usb.c 46.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * drivers/usb/usb.c
 *
 * (C) Copyright Linus Torvalds 1999
 * (C) Copyright Johannes Erdfelt 1999-2001
 * (C) Copyright Andreas Gal 1999
 * (C) Copyright Gregory P. Smith 1999
 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
 * (C) Copyright Randy Dunlap 2000
 * (C) Copyright David Brownell 2000-2004
 * (C) Copyright Yggdrasil Computing, Inc. 2000
 *     (usb_device_id matching changes by Adam J. Richter)
 * (C) Copyright Greg Kroah-Hartman 2002-2003
 *
 * NOTE! This is not actually a driver at all, rather this is
 * just a collection of helper routines that implement the
 * generic USB things that the real drivers can use..
 *
 * Think of this as a "USB library" rather than anything else.
 * It should be considered a slave, with no callbacks. Callbacks
 * are evil.
 */

#include <linux/config.h>

#ifdef CONFIG_USB_DEBUG
	#define DEBUG
#else
	#undef DEBUG
#endif

#include <linux/module.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>  /* for in_interrupt() */
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/smp_lock.h>
#include <linux/rwsem.h>
#include <linux/usb.h>

#include <asm/io.h>
#include <asm/scatterlist.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>

#include "hcd.h"
#include "usb.h"


const char *usbcore_name = "usbcore";

static int nousb;	/* Disable USB when built into kernel image */
			/* Not honored on modular build */

static DECLARE_RWSEM(usb_all_devices_rwsem);


static int generic_probe (struct device *dev)
{
	return 0;
}
static int generic_remove (struct device *dev)
{
	return 0;
}

static struct device_driver usb_generic_driver = {
	.owner = THIS_MODULE,
	.name =	"usb",
	.bus = &usb_bus_type,
	.probe = generic_probe,
	.remove = generic_remove,
};

static int usb_generic_driver_data;

/* called from driver core with usb_bus_type.subsys writelock */
static int usb_probe_interface(struct device *dev)
{
	struct usb_interface * intf = to_usb_interface(dev);
	struct usb_driver * driver = to_usb_driver(dev->driver);
	const struct usb_device_id *id;
	int error = -ENODEV;

	dev_dbg(dev, "%s\n", __FUNCTION__);

	if (!driver->probe)
		return error;
	/* FIXME we'd much prefer to just resume it ... */
	if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;

	id = usb_match_id (intf, driver->id_table);
	if (id) {
		dev_dbg (dev, "%s - got id\n", __FUNCTION__);
		intf->condition = USB_INTERFACE_BINDING;
		error = driver->probe (intf, id);
		intf->condition = error ? USB_INTERFACE_UNBOUND :
				USB_INTERFACE_BOUND;
	}

	return error;
}

/* called from driver core with usb_bus_type.subsys writelock */
static int usb_unbind_interface(struct device *dev)
{
	struct usb_interface *intf = to_usb_interface(dev);
	struct usb_driver *driver = to_usb_driver(intf->dev.driver);

	intf->condition = USB_INTERFACE_UNBINDING;

	/* release all urbs for this interface */
	usb_disable_interface(interface_to_usbdev(intf), intf);

	if (driver && driver->disconnect)
		driver->disconnect(intf);

	/* reset other interface state */
	usb_set_interface(interface_to_usbdev(intf),
			intf->altsetting[0].desc.bInterfaceNumber,
			0);
	usb_set_intfdata(intf, NULL);
	intf->condition = USB_INTERFACE_UNBOUND;

	return 0;
}

/**
 * usb_register - register a USB driver
 * @new_driver: USB operations for the driver
 *
 * Registers a USB driver with the USB core.  The list of unattached
 * interfaces will be rescanned whenever a new driver is added, allowing
 * the new driver to attach to any recognized devices.
 * Returns a negative error code on failure and 0 on success.
 * 
 * NOTE: if you want your driver to use the USB major number, you must call
 * usb_register_dev() to enable that functionality.  This function no longer
 * takes care of that.
 */
int usb_register(struct usb_driver *new_driver)
{
	int retval = 0;

	if (nousb)
		return -ENODEV;

	new_driver->driver.name = (char *)new_driver->name;
	new_driver->driver.bus = &usb_bus_type;
	new_driver->driver.probe = usb_probe_interface;
	new_driver->driver.remove = usb_unbind_interface;
	new_driver->driver.owner = new_driver->owner;

	usb_lock_all_devices();
	retval = driver_register(&new_driver->driver);
	usb_unlock_all_devices();

	if (!retval) {
		pr_info("%s: registered new driver %s\n",
			usbcore_name, new_driver->name);
		usbfs_update_special();
	} else {
		printk(KERN_ERR "%s: error %d registering driver %s\n",
			usbcore_name, retval, new_driver->name);
	}

	return retval;
}

/**
 * usb_deregister - unregister a USB driver
 * @driver: USB operations of the driver to unregister
 * Context: must be able to sleep
 *
 * Unlinks the specified driver from the internal USB driver list.
 * 
 * NOTE: If you called usb_register_dev(), you still need to call
 * usb_deregister_dev() to clean up your driver's allocated minor numbers,
 * this * call will no longer do it for you.
 */
void usb_deregister(struct usb_driver *driver)
{
	pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);

	usb_lock_all_devices();
	driver_unregister (&driver->driver);
	usb_unlock_all_devices();

	usbfs_update_special();
}

/**
 * usb_ifnum_to_if - get the interface object with a given interface number
 * @dev: the device whose current configuration is considered
 * @ifnum: the desired interface
 *
 * This walks the device descriptor for the currently active configuration
 * and returns a pointer to the interface with that particular interface
 * number, or null.
 *
 * Note that configuration descriptors are not required to assign interface
 * numbers sequentially, so that it would be incorrect to assume that
 * the first interface in that descriptor corresponds to interface zero.
 * This routine helps device drivers avoid such mistakes.
 * However, you should make sure that you do the right thing with any
 * alternate settings available for this interfaces.
 *
 * Don't call this function unless you are bound to one of the interfaces
 * on this device or you have locked the device!
 */
struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
{
	struct usb_host_config *config = dev->actconfig;
	int i;

	if (!config)
		return NULL;
	for (i = 0; i < config->desc.bNumInterfaces; i++)
		if (config->interface[i]->altsetting[0]
				.desc.bInterfaceNumber == ifnum)
			return config->interface[i];

	return NULL;
}

/**
 * usb_altnum_to_altsetting - get the altsetting structure with a given
 *	alternate setting number.
 * @intf: the interface containing the altsetting in question
 * @altnum: the desired alternate setting number
 *
 * This searches the altsetting array of the specified interface for
 * an entry with the correct bAlternateSetting value and returns a pointer
 * to that entry, or null.
 *
 * Note that altsettings need not be stored sequentially by number, so
 * it would be incorrect to assume that the first altsetting entry in
 * the array corresponds to altsetting zero.  This routine helps device
 * drivers avoid such mistakes.
 *
 * Don't call this function unless you are bound to the intf interface
 * or you have locked the device!
 */
struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
		unsigned int altnum)
{
	int i;

	for (i = 0; i < intf->num_altsetting; i++) {
		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
			return &intf->altsetting[i];
	}
	return NULL;
}

/**
 * usb_driver_claim_interface - bind a driver to an interface
 * @driver: the driver to be bound
 * @iface: the interface to which it will be bound; must be in the
 *	usb device's active configuration
 * @priv: driver data associated with that interface
 *
 * This is used by usb device drivers that need to claim more than one
 * interface on a device when probing (audio and acm are current examples).
 * No device driver should directly modify internal usb_interface or
 * usb_device structure members.
 *
 * Few drivers should need to use this routine, since the most natural
 * way to bind to an interface is to return the private data from
 * the driver's probe() method.
 *
 * Callers must own the device lock and the driver model's usb_bus_type.subsys
 * writelock.  So driver probe() entries don't need extra locking,
 * but other call contexts may need to explicitly claim those locks.
 */
int usb_driver_claim_interface(struct usb_driver *driver,
				struct usb_interface *iface, void* priv)
{
	struct device *dev = &iface->dev;

	if (dev->driver)
		return -EBUSY;

	dev->driver = &driver->driver;
	usb_set_intfdata(iface, priv);
	iface->condition = USB_INTERFACE_BOUND;

	/* if interface was already added, bind now; else let
	 * the future device_add() bind it, bypassing probe()
	 */
296
	if (klist_node_attached(&dev->knode_bus))
L
Linus Torvalds 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		device_bind_driver(dev);

	return 0;
}

/**
 * usb_driver_release_interface - unbind a driver from an interface
 * @driver: the driver to be unbound
 * @iface: the interface from which it will be unbound
 *
 * This can be used by drivers to release an interface without waiting
 * for their disconnect() methods to be called.  In typical cases this
 * also causes the driver disconnect() method to be called.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 * Callers must own the device lock and the driver model's usb_bus_type.subsys
 * writelock.  So driver disconnect() entries don't need extra locking,
 * but other call contexts may need to explicitly claim those locks.
 */
void usb_driver_release_interface(struct usb_driver *driver,
					struct usb_interface *iface)
{
	struct device *dev = &iface->dev;

	/* this should never happen, don't release something that's not ours */
	if (!dev->driver || dev->driver != &driver->driver)
		return;

325 326 327 328 329 330 331
	/* don't release from within disconnect() */
	if (iface->condition != USB_INTERFACE_BOUND)
		return;

	/* release only after device_add() */
	if (klist_node_attached(&dev->knode_bus)) {
		iface->condition = USB_INTERFACE_UNBINDING;
L
Linus Torvalds 已提交
332
		device_release_driver(dev);
333
	}
L
Linus Torvalds 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

	dev->driver = NULL;
	usb_set_intfdata(iface, NULL);
	iface->condition = USB_INTERFACE_UNBOUND;
}

/**
 * usb_match_id - find first usb_device_id matching device or interface
 * @interface: the interface of interest
 * @id: array of usb_device_id structures, terminated by zero entry
 *
 * usb_match_id searches an array of usb_device_id's and returns
 * the first one matching the device or interface, or null.
 * This is used when binding (or rebinding) a driver to an interface.
 * Most USB device drivers will use this indirectly, through the usb core,
 * but some layered driver frameworks use it directly.
 * These device tables are exported with MODULE_DEVICE_TABLE, through
 * modutils and "modules.usbmap", to support the driver loading
 * functionality of USB hotplugging.
 *
 * What Matches:
 *
 * The "match_flags" element in a usb_device_id controls which
 * members are used.  If the corresponding bit is set, the
 * value in the device_id must match its corresponding member
 * in the device or interface descriptor, or else the device_id
 * does not match.
 *
 * "driver_info" is normally used only by device drivers,
 * but you can create a wildcard "matches anything" usb_device_id
 * as a driver's "modules.usbmap" entry if you provide an id with
 * only a nonzero "driver_info" field.  If you do this, the USB device
 * driver's probe() routine should use additional intelligence to
 * decide whether to bind to the specified interface.
 * 
 * What Makes Good usb_device_id Tables:
 *
 * The match algorithm is very simple, so that intelligence in
 * driver selection must come from smart driver id records.
 * Unless you have good reasons to use another selection policy,
 * provide match elements only in related groups, and order match
 * specifiers from specific to general.  Use the macros provided
 * for that purpose if you can.
 *
 * The most specific match specifiers use device descriptor
 * data.  These are commonly used with product-specific matches;
 * the USB_DEVICE macro lets you provide vendor and product IDs,
 * and you can also match against ranges of product revisions.
 * These are widely used for devices with application or vendor
 * specific bDeviceClass values.
 *
 * Matches based on device class/subclass/protocol specifications
 * are slightly more general; use the USB_DEVICE_INFO macro, or
 * its siblings.  These are used with single-function devices
 * where bDeviceClass doesn't specify that each interface has
 * its own class. 
 *
 * Matches based on interface class/subclass/protocol are the
 * most general; they let drivers bind to any interface on a
 * multiple-function device.  Use the USB_INTERFACE_INFO
 * macro, or its siblings, to match class-per-interface style 
 * devices (as recorded in bDeviceClass).
 *  
 * Within those groups, remember that not all combinations are
 * meaningful.  For example, don't give a product version range
 * without vendor and product IDs; or specify a protocol without
 * its associated class and subclass.
 */   
const struct usb_device_id *
usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
{
	struct usb_host_interface *intf;
	struct usb_device *dev;

	/* proc_connectinfo in devio.c may call us with id == NULL. */
	if (id == NULL)
		return NULL;

	intf = interface->cur_altsetting;
	dev = interface_to_usbdev(interface);

	/* It is important to check that id->driver_info is nonzero,
	   since an entry that is all zeroes except for a nonzero
	   id->driver_info is the way to create an entry that
	   indicates that the driver want to examine every
	   device and interface. */
	for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
	       id->driver_info; id++) {

		if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
		    id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
		    id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
			continue;

		/* No need to test id->bcdDevice_lo != 0, since 0 is never
		   greater than any unsigned number. */
		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
		    (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
		    (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
		    (id->bDeviceClass != dev->descriptor.bDeviceClass))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
		    (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
		    (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
		    (id->bInterfaceClass != intf->desc.bInterfaceClass))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
		    (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
			continue;

		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
		    (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
			continue;

		return id;
	}

	return NULL;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

static int __find_interface(struct device * dev, void * data)
{
	struct usb_interface ** ret = (struct usb_interface **)data;
	struct usb_interface * intf = *ret;
	int *minor = (int *)data;

	/* can't look at usb devices, only interfaces */
	if (dev->driver == &usb_generic_driver)
		return 0;

	intf = to_usb_interface(dev);
	if (intf->minor != -1 && intf->minor == *minor) {
		*ret = intf;
		return 1;
	}
	return 0;
}

L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498 499 500
/**
 * usb_find_interface - find usb_interface pointer for driver and device
 * @drv: the driver whose current configuration is considered
 * @minor: the minor number of the desired device
 *
 * This walks the driver device list and returns a pointer to the interface 
 * with the matching minor.  Note, this only works for devices that share the
 * USB major number.
 */
struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
{
501
	struct usb_interface *intf = (struct usb_interface *)(long)minor;
502
	int ret;
L
Linus Torvalds 已提交
503

504
	ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface);
L
Linus Torvalds 已提交
505

506
	return ret ? intf : NULL;
L
Linus Torvalds 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
}

static int usb_device_match (struct device *dev, struct device_driver *drv)
{
	struct usb_interface *intf;
	struct usb_driver *usb_drv;
	const struct usb_device_id *id;

	/* check for generic driver, which we don't match any device with */
	if (drv == &usb_generic_driver)
		return 0;

	intf = to_usb_interface(dev);
	usb_drv = to_usb_driver(drv);
	
	id = usb_match_id (intf, usb_drv->id_table);
	if (id)
		return 1;

	return 0;
}


#ifdef	CONFIG_HOTPLUG

/*
 * USB hotplugging invokes what /proc/sys/kernel/hotplug says
 * (normally /sbin/hotplug) when USB devices get added or removed.
 *
 * This invokes a user mode policy agent, typically helping to load driver
 * or other modules, configure the device, and more.  Drivers can provide
 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
 *
 * We're called either from khubd (the typical case) or from root hub
 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
 * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
 * device (and this configuration!) are still present.
 */
static int usb_hotplug (struct device *dev, char **envp, int num_envp,
			char *buffer, int buffer_size)
{
	struct usb_interface *intf;
	struct usb_device *usb_dev;
	int i = 0;
	int length = 0;

	if (!dev)
		return -ENODEV;

	/* driver is often null here; dev_dbg() would oops */
	pr_debug ("usb %s: hotplug\n", dev->bus_id);

	/* Must check driver_data here, as on remove driver is always NULL */
	if ((dev->driver == &usb_generic_driver) || 
	    (dev->driver_data == &usb_generic_driver_data))
		return 0;

	intf = to_usb_interface(dev);
	usb_dev = interface_to_usbdev (intf);
	
	if (usb_dev->devnum < 0) {
		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
		return -ENODEV;
	}
	if (!usb_dev->bus) {
		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
		return -ENODEV;
	}

#ifdef	CONFIG_USB_DEVICEFS
	/* If this is available, userspace programs can directly read
	 * all the device descriptors we don't tell them about.  Or
	 * even act as usermode drivers.
	 *
	 * FIXME reduce hardwired intelligence here
	 */
	if (add_hotplug_env_var(envp, num_envp, &i,
				buffer, buffer_size, &length,
				"DEVICE=/proc/bus/usb/%03d/%03d",
				usb_dev->bus->busnum, usb_dev->devnum))
		return -ENOMEM;
#endif

	/* per-device configurations are common */
	if (add_hotplug_env_var(envp, num_envp, &i,
				buffer, buffer_size, &length,
				"PRODUCT=%x/%x/%x",
				le16_to_cpu(usb_dev->descriptor.idVendor),
				le16_to_cpu(usb_dev->descriptor.idProduct),
				le16_to_cpu(usb_dev->descriptor.bcdDevice)))
		return -ENOMEM;

	/* class-based driver binding models */
	if (add_hotplug_env_var(envp, num_envp, &i,
				buffer, buffer_size, &length,
				"TYPE=%d/%d/%d",
				usb_dev->descriptor.bDeviceClass,
				usb_dev->descriptor.bDeviceSubClass,
				usb_dev->descriptor.bDeviceProtocol))
		return -ENOMEM;

	if (usb_dev->descriptor.bDeviceClass == 0) {
		struct usb_host_interface *alt = intf->cur_altsetting;

		/* 2.4 only exposed interface zero.  in 2.5, hotplug
		 * agents are called for all interfaces, and can use
		 * $DEVPATH/bInterfaceNumber if necessary.
		 */
		if (add_hotplug_env_var(envp, num_envp, &i,
					buffer, buffer_size, &length,
					"INTERFACE=%d/%d/%d",
					alt->desc.bInterfaceClass,
					alt->desc.bInterfaceSubClass,
					alt->desc.bInterfaceProtocol))
			return -ENOMEM;

		if (add_hotplug_env_var(envp, num_envp, &i,
					buffer, buffer_size, &length,
625
					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
L
Linus Torvalds 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638
					le16_to_cpu(usb_dev->descriptor.idVendor),
					le16_to_cpu(usb_dev->descriptor.idProduct),
					le16_to_cpu(usb_dev->descriptor.bcdDevice),
					usb_dev->descriptor.bDeviceClass,
					usb_dev->descriptor.bDeviceSubClass,
					usb_dev->descriptor.bDeviceProtocol,
					alt->desc.bInterfaceClass,
					alt->desc.bInterfaceSubClass,
					alt->desc.bInterfaceProtocol))
			return -ENOMEM;
 	} else {
		if (add_hotplug_env_var(envp, num_envp, &i,
					buffer, buffer_size, &length,
639
					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
					le16_to_cpu(usb_dev->descriptor.idVendor),
					le16_to_cpu(usb_dev->descriptor.idProduct),
					le16_to_cpu(usb_dev->descriptor.bcdDevice),
					usb_dev->descriptor.bDeviceClass,
					usb_dev->descriptor.bDeviceSubClass,
					usb_dev->descriptor.bDeviceProtocol))
			return -ENOMEM;
	}

	envp[i] = NULL;

	return 0;
}

#else

static int usb_hotplug (struct device *dev, char **envp,
			int num_envp, char *buffer, int buffer_size)
{
	return -ENODEV;
}

#endif	/* CONFIG_HOTPLUG */

/**
 * usb_release_dev - free a usb device structure when all users of it are finished.
 * @dev: device that's been disconnected
 *
 * Will be called only by the device core when all users of this usb device are
 * done.
 */
static void usb_release_dev(struct device *dev)
{
	struct usb_device *udev;

	udev = to_usb_device(dev);

	usb_destroy_configuration(udev);
	usb_bus_put(udev->bus);
	kfree(udev->product);
	kfree(udev->manufacturer);
	kfree(udev->serial);
	kfree(udev);
}

/**
 * usb_alloc_dev - usb device constructor (usbcore-internal)
 * @parent: hub to which device is connected; null to allocate a root hub
 * @bus: bus used to access the device
 * @port1: one-based index of port; ignored for root hubs
 * Context: !in_interrupt ()
 *
 * Only hub drivers (including virtual root hub drivers for host
 * controllers) should ever call this.
 *
 * This call may not be used in a non-sleeping context.
 */
struct usb_device *
usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
{
	struct usb_device *dev;

	dev = kmalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	memset(dev, 0, sizeof(*dev));

	bus = usb_bus_get(bus);
	if (!bus) {
		kfree(dev);
		return NULL;
	}

	device_initialize(&dev->dev);
	dev->dev.bus = &usb_bus_type;
	dev->dev.dma_mask = bus->controller->dma_mask;
	dev->dev.driver_data = &usb_generic_driver_data;
	dev->dev.driver = &usb_generic_driver;
	dev->dev.release = usb_release_dev;
	dev->state = USB_STATE_ATTACHED;

	INIT_LIST_HEAD(&dev->ep0.urb_list);
	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
	/* ep0 maxpacket comes later, from device descriptor */
	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;

	/* Save readable and stable topology id, distinguishing devices
	 * by location for diagnostics, tools, driver model, etc.  The
	 * string is a path along hub ports, from the root.  Each device's
	 * dev->devpath will be stable until USB is re-cabled, and hubs
	 * are often labeled with these port numbers.  The bus_id isn't
	 * as stable:  bus->busnum changes easily from modprobe order,
	 * cardbus or pci hotplugging, and so on.
	 */
	if (unlikely (!parent)) {
		dev->devpath [0] = '0';

		dev->dev.parent = bus->controller;
		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
	} else {
		/* match any labeling on the hubs; it's one-based */
		if (parent->devpath [0] == '0')
			snprintf (dev->devpath, sizeof dev->devpath,
				"%d", port1);
		else
			snprintf (dev->devpath, sizeof dev->devpath,
				"%s.%d", parent->devpath, port1);

		dev->dev.parent = &parent->dev;
		sprintf (&dev->dev.bus_id[0], "%d-%s",
			bus->busnum, dev->devpath);

		/* hub driver sets up TT records */
	}

	dev->bus = bus;
	dev->parent = parent;
	INIT_LIST_HEAD(&dev->filelist);

	init_MUTEX(&dev->serialize);

	return dev;
}

/**
 * usb_get_dev - increments the reference count of the usb device structure
 * @dev: the device being referenced
 *
 * Each live reference to a device should be refcounted.
 *
 * Drivers for USB interfaces should normally record such references in
 * their probe() methods, when they bind to an interface, and release
 * them by calling usb_put_dev(), in their disconnect() methods.
 *
 * A pointer to the device with the incremented reference counter is returned.
 */
struct usb_device *usb_get_dev(struct usb_device *dev)
{
	if (dev)
		get_device(&dev->dev);
	return dev;
}

/**
 * usb_put_dev - release a use of the usb device structure
 * @dev: device that's been disconnected
 *
 * Must be called when a user of a device is finished with it.  When the last
 * user of the device calls this function, the memory of the device is freed.
 */
void usb_put_dev(struct usb_device *dev)
{
	if (dev)
		put_device(&dev->dev);
}

/**
 * usb_get_intf - increments the reference count of the usb interface structure
 * @intf: the interface being referenced
 *
 * Each live reference to a interface must be refcounted.
 *
 * Drivers for USB interfaces should normally record such references in
 * their probe() methods, when they bind to an interface, and release
 * them by calling usb_put_intf(), in their disconnect() methods.
 *
 * A pointer to the interface with the incremented reference counter is
 * returned.
 */
struct usb_interface *usb_get_intf(struct usb_interface *intf)
{
	if (intf)
		get_device(&intf->dev);
	return intf;
}

/**
 * usb_put_intf - release a use of the usb interface structure
 * @intf: interface that's been decremented
 *
 * Must be called when a user of an interface is finished with it.  When the
 * last user of the interface calls this function, the memory of the interface
 * is freed.
 */
void usb_put_intf(struct usb_interface *intf)
{
	if (intf)
		put_device(&intf->dev);
}


/*			USB device locking
 *
 * Although locking USB devices should be straightforward, it is
 * complicated by the way the driver-model core works.  When a new USB
 * driver is registered or unregistered, the core will automatically
 * probe or disconnect all matching interfaces on all USB devices while
 * holding the USB subsystem writelock.  There's no good way for us to
 * tell which devices will be used or to lock them beforehand; our only
 * option is to effectively lock all the USB devices.
 *
 * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
 * When locking an individual device you must first acquire the rwsem's
 * readlock.  When a driver is registered or unregistered the writelock
 * must be held.  These actions are encapsulated in the subroutines
 * below, so all a driver needs to do is call usb_lock_device() and
 * usb_unlock_device().
 *
 * Complications arise when several devices are to be locked at the same
 * time.  Only hub-aware drivers that are part of usbcore ever have to
 * do this; nobody else needs to worry about it.  The problem is that
 * usb_lock_device() must not be called to lock a second device since it
 * would acquire the rwsem's readlock reentrantly, leading to deadlock if
 * another thread was waiting for the writelock.  The solution is simple:
 *
 *	When locking more than one device, call usb_lock_device()
 *	to lock the first one.  Lock the others by calling
 *	down(&udev->serialize) directly.
 *
 *	When unlocking multiple devices, use up(&udev->serialize)
 *	to unlock all but the last one.  Unlock the last one by
 *	calling usb_unlock_device().
 *
 *	When locking both a device and its parent, always lock the
 *	the parent first.
 */

/**
 * usb_lock_device - acquire the lock for a usb device structure
 * @udev: device that's being locked
 *
 * Use this routine when you don't hold any other device locks;
 * to acquire nested inner locks call down(&udev->serialize) directly.
 * This is necessary for proper interaction with usb_lock_all_devices().
 */
void usb_lock_device(struct usb_device *udev)
{
	down_read(&usb_all_devices_rwsem);
	down(&udev->serialize);
}

/**
 * usb_trylock_device - attempt to acquire the lock for a usb device structure
 * @udev: device that's being locked
 *
 * Don't use this routine if you already hold a device lock;
 * use down_trylock(&udev->serialize) instead.
 * This is necessary for proper interaction with usb_lock_all_devices().
 *
 * Returns 1 if successful, 0 if contention.
 */
int usb_trylock_device(struct usb_device *udev)
{
	if (!down_read_trylock(&usb_all_devices_rwsem))
		return 0;
	if (down_trylock(&udev->serialize)) {
		up_read(&usb_all_devices_rwsem);
		return 0;
	}
	return 1;
}

/**
 * usb_lock_device_for_reset - cautiously acquire the lock for a
 *	usb device structure
 * @udev: device that's being locked
 * @iface: interface bound to the driver making the request (optional)
 *
 * Attempts to acquire the device lock, but fails if the device is
 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 * disconnect; in some drivers (such as usb-storage) the disconnect()
915
 * or suspend() method will block waiting for a device reset to complete.
L
Linus Torvalds 已提交
916 917 918 919 920 921 922 923 924
 *
 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
 * that the device will or will not have to be unlocked.  (0 can be
 * returned when an interface is given and is BINDING, because in that
 * case the driver already owns the device lock.)
 */
int usb_lock_device_for_reset(struct usb_device *udev,
		struct usb_interface *iface)
{
925 926
	unsigned long jiffies_expire = jiffies + HZ;

L
Linus Torvalds 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	if (udev->state == USB_STATE_NOTATTACHED)
		return -ENODEV;
	if (udev->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;
	if (iface) {
		switch (iface->condition) {
		  case USB_INTERFACE_BINDING:
			return 0;
		  case USB_INTERFACE_BOUND:
			break;
		  default:
			return -EINTR;
		}
	}

	while (!usb_trylock_device(udev)) {
943 944 945 946 947 948

		/* If we can't acquire the lock after waiting one second,
		 * we're probably deadlocked */
		if (time_after(jiffies, jiffies_expire))
			return -EBUSY;

L
Linus Torvalds 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		msleep(15);
		if (udev->state == USB_STATE_NOTATTACHED)
			return -ENODEV;
		if (udev->state == USB_STATE_SUSPENDED)
			return -EHOSTUNREACH;
		if (iface && iface->condition != USB_INTERFACE_BOUND)
			return -EINTR;
	}
	return 1;
}

/**
 * usb_unlock_device - release the lock for a usb device structure
 * @udev: device that's being unlocked
 *
 * Use this routine when releasing the only device lock you hold;
 * to release inner nested locks call up(&udev->serialize) directly.
 * This is necessary for proper interaction with usb_lock_all_devices().
 */
void usb_unlock_device(struct usb_device *udev)
{
	up(&udev->serialize);
	up_read(&usb_all_devices_rwsem);
}

/**
 * usb_lock_all_devices - acquire the lock for all usb device structures
 *
 * This is necessary when registering a new driver or probing a bus,
 * since the driver-model core may try to use any usb_device.
 */
void usb_lock_all_devices(void)
{
	down_write(&usb_all_devices_rwsem);
}

/**
 * usb_unlock_all_devices - release the lock for all usb device structures
 */
void usb_unlock_all_devices(void)
{
	up_write(&usb_all_devices_rwsem);
}


static struct usb_device *match_device(struct usb_device *dev,
				       u16 vendor_id, u16 product_id)
{
	struct usb_device *ret_dev = NULL;
	int child;

	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
	    le16_to_cpu(dev->descriptor.idVendor),
	    le16_to_cpu(dev->descriptor.idProduct));

	/* see if this device matches */
	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
		dev_dbg (&dev->dev, "matched this device!\n");
		ret_dev = usb_get_dev(dev);
		goto exit;
	}

	/* look through all of the children of this device */
	for (child = 0; child < dev->maxchild; ++child) {
		if (dev->children[child]) {
			down(&dev->children[child]->serialize);
			ret_dev = match_device(dev->children[child],
					       vendor_id, product_id);
			up(&dev->children[child]->serialize);
			if (ret_dev)
				goto exit;
		}
	}
exit:
	return ret_dev;
}

/**
 * usb_find_device - find a specific usb device in the system
 * @vendor_id: the vendor id of the device to find
 * @product_id: the product id of the device to find
 *
 * Returns a pointer to a struct usb_device if such a specified usb
 * device is present in the system currently.  The usage count of the
 * device will be incremented if a device is found.  Make sure to call
 * usb_put_dev() when the caller is finished with the device.
 *
 * If a device with the specified vendor and product id is not found,
 * NULL is returned.
 */
struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
{
	struct list_head *buslist;
	struct usb_bus *bus;
	struct usb_device *dev = NULL;
	
	down(&usb_bus_list_lock);
	for (buslist = usb_bus_list.next;
	     buslist != &usb_bus_list; 
	     buslist = buslist->next) {
		bus = container_of(buslist, struct usb_bus, bus_list);
		if (!bus->root_hub)
			continue;
		usb_lock_device(bus->root_hub);
		dev = match_device(bus->root_hub, vendor_id, product_id);
		usb_unlock_device(bus->root_hub);
		if (dev)
			goto exit;
	}
exit:
	up(&usb_bus_list_lock);
	return dev;
}

/**
 * usb_get_current_frame_number - return current bus frame number
 * @dev: the device whose bus is being queried
 *
 * Returns the current frame number for the USB host controller
 * used with the given USB device.  This can be used when scheduling
 * isochronous requests.
 *
 * Note that different kinds of host controller have different
 * "scheduling horizons".  While one type might support scheduling only
 * 32 frames into the future, others could support scheduling up to
 * 1024 frames into the future.
 */
int usb_get_current_frame_number(struct usb_device *dev)
{
	return dev->bus->op->get_frame_number (dev);
}

/*-------------------------------------------------------------------*/
/*
 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 * extra field of the interface and endpoint descriptor structs.
 */

int __usb_get_extra_descriptor(char *buffer, unsigned size,
	unsigned char type, void **ptr)
{
	struct usb_descriptor_header *header;

	while (size >= sizeof(struct usb_descriptor_header)) {
		header = (struct usb_descriptor_header *)buffer;

		if (header->bLength < 2) {
			printk(KERN_ERR
				"%s: bogus descriptor, type %d length %d\n",
				usbcore_name,
				header->bDescriptorType, 
				header->bLength);
			return -1;
		}

		if (header->bDescriptorType == type) {
			*ptr = header;
			return 0;
		}

		buffer += header->bLength;
		size -= header->bLength;
	}
	return -1;
}

/**
 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 * @dev: device the buffer will be used with
 * @size: requested buffer size
 * @mem_flags: affect whether allocation may block
 * @dma: used to return DMA address of buffer
 *
 * Return value is either null (indicating no buffer could be allocated), or
 * the cpu-space pointer to a buffer that may be used to perform DMA to the
 * specified device.  Such cpu-space buffers are returned along with the DMA
 * address (through the pointer provided).
 *
 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
 * mapping hardware for long idle periods.  The implementation varies between
 * platforms, depending on details of how DMA will work to this device.
 * Using these buffers also helps prevent cacheline sharing problems on
 * architectures where CPU caches are not DMA-coherent.
 *
 * When the buffer is no longer used, free it with usb_buffer_free().
 */
void *usb_buffer_alloc (
	struct usb_device *dev,
	size_t size,
1140
	unsigned mem_flags,
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	dma_addr_t *dma
)
{
	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
		return NULL;
	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
}

/**
 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
 * @dev: device the buffer was used with
 * @size: requested buffer size
 * @addr: CPU address of buffer
 * @dma: DMA address of buffer
 *
 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 * been allocated using usb_buffer_alloc(), and the parameters must match
 * those provided in that allocation request. 
 */
void usb_buffer_free (
	struct usb_device *dev,
	size_t size,
	void *addr,
	dma_addr_t dma
)
{
	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
	    	return;
	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
}

/**
 * usb_buffer_map - create DMA mapping(s) for an urb
 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 *
 * Return value is either null (indicating no buffer could be mapped), or
 * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
 * added to urb->transfer_flags if the operation succeeds.  If the device
 * is connected to this system through a non-DMA controller, this operation
 * always succeeds.
 *
 * This call would normally be used for an urb which is reused, perhaps
 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 * calls to synchronize memory and dma state.
 *
 * Reverse the effect of this call with usb_buffer_unmap().
 */
#if 0
struct urb *usb_buffer_map (struct urb *urb)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!urb
			|| !urb->dev
			|| !(bus = urb->dev->bus)
			|| !(controller = bus->controller))
		return NULL;

	if (controller->dma_mask) {
		urb->transfer_dma = dma_map_single (controller,
			urb->transfer_buffer, urb->transfer_buffer_length,
			usb_pipein (urb->pipe)
				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
		if (usb_pipecontrol (urb->pipe))
			urb->setup_dma = dma_map_single (controller,
					urb->setup_packet,
					sizeof (struct usb_ctrlrequest),
					DMA_TO_DEVICE);
	// FIXME generic api broken like pci, can't report errors
	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
	} else
		urb->transfer_dma = ~0;
	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
				| URB_NO_SETUP_DMA_MAP);
	return urb;
}
#endif  /*  0  */

/* XXX DISABLED, no users currently.  If you wish to re-enable this
 * XXX please determine whether the sync is to transfer ownership of
 * XXX the buffer from device to cpu or vice verse, and thusly use the
 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 */
#if 0

/**
 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 */
void usb_buffer_dmasync (struct urb *urb)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!urb
			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
			|| !urb->dev
			|| !(bus = urb->dev->bus)
			|| !(controller = bus->controller))
		return;

	if (controller->dma_mask) {
		dma_sync_single (controller,
			urb->transfer_dma, urb->transfer_buffer_length,
			usb_pipein (urb->pipe)
				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
		if (usb_pipecontrol (urb->pipe))
			dma_sync_single (controller,
					urb->setup_dma,
					sizeof (struct usb_ctrlrequest),
					DMA_TO_DEVICE);
	}
}
#endif

/**
 * usb_buffer_unmap - free DMA mapping(s) for an urb
 * @urb: urb whose transfer_buffer will be unmapped
 *
 * Reverses the effect of usb_buffer_map().
 */
#if 0
void usb_buffer_unmap (struct urb *urb)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!urb
			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
			|| !urb->dev
			|| !(bus = urb->dev->bus)
			|| !(controller = bus->controller))
		return;

	if (controller->dma_mask) {
		dma_unmap_single (controller,
			urb->transfer_dma, urb->transfer_buffer_length,
			usb_pipein (urb->pipe)
				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
		if (usb_pipecontrol (urb->pipe))
			dma_unmap_single (controller,
					urb->setup_dma,
					sizeof (struct usb_ctrlrequest),
					DMA_TO_DEVICE);
	}
	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
				| URB_NO_SETUP_DMA_MAP);
}
#endif  /*  0  */

/**
 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 * @dev: device to which the scatterlist will be mapped
 * @pipe: endpoint defining the mapping direction
 * @sg: the scatterlist to map
 * @nents: the number of entries in the scatterlist
 *
 * Return value is either < 0 (indicating no buffers could be mapped), or
 * the number of DMA mapping array entries in the scatterlist.
 *
 * The caller is responsible for placing the resulting DMA addresses from
 * the scatterlist into URB transfer buffer pointers, and for setting the
 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 *
 * Top I/O rates come from queuing URBs, instead of waiting for each one
 * to complete before starting the next I/O.   This is particularly easy
 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 * mapping entry returned, stopping on the first error or when all succeed.
 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 *
 * This call would normally be used when translating scatterlist requests,
 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 * may be able to coalesce mappings for improved I/O efficiency.
 *
 * Reverse the effect of this call with usb_buffer_unmap_sg().
 */
int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
		struct scatterlist *sg, int nents)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!dev
			|| usb_pipecontrol (pipe)
			|| !(bus = dev->bus)
			|| !(controller = bus->controller)
			|| !controller->dma_mask)
		return -1;

	// FIXME generic api broken like pci, can't report errors
	return dma_map_sg (controller, sg, nents,
			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}

/* XXX DISABLED, no users currently.  If you wish to re-enable this
 * XXX please determine whether the sync is to transfer ownership of
 * XXX the buffer from device to cpu or vice verse, and thusly use the
 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 */
#if 0

/**
 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 * @dev: device to which the scatterlist will be mapped
 * @pipe: endpoint defining the mapping direction
 * @sg: the scatterlist to synchronize
 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 *
 * Use this when you are re-using a scatterlist's data buffers for
 * another USB request.
 */
void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
		struct scatterlist *sg, int n_hw_ents)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!dev
			|| !(bus = dev->bus)
			|| !(controller = bus->controller)
			|| !controller->dma_mask)
		return;

	dma_sync_sg (controller, sg, n_hw_ents,
			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
#endif

/**
 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 * @dev: device to which the scatterlist will be mapped
 * @pipe: endpoint defining the mapping direction
 * @sg: the scatterlist to unmap
 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 *
 * Reverses the effect of usb_buffer_map_sg().
 */
void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
		struct scatterlist *sg, int n_hw_ents)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!dev
			|| !(bus = dev->bus)
			|| !(controller = bus->controller)
			|| !controller->dma_mask)
		return;

	dma_unmap_sg (controller, sg, n_hw_ents,
			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}

1395
static int usb_generic_suspend(struct device *dev, pm_message_t message)
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400
{
	struct usb_interface *intf;
	struct usb_driver *driver;

	if (dev->driver == &usb_generic_driver)
1401
		return usb_suspend_device (to_usb_device(dev), message);
L
Linus Torvalds 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410

	if ((dev->driver == NULL) ||
	    (dev->driver_data == &usb_generic_driver_data))
		return 0;

	intf = to_usb_interface(dev);
	driver = to_usb_driver(dev->driver);

	/* there's only one USB suspend state */
1411
	if (intf->dev.power.power_state.event)
L
Linus Torvalds 已提交
1412 1413 1414
		return 0;

	if (driver->suspend)
1415
		return driver->suspend(intf, message);
L
Linus Torvalds 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	return 0;
}

static int usb_generic_resume(struct device *dev)
{
	struct usb_interface *intf;
	struct usb_driver *driver;

	/* devices resume through their hub */
	if (dev->driver == &usb_generic_driver)
		return usb_resume_device (to_usb_device(dev));

	if ((dev->driver == NULL) ||
	    (dev->driver_data == &usb_generic_driver_data))
		return 0;

	intf = to_usb_interface(dev);
	driver = to_usb_driver(dev->driver);

	if (driver->resume)
		return driver->resume(intf);
	return 0;
}

struct bus_type usb_bus_type = {
	.name =		"usb",
	.match =	usb_device_match,
	.hotplug =	usb_hotplug,
	.suspend =	usb_generic_suspend,
	.resume =	usb_generic_resume,
};

#ifndef MODULE

static int __init usb_setup_disable(char *str)
{
	nousb = 1;
	return 1;
}

/* format to disable USB on kernel command line is: nousb */
__setup("nousb", usb_setup_disable);

#endif

/*
 * for external read access to <nousb>
 */
int usb_disabled(void)
{
	return nousb;
}

/*
 * Init
 */
static int __init usb_init(void)
{
	int retval;
	if (nousb) {
		pr_info ("%s: USB support disabled\n", usbcore_name);
		return 0;
	}

	retval = bus_register(&usb_bus_type);
	if (retval) 
		goto out;
	retval = usb_host_init();
	if (retval)
		goto host_init_failed;
	retval = usb_major_init();
	if (retval)
		goto major_init_failed;
1489 1490 1491 1492 1493 1494
	retval = usb_register(&usbfs_driver);
	if (retval)
		goto driver_register_failed;
	retval = usbdev_init();
	if (retval)
		goto usbdevice_init_failed;
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	retval = usbfs_init();
	if (retval)
		goto fs_init_failed;
	retval = usb_hub_init();
	if (retval)
		goto hub_init_failed;
	retval = driver_register(&usb_generic_driver);
	if (!retval)
		goto out;

	usb_hub_cleanup();
hub_init_failed:
	usbfs_cleanup();
fs_init_failed:
1509 1510 1511 1512 1513
	usbdev_cleanup();
usbdevice_init_failed:
	usb_deregister(&usbfs_driver);
driver_register_failed:
	usb_major_cleanup();
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
major_init_failed:
	usb_host_cleanup();
host_init_failed:
	bus_unregister(&usb_bus_type);
out:
	return retval;
}

/*
 * Cleanup
 */
static void __exit usb_exit(void)
{
	/* This will matter if shutdown/reboot does exitcalls. */
	if (nousb)
		return;

	driver_unregister(&usb_generic_driver);
	usb_major_cleanup();
	usbfs_cleanup();
1534 1535
	usb_deregister(&usbfs_driver);
	usbdev_cleanup();
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	usb_hub_cleanup();
	usb_host_cleanup();
	bus_unregister(&usb_bus_type);
}

subsys_initcall(usb_init);
module_exit(usb_exit);

/*
 * USB may be built into the kernel or be built as modules.
 * These symbols are exported for device (or host controller)
 * driver modules to use.
 */

EXPORT_SYMBOL(usb_register);
EXPORT_SYMBOL(usb_deregister);
EXPORT_SYMBOL(usb_disabled);

1554 1555 1556
EXPORT_SYMBOL_GPL(usb_get_intf);
EXPORT_SYMBOL_GPL(usb_put_intf);

L
Linus Torvalds 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
EXPORT_SYMBOL(usb_alloc_dev);
EXPORT_SYMBOL(usb_put_dev);
EXPORT_SYMBOL(usb_get_dev);
EXPORT_SYMBOL(usb_hub_tt_clear_buffer);

EXPORT_SYMBOL(usb_lock_device);
EXPORT_SYMBOL(usb_trylock_device);
EXPORT_SYMBOL(usb_lock_device_for_reset);
EXPORT_SYMBOL(usb_unlock_device);

EXPORT_SYMBOL(usb_driver_claim_interface);
EXPORT_SYMBOL(usb_driver_release_interface);
EXPORT_SYMBOL(usb_match_id);
EXPORT_SYMBOL(usb_find_interface);
EXPORT_SYMBOL(usb_ifnum_to_if);
EXPORT_SYMBOL(usb_altnum_to_altsetting);

EXPORT_SYMBOL(usb_reset_device);
EXPORT_SYMBOL(usb_disconnect);

EXPORT_SYMBOL(__usb_get_extra_descriptor);

EXPORT_SYMBOL(usb_find_device);
EXPORT_SYMBOL(usb_get_current_frame_number);

EXPORT_SYMBOL (usb_buffer_alloc);
EXPORT_SYMBOL (usb_buffer_free);

#if 0
EXPORT_SYMBOL (usb_buffer_map);
EXPORT_SYMBOL (usb_buffer_dmasync);
EXPORT_SYMBOL (usb_buffer_unmap);
#endif

EXPORT_SYMBOL (usb_buffer_map_sg);
#if 0
EXPORT_SYMBOL (usb_buffer_dmasync_sg);
#endif
EXPORT_SYMBOL (usb_buffer_unmap_sg);

MODULE_LICENSE("GPL");