is handled via the ib_client API */
		break;
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	default:
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected RDMA CM event (%d)\n", ev->event);
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	}

	if (cm_error) {
		queue->cm_error = cm_error;
		complete(&queue->cm_done);
	}

	return 0;
}

static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

1586 1587 1588 1589
	dev_warn(req->queue->ctrl->ctrl.device,
		 "I/O %d QID %d timeout, reset controller\n",
		 rq->tag, nvme_rdma_queue_idx(req->queue));

1590 1591 1592 1593
	/* queue error recovery */
	nvme_rdma_error_recovery(req->queue->ctrl);

	/* fail with DNR on cmd timeout */
1594
	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1595 1596 1597 1598

	return BLK_EH_HANDLED;
}

1599 1600 1601
/*
 * We cannot accept any other command until the Connect command has completed.
 */
C
Christoph Hellwig 已提交
1602
static inline blk_status_t
1603 1604 1605 1606 1607
nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
{
	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
		return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
	return BLK_STS_OK;
1608 1609
}

1610
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1611 1612 1613 1614 1615 1616 1617 1618 1619
		const struct blk_mq_queue_data *bd)
{
	struct nvme_ns *ns = hctx->queue->queuedata;
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct request *rq = bd->rq;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_qe *sqe = &req->sqe;
	struct nvme_command *c = sqe->data;
	struct ib_device *dev;
1620 1621
	blk_status_t ret;
	int err;
1622 1623 1624

	WARN_ON_ONCE(rq->tag < 0);

1625
	ret = nvme_rdma_is_ready(queue, rq);
1626
	if (unlikely(ret))
C
Christoph Hellwig 已提交
1627
		return ret;
1628

1629 1630 1631 1632 1633
	dev = queue->device->dev;
	ib_dma_sync_single_for_cpu(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

	ret = nvme_setup_cmd(ns, rq, c);
1634
	if (ret)
1635 1636 1637 1638
		return ret;

	blk_mq_start_request(rq);

1639
	err = nvme_rdma_map_data(queue, rq, c);
1640
	if (unlikely(err < 0)) {
1641
		dev_err(queue->ctrl->ctrl.device,
1642
			     "Failed to map data (%d)\n", err);
1643 1644 1645 1646
		nvme_cleanup_cmd(rq);
		goto err;
	}

1647 1648
	sqe->cqe.done = nvme_rdma_send_done;

1649 1650 1651
	ib_dma_sync_single_for_device(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

1652
	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1653
			req->mr->need_inval ? &req->reg_wr.wr : NULL);
1654
	if (unlikely(err)) {
1655 1656 1657 1658
		nvme_rdma_unmap_data(queue, rq);
		goto err;
	}

1659
	return BLK_STS_OK;
1660
err:
1661 1662 1663
	if (err == -ENOMEM || err == -EAGAIN)
		return BLK_STS_RESOURCE;
	return BLK_STS_IOERR;
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
}

static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct ib_cq *cq = queue->ib_cq;
	struct ib_wc wc;
	int found = 0;

	while (ib_poll_cq(cq, 1, &wc) > 0) {
		struct ib_cqe *cqe = wc.wr_cqe;

		if (cqe) {
			if (cqe->done == nvme_rdma_recv_done)
				found |= __nvme_rdma_recv_done(cq, &wc, tag);
			else
				cqe->done(cq, &wc);
		}
	}

	return found;
}

static void nvme_rdma_complete_rq(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

1691 1692
	nvme_rdma_unmap_data(req->queue, rq);
	nvme_complete_rq(rq);
1693 1694
}

1695 1696 1697 1698 1699 1700 1701
static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
{
	struct nvme_rdma_ctrl *ctrl = set->driver_data;

	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
}

1702
static const struct blk_mq_ops nvme_rdma_mq_ops = {
1703 1704 1705 1706 1707 1708 1709
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.init_hctx	= nvme_rdma_init_hctx,
	.poll		= nvme_rdma_poll,
	.timeout	= nvme_rdma_timeout,
1710
	.map_queues	= nvme_rdma_map_queues,
1711 1712
};

1713
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1714 1715
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
1716 1717
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
1718 1719 1720 1721
	.init_hctx	= nvme_rdma_init_admin_hctx,
	.timeout	= nvme_rdma_timeout,
};

1722
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1723 1724 1725 1726
{
	cancel_work_sync(&ctrl->err_work);
	cancel_delayed_work_sync(&ctrl->reconnect_work);

1727
	if (ctrl->ctrl.queue_count > 1) {
1728 1729 1730
		nvme_stop_queues(&ctrl->ctrl);
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
1731
		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1732 1733
	}

1734
	if (shutdown)
1735
		nvme_shutdown_ctrl(&ctrl->ctrl);
1736 1737
	else
		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1738

1739
	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1740 1741
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);
1742
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1743
	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1744 1745
}

1746
static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1747
{
1748
	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1749 1750 1751 1752
}

static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
1753 1754
	struct nvme_rdma_ctrl *ctrl =
		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1755 1756 1757
	int ret;
	bool changed;

1758
	nvme_stop_ctrl(&ctrl->ctrl);
1759
	nvme_rdma_shutdown_ctrl(ctrl, false);
1760

1761
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1762 1763
	if (ret)
		goto out_fail;
1764

1765
	if (ctrl->ctrl.queue_count > 1) {
1766
		ret = nvme_rdma_configure_io_queues(ctrl, false);
1767
		if (ret)
1768
			goto out_fail;
1769 1770 1771
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1772 1773 1774 1775 1776
	if (!changed) {
		/* state change failure is ok if we're in DELETING state */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
		return;
	}
1777

1778
	nvme_start_ctrl(&ctrl->ctrl);
1779 1780 1781

	return;

1782
out_fail:
1783
	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1784 1785 1786 1787
	nvme_remove_namespaces(&ctrl->ctrl);
	nvme_rdma_shutdown_ctrl(ctrl, true);
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
1788 1789 1790 1791 1792
}

static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
	.name			= "rdma",
	.module			= THIS_MODULE,
1793
	.flags			= NVME_F_FABRICS,
1794 1795 1796 1797 1798
	.reg_read32		= nvmf_reg_read32,
	.reg_read64		= nvmf_reg_read64,
	.reg_write32		= nvmf_reg_write32,
	.free_ctrl		= nvme_rdma_free_ctrl,
	.submit_async_event	= nvme_rdma_submit_async_event,
1799
	.delete_ctrl		= nvme_rdma_delete_ctrl,
1800
	.get_address		= nvmf_get_address,
S
Sagi Grimberg 已提交
1801
	.reinit_request		= nvme_rdma_reinit_request,
1802 1803
};

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static inline bool
__nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
	struct nvmf_ctrl_options *opts)
{
	char *stdport = __stringify(NVME_RDMA_IP_PORT);


	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
		return false;

	if (opts->mask & NVMF_OPT_TRSVCID &&
	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
			return false;
	} else if (opts->mask & NVMF_OPT_TRSVCID) {
		if (strcmp(opts->trsvcid, stdport))
			return false;
	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
			return false;
	}
	/* else, it's a match as both have stdport. Fall to next checks */

	/*
	 * checking the local address is rough. In most cases, one
	 * is not specified and the host port is selected by the stack.
	 *
	 * Assume no match if:
	 *  local address is specified and address is not the same
	 *  local address is not specified but remote is, or vice versa
	 *    (admin using specific host_traddr when it matters).
	 */
	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
			return false;
	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
		return false;
	/*
	 * if neither controller had an host port specified, assume it's
	 * a match as everything else matched.
	 */

	return true;
}

/*
 * Fails a connection request if it matches an existing controller
 * (association) with the same tuple:
 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
 *
 * if local address is not specified in the request, it will match an
 * existing controller with all the other parameters the same and no
 * local port address specified as well.
 *
 * The ports don't need to be compared as they are intrinsically
 * already matched by the port pointers supplied.
 */
static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	bool found = false;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		found = __nvme_rdma_options_match(ctrl, opts);
		if (found)
			break;
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	return found;
}

1881 1882 1883 1884 1885 1886
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
		struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	int ret;
	bool changed;
1887
	char *port;
1888 1889 1890 1891 1892 1893 1894

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return ERR_PTR(-ENOMEM);
	ctrl->ctrl.opts = opts;
	INIT_LIST_HEAD(&ctrl->list);

1895 1896 1897 1898 1899 1900 1901
	if (opts->mask & NVMF_OPT_TRSVCID)
		port = opts->trsvcid;
	else
		port = __stringify(NVME_RDMA_IP_PORT);

	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->traddr, port, &ctrl->addr);
1902
	if (ret) {
1903
		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1904 1905 1906
		goto out_free_ctrl;
	}

1907
	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1908 1909
		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->host_traddr, NULL, &ctrl->src_addr);
1910
		if (ret) {
1911
			pr_err("malformed src address passed: %s\n",
1912 1913 1914 1915 1916
			       opts->host_traddr);
			goto out_free_ctrl;
		}
	}

1917 1918 1919 1920 1921
	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
		ret = -EALREADY;
		goto out_free_ctrl;
	}

1922 1923 1924 1925 1926 1927 1928 1929
	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
				0 /* no quirks, we're perfect! */);
	if (ret)
		goto out_free_ctrl;

	INIT_DELAYED_WORK(&ctrl->reconnect_work,
			nvme_rdma_reconnect_ctrl_work);
	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1930
	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1931

1932
	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1933
	ctrl->ctrl.sqsize = opts->queue_size - 1;
1934 1935 1936
	ctrl->ctrl.kato = opts->kato;

	ret = -ENOMEM;
1937
	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1938 1939 1940 1941
				GFP_KERNEL);
	if (!ctrl->queues)
		goto out_uninit_ctrl;

1942
	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1943 1944 1945 1946 1947 1948
	if (ret)
		goto out_kfree_queues;

	/* sanity check icdoff */
	if (ctrl->ctrl.icdoff) {
		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1949
		ret = -EINVAL;
1950 1951 1952 1953 1954 1955
		goto out_remove_admin_queue;
	}

	/* sanity check keyed sgls */
	if (!(ctrl->ctrl.sgls & (1 << 20))) {
		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1956
		ret = -EINVAL;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		goto out_remove_admin_queue;
	}

	if (opts->queue_size > ctrl->ctrl.maxcmd) {
		/* warn if maxcmd is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.maxcmd);
		opts->queue_size = ctrl->ctrl.maxcmd;
	}

1968 1969 1970 1971 1972 1973 1974 1975
	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
		/* warn if sqsize is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl sqsize %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.sqsize + 1);
		opts->queue_size = ctrl->ctrl.sqsize + 1;
	}

1976
	if (opts->nr_io_queues) {
1977
		ret = nvme_rdma_configure_io_queues(ctrl, true);
1978 1979 1980 1981 1982 1983 1984
		if (ret)
			goto out_remove_admin_queue;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

1985
	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1986 1987
		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);

1988
	nvme_get_ctrl(&ctrl->ctrl);
1989 1990 1991 1992 1993

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

1994
	nvme_start_ctrl(&ctrl->ctrl);
1995 1996 1997 1998

	return &ctrl->ctrl;

out_remove_admin_queue:
1999
	nvme_rdma_destroy_admin_queue(ctrl, true);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
out_kfree_queues:
	kfree(ctrl->queues);
out_uninit_ctrl:
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
	if (ret > 0)
		ret = -EIO;
	return ERR_PTR(ret);
out_free_ctrl:
	kfree(ctrl);
	return ERR_PTR(ret);
}

static struct nvmf_transport_ops nvme_rdma_transport = {
	.name		= "rdma",
	.required_opts	= NVMF_OPT_TRADDR,
2016
	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
S
Sagi Grimberg 已提交
2017
			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2018 2019 2020
	.create_ctrl	= nvme_rdma_create_ctrl,
};

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
	struct nvme_rdma_ctrl *ctrl;

	/* Delete all controllers using this device */
	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		if (ctrl->device->dev != ib_device)
			continue;
		dev_info(ctrl->ctrl.device,
			"Removing ctrl: NQN \"%s\", addr %pISp\n",
			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2033
		nvme_delete_ctrl(&ctrl->ctrl);
2034 2035 2036
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

2037
	flush_workqueue(nvme_wq);
2038 2039 2040 2041 2042 2043 2044
}

static struct ib_client nvme_rdma_ib_client = {
	.name   = "nvme_rdma",
	.remove = nvme_rdma_remove_one
};

2045 2046
static int __init nvme_rdma_init_module(void)
{
2047 2048 2049
	int ret;

	ret = ib_register_client(&nvme_rdma_ib_client);
2050
	if (ret)
2051
		return ret;
2052 2053 2054 2055

	ret = nvmf_register_transport(&nvme_rdma_transport);
	if (ret)
		goto err_unreg_client;
2056

2057
	return 0;
2058

2059 2060 2061
err_unreg_client:
	ib_unregister_client(&nvme_rdma_ib_client);
	return ret;
2062 2063 2064 2065 2066
}

static void __exit nvme_rdma_cleanup_module(void)
{
	nvmf_unregister_transport(&nvme_rdma_transport);
2067
	ib_unregister_client(&nvme_rdma_ib_client);
2068 2069 2070 2071 2072 2073
}

module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);

MODULE_LICENSE("GPL v2");