sdma_v5_2.c 52.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>

#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_trace.h"

#include "gc/gc_10_3_0_offset.h"
#include "gc/gc_10_3_0_sh_mask.h"
#include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
#include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
#include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h"
#include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h"

#include "soc15_common.h"
#include "soc15.h"
#include "navi10_sdma_pkt_open.h"
#include "nbio_v2_3.h"
#include "sdma_common.h"
#include "sdma_v5_2.h"

MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin");
48
MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin");
49
MODULE_FIRMWARE("amdgpu/dimgrey_cavefish_sdma.bin");
50
MODULE_FIRMWARE("amdgpu/beige_goby_sdma.bin");
51

52
MODULE_FIRMWARE("amdgpu/vangogh_sdma.bin");
53
MODULE_FIRMWARE("amdgpu/yellow_carp_sdma.bin");
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
#define SDMA1_REG_OFFSET 0x600
#define SDMA3_REG_OFFSET 0x400
#define SDMA0_HYP_DEC_REG_START 0x5880
#define SDMA0_HYP_DEC_REG_END 0x5893
#define SDMA1_HYP_DEC_REG_OFFSET 0x20

static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev);
static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev);
static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev);
static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev);

static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
{
	u32 base;

	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
		base = adev->reg_offset[GC_HWIP][0][1];
		if (instance != 0)
			internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance;
	} else {
		if (instance < 2) {
			base = adev->reg_offset[GC_HWIP][0][0];
			if (instance == 1)
				internal_offset += SDMA1_REG_OFFSET;
		} else {
			base = adev->reg_offset[GC_HWIP][0][2];
			if (instance == 3)
				internal_offset += SDMA3_REG_OFFSET;
		}
	}

	return base + internal_offset;
}

static void sdma_v5_2_init_golden_registers(struct amdgpu_device *adev)
{
	switch (adev->asic_type) {
	case CHIP_SIENNA_CICHLID:
94
	case CHIP_NAVY_FLOUNDER:
95
	case CHIP_VANGOGH:
96
	case CHIP_DIMGREY_CAVEFISH:
97
	case CHIP_BEIGE_GOBY:
98
	case CHIP_YELLOW_CARP:
99 100 101 102 103 104
		break;
	default:
		break;
	}
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
static int sdma_v5_2_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
{
	int err = 0;
	const struct sdma_firmware_header_v1_0 *hdr;

	err = amdgpu_ucode_validate(sdma_inst->fw);
	if (err)
		return err;

	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);

	if (sdma_inst->feature_version >= 20)
		sdma_inst->burst_nop = true;

	return 0;
}

static void sdma_v5_2_destroy_inst_ctx(struct amdgpu_device *adev)
{
126
	release_firmware(adev->sdma.instance[0].fw);
127

128
	memset((void *)adev->sdma.instance, 0,
129 130 131
	       sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/**
 * sdma_v5_2_init_microcode - load ucode images from disk
 *
 * @adev: amdgpu_device pointer
 *
 * Use the firmware interface to load the ucode images into
 * the driver (not loaded into hw).
 * Returns 0 on success, error on failure.
 */

// emulation only, won't work on real chip
// navi10 real chip need to use PSP to load firmware
static int sdma_v5_2_init_microcode(struct amdgpu_device *adev)
{
	const char *chip_name;
	char fw_name[40];
	int err = 0, i;
	struct amdgpu_firmware_info *info = NULL;
	const struct common_firmware_header *header = NULL;

	DRM_DEBUG("\n");

	switch (adev->asic_type) {
	case CHIP_SIENNA_CICHLID:
		chip_name = "sienna_cichlid";
		break;
158 159 160
	case CHIP_NAVY_FLOUNDER:
		chip_name = "navy_flounder";
		break;
161 162 163
	case CHIP_VANGOGH:
		chip_name = "vangogh";
		break;
164 165 166
	case CHIP_DIMGREY_CAVEFISH:
		chip_name = "dimgrey_cavefish";
		break;
167 168 169
	case CHIP_BEIGE_GOBY:
		chip_name = "beige_goby";
		break;
170 171 172
	case CHIP_YELLOW_CARP:
		chip_name = "yellow_carp";
		break;
173 174 175 176
	default:
		BUG();
	}

177 178 179 180 181 182 183 184 185 186
	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);

	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
	if (err)
		goto out;

	err = sdma_v5_2_init_inst_ctx(&adev->sdma.instance[0]);
	if (err)
		goto out;

187 188 189 190
	for (i = 1; i < adev->sdma.num_instances; i++)
		memcpy((void *)&adev->sdma.instance[i],
		       (void *)&adev->sdma.instance[0],
		       sizeof(struct amdgpu_sdma_instance));
191

192 193 194
	if (amdgpu_sriov_vf(adev) && (adev->asic_type == CHIP_SIENNA_CICHLID))
		return 0;

195 196 197 198 199
	DRM_DEBUG("psp_load == '%s'\n",
		  adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		for (i = 0; i < adev->sdma.num_instances; i++) {
200 201 202 203 204 205 206 207
			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
			info->fw = adev->sdma.instance[i].fw;
			header = (const struct common_firmware_header *)info->fw->data;
			adev->firmware.fw_size +=
				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
		}
	}
208

209 210 211
out:
	if (err) {
		DRM_ERROR("sdma_v5_2: Failed to load firmware \"%s\"\n", fw_name);
212
		sdma_v5_2_destroy_inst_ctx(adev);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	}
	return err;
}

static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring)
{
	unsigned ret;

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
	amdgpu_ring_write(ring, 1);
	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */

	return ret;
}

static void sdma_v5_2_ring_patch_cond_exec(struct amdgpu_ring *ring,
					   unsigned offset)
{
	unsigned cur;

	BUG_ON(offset > ring->buf_mask);
	BUG_ON(ring->ring[offset] != 0x55aa55aa);

	cur = (ring->wptr - 1) & ring->buf_mask;
	if (cur > offset)
		ring->ring[offset] = cur - offset;
	else
		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
}

/**
 * sdma_v5_2_ring_get_rptr - get the current read pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current rptr from the hardware (NAVI10+).
 */
static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring)
{
	u64 *rptr;

	/* XXX check if swapping is necessary on BE */
	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);

	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
	return ((*rptr) >> 2);
}

/**
 * sdma_v5_2_ring_get_wptr - get the current write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current wptr from the hardware (NAVI10+).
 */
static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
274
	u64 wptr;
275 276 277

	if (ring->use_doorbell) {
		/* XXX check if swapping is necessary on BE */
278 279
		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
280
	} else {
281 282 283 284
		wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
		wptr = wptr << 32;
		wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
285 286
	}

287
	return wptr >> 2;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
}

/**
 * sdma_v5_2_ring_set_wptr - commit the write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Write the wptr back to the hardware (NAVI10+).
 */
static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	DRM_DEBUG("Setting write pointer\n");
	if (ring->use_doorbell) {
		DRM_DEBUG("Using doorbell -- "
				"wptr_offs == 0x%08x "
				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
				ring->wptr_offs,
				lower_32_bits(ring->wptr << 2),
				upper_32_bits(ring->wptr << 2));
		/* XXX check if swapping is necessary on BE */
		adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
		adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
				ring->doorbell_index, ring->wptr << 2);
		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
	} else {
		DRM_DEBUG("Not using doorbell -- "
				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
				ring->me,
				lower_32_bits(ring->wptr << 2),
				ring->me,
				upper_32_bits(ring->wptr << 2));
		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
			lower_32_bits(ring->wptr << 2));
		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
			upper_32_bits(ring->wptr << 2));
	}
}

static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
	int i;

	for (i = 0; i < count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			amdgpu_ring_write(ring, ring->funcs->nop |
				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
		else
			amdgpu_ring_write(ring, ring->funcs->nop);
}

/**
 * sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine
 *
 * @ring: amdgpu ring pointer
348
 * @job: job to retrieve vmid from
349
 * @ib: IB object to schedule
350
 * @flags: unused
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
 *
 * Schedule an IB in the DMA ring.
 */
static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring,
				   struct amdgpu_job *job,
				   struct amdgpu_ib *ib,
				   uint32_t flags)
{
	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);

	/* An IB packet must end on a 8 DW boundary--the next dword
	 * must be on a 8-dword boundary. Our IB packet below is 6
	 * dwords long, thus add x number of NOPs, such that, in
	 * modular arithmetic,
	 * wptr + 6 + x = 8k, k >= 0, which in C is,
	 * (wptr + 6 + x) % 8 = 0.
	 * The expression below, is a solution of x.
	 */
	sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
	/* base must be 32 byte aligned */
	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, ib->length_dw);
	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/**
 * sdma_v5_2_ring_emit_mem_sync - flush the IB by graphics cache rinse
 *
 * @ring: amdgpu ring pointer
 * @job: job to retrieve vmid from
 * @ib: IB object to schedule
 *
 * flush the IB by graphics cache rinse.
 */
static void sdma_v5_2_ring_emit_mem_sync(struct amdgpu_ring *ring)
{
    uint32_t gcr_cntl =
		    SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
			SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
			SDMA_GCR_GLI_INV(1);

	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
			SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
			SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
			SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
}

409 410 411 412 413 414 415 416 417 418 419 420 421
/**
 * sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 *
 * @ring: amdgpu ring pointer
 *
 * Emit an hdp flush packet on the requested DMA ring.
 */
static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	u32 ref_and_mask = 0;
	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;

422
	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
	amdgpu_ring_write(ring, ref_and_mask); /* reference */
	amdgpu_ring_write(ring, ref_and_mask); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
}

/**
 * sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring
 *
 * @ring: amdgpu ring pointer
439 440 441
 * @addr: address
 * @seq: sequence number
 * @flags: fence related flags
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
 *
 * Add a DMA fence packet to the ring to write
 * the fence seq number and DMA trap packet to generate
 * an interrupt if needed.
 */
static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
				      unsigned flags)
{
	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
	/* write the fence */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
	/* zero in first two bits */
	BUG_ON(addr & 0x3);
	amdgpu_ring_write(ring, lower_32_bits(addr));
	amdgpu_ring_write(ring, upper_32_bits(addr));
	amdgpu_ring_write(ring, lower_32_bits(seq));

	/* optionally write high bits as well */
	if (write64bit) {
		addr += 4;
		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
		/* zero in first two bits */
		BUG_ON(addr & 0x3);
		amdgpu_ring_write(ring, lower_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(seq));
	}

472
	if (flags & AMDGPU_FENCE_FLAG_INT) {
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		/* generate an interrupt */
		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
	}
}


/**
 * sdma_v5_2_gfx_stop - stop the gfx async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the gfx async dma ring buffers.
 */
static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev)
{
	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
	struct amdgpu_ring *sdma2 = &adev->sdma.instance[2].ring;
	struct amdgpu_ring *sdma3 = &adev->sdma.instance[3].ring;
	u32 rb_cntl, ib_cntl;
	int i;

	if ((adev->mman.buffer_funcs_ring == sdma0) ||
	    (adev->mman.buffer_funcs_ring == sdma1) ||
	    (adev->mman.buffer_funcs_ring == sdma2) ||
	    (adev->mman.buffer_funcs_ring == sdma3))
		amdgpu_ttm_set_buffer_funcs_status(adev, false);

	for (i = 0; i < adev->sdma.num_instances; i++) {
		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
	}
}

/**
 * sdma_v5_2_rlc_stop - stop the compute async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the compute async dma queues.
 */
static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev)
{
	/* XXX todo */
}

/**
525
 * sdma_v5_2_ctx_switch_enable - stop the async dma engines context switch
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs context switch.
 *
 * Halt or unhalt the async dma engines context switch.
 */
static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
{
	u32 f32_cntl, phase_quantum = 0;
	int i;

	if (amdgpu_sdma_phase_quantum) {
		unsigned value = amdgpu_sdma_phase_quantum;
		unsigned unit = 0;

		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
			value = (value + 1) >> 1;
			unit++;
		}
		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
			WARN_ONCE(1,
			"clamping sdma_phase_quantum to %uK clock cycles\n",
				  value << unit);
		}
		phase_quantum =
			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
		if (enable && amdgpu_sdma_phase_quantum) {
			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
			       phase_quantum);
			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
			       phase_quantum);
			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
			       phase_quantum);
		}
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
	}

}

/**
 * sdma_v5_2_enable - stop the async dma engines
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines.
 */
static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable)
{
	u32 f32_cntl;
	int i;

591
	if (!enable) {
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		sdma_v5_2_gfx_stop(adev);
		sdma_v5_2_rlc_stop(adev);
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
	}
}

/**
 * sdma_v5_2_gfx_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the gfx DMA ring buffers and enable them.
 * Returns 0 for success, error for failure.
 */
static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	u32 rb_cntl, ib_cntl;
	u32 rb_bufsz;
	u32 wb_offset;
	u32 doorbell;
	u32 doorbell_offset;
	u32 temp;
	u32 wptr_poll_cntl;
	u64 wptr_gpu_addr;
	int i, r;

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		wb_offset = (ring->rptr_offs * 4);

		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);

		/* Set ring buffer size in dwords */
		rb_bufsz = order_base_2(ring->ring_size / 4);
		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
#ifdef __BIG_ENDIAN
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
					RPTR_WRITEBACK_SWAP_ENABLE, 1);
#endif
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);

		/* Initialize the ring buffer's read and write pointers */
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);

		/* setup the wptr shadow polling */
		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
		       lower_32_bits(wptr_gpu_addr));
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
		       upper_32_bits(wptr_gpu_addr));
		wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i,
							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
					       F32_POLL_ENABLE, 1);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
		       wptr_poll_cntl);

		/* set the wb address whether it's enabled or not */
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);

		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);

		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);

		ring->wptr = 0;

		/* before programing wptr to a less value, need set minor_ptr_update first */
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);

		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
		}

		doorbell = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
		doorbell_offset = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));

		if (ring->use_doorbell) {
			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
					OFFSET, ring->doorbell_index);
		} else {
			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
		}
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);

		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
696 697
						      ring->doorbell_index,
						      adev->doorbell_index.sdma_doorbell_range);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

		if (amdgpu_sriov_vf(adev))
			sdma_v5_2_ring_set_wptr(ring);

		/* set minor_ptr_update to 0 after wptr programed */
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);

		/* set utc l1 enable flag always to 1 */
		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);

		/* enable MCBP */
		temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);

		/* Set up RESP_MODE to non-copy addresses */
		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);

		/* program default cache read and write policy */
		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
		/* clean read policy and write policy bits */
		temp &= 0xFF0FFF;
		temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) |
			 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) |
725
			 SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);

		if (!amdgpu_sriov_vf(adev)) {
			/* unhalt engine */
			temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
		}

		/* enable DMA RB */
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);

		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
#ifdef __BIG_ENDIAN
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
#endif
		/* enable DMA IBs */
		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);

		ring->sched.ready = true;

		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
			sdma_v5_2_ctx_switch_enable(adev, true);
			sdma_v5_2_enable(adev, true);
		}

		r = amdgpu_ring_test_ring(ring);
		if (r) {
			ring->sched.ready = false;
			return r;
		}

		if (adev->mman.buffer_funcs_ring == ring)
			amdgpu_ttm_set_buffer_funcs_status(adev, true);
	}

	return 0;
}

/**
 * sdma_v5_2_rlc_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the compute DMA queues and enable them.
 * Returns 0 for success, error for failure.
 */
static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev)
{
	return 0;
}

/**
 * sdma_v5_2_load_microcode - load the sDMA ME ucode
 *
 * @adev: amdgpu_device pointer
 *
 * Loads the sDMA0/1/2/3 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int sdma_v5_2_load_microcode(struct amdgpu_device *adev)
{
	const struct sdma_firmware_header_v1_0 *hdr;
	const __le32 *fw_data;
	u32 fw_size;
	int i, j;

	/* halt the MEs */
	sdma_v5_2_enable(adev, false);

	for (i = 0; i < adev->sdma.num_instances; i++) {
		if (!adev->sdma.instance[i].fw)
			return -EINVAL;

		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
		amdgpu_ucode_print_sdma_hdr(&hdr->header);
		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;

		fw_data = (const __le32 *)
			(adev->sdma.instance[i].fw->data +
				le32_to_cpu(hdr->header.ucode_array_offset_bytes));

		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);

		for (j = 0; j < fw_size; j++) {
			if (amdgpu_emu_mode == 1 && j % 500 == 0)
				msleep(1);
			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
		}

		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
	}

	return 0;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static int sdma_v5_2_soft_reset(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 grbm_soft_reset;
	u32 tmp;
	int i;

	for (i = 0; i < adev->sdma.num_instances; i++) {
		grbm_soft_reset = REG_SET_FIELD(0,
						GRBM_SOFT_RESET, SOFT_RESET_SDMA0,
						1);
		grbm_soft_reset <<= i;

		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
		tmp |= grbm_soft_reset;
		DRM_DEBUG("GRBM_SOFT_RESET=0x%08X\n", tmp);
		WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);

		udelay(50);

		tmp &= ~grbm_soft_reset;
		WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);

		udelay(50);
	}

	return 0;
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * sdma_v5_2_start - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the DMA engines and enable them.
 * Returns 0 for success, error for failure.
 */
static int sdma_v5_2_start(struct amdgpu_device *adev)
{
	int r = 0;

	if (amdgpu_sriov_vf(adev)) {
		sdma_v5_2_ctx_switch_enable(adev, false);
		sdma_v5_2_enable(adev, false);

		/* set RB registers */
		r = sdma_v5_2_gfx_resume(adev);
		return r;
	}

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
		r = sdma_v5_2_load_microcode(adev);
		if (r)
			return r;

		/* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */
		if (amdgpu_emu_mode == 1)
			msleep(1000);
	}

886
	sdma_v5_2_soft_reset(adev);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/* unhalt the MEs */
	sdma_v5_2_enable(adev, true);
	/* enable sdma ring preemption */
	sdma_v5_2_ctx_switch_enable(adev, true);

	/* start the gfx rings and rlc compute queues */
	r = sdma_v5_2_gfx_resume(adev);
	if (r)
		return r;
	r = sdma_v5_2_rlc_resume(adev);

	return r;
}

/**
 * sdma_v5_2_ring_test_ring - simple async dma engine test
 *
 * @ring: amdgpu_ring structure holding ring information
 *
 * Test the DMA engine by writing using it to write an
 * value to memory.
 * Returns 0 for success, error for failure.
 */
static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	unsigned i;
	unsigned index;
	int r;
	u32 tmp;
	u64 gpu_addr;

	r = amdgpu_device_wb_get(adev, &index);
	if (r) {
		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);

	r = amdgpu_ring_alloc(ring, 5);
	if (r) {
		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
		amdgpu_device_wb_free(adev, index);
		return r;
	}

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
	amdgpu_ring_write(ring, 0xDEADBEEF);
	amdgpu_ring_commit(ring);

	for (i = 0; i < adev->usec_timeout; i++) {
		tmp = le32_to_cpu(adev->wb.wb[index]);
		if (tmp == 0xDEADBEEF)
			break;
		if (amdgpu_emu_mode == 1)
			msleep(1);
		else
			udelay(1);
	}

	if (i >= adev->usec_timeout)
		r = -ETIMEDOUT;

	amdgpu_device_wb_free(adev, index);

	return r;
}

/**
 * sdma_v5_2_ring_test_ib - test an IB on the DMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
966
 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
 *
 * Test a simple IB in the DMA ring.
 * Returns 0 on success, error on failure.
 */
static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
	struct amdgpu_device *adev = ring->adev;
	struct amdgpu_ib ib;
	struct dma_fence *f = NULL;
	unsigned index;
	long r;
	u32 tmp = 0;
	u64 gpu_addr;

	r = amdgpu_device_wb_get(adev, &index);
	if (r) {
		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);
	memset(&ib, 0, sizeof(ib));
	r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
	if (r) {
		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
		goto err0;
	}

	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib.ptr[1] = lower_32_bits(gpu_addr);
	ib.ptr[2] = upper_32_bits(gpu_addr);
	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
	ib.ptr[4] = 0xDEADBEEF;
	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.length_dw = 8;

	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
	if (r)
		goto err1;

	r = dma_fence_wait_timeout(f, false, timeout);
	if (r == 0) {
		DRM_ERROR("amdgpu: IB test timed out\n");
		r = -ETIMEDOUT;
		goto err1;
	} else if (r < 0) {
		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
		goto err1;
	}
	tmp = le32_to_cpu(adev->wb.wb[index]);
	if (tmp == 0xDEADBEEF)
		r = 0;
	else
		r = -EINVAL;

err1:
	amdgpu_ib_free(adev, &ib, NULL);
	dma_fence_put(f);
err0:
	amdgpu_device_wb_free(adev, index);
	return r;
}


/**
 * sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @src: src addr to copy from
 * @count: number of page entries to update
 *
 * Update PTEs by copying them from the GART using sDMA.
 */
static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib,
				  uint64_t pe, uint64_t src,
				  unsigned count)
{
	unsigned bytes = count * 8;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
	ib->ptr[ib->length_dw++] = bytes - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src);
	ib->ptr[ib->length_dw++] = upper_32_bits(src);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);

}

/**
 * sdma_v5_2_vm_write_pte - update PTEs by writing them manually
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
1068
 * @value: dst addr to write into pe
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 *
 * Update PTEs by writing them manually using sDMA.
 */
static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
				   uint64_t value, unsigned count,
				   uint32_t incr)
{
	unsigned ndw = count * 2;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
	ib->ptr[ib->length_dw++] = ndw - 1;
	for (; ndw > 0; ndw -= 2) {
		ib->ptr[ib->length_dw++] = lower_32_bits(value);
		ib->ptr[ib->length_dw++] = upper_32_bits(value);
		value += incr;
	}
}

/**
 * sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update the page tables using sDMA.
 */
static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib,
				     uint64_t pe,
				     uint64_t addr, unsigned count,
				     uint32_t incr, uint64_t flags)
{
	/* for physically contiguous pages (vram) */
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
	ib->ptr[ib->length_dw++] = incr; /* increment size */
	ib->ptr[ib->length_dw++] = 0;
	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
}

/**
 * sdma_v5_2_ring_pad_ib - pad the IB
 *
 * @ib: indirect buffer to fill with padding
1126
 * @ring: amdgpu_ring structure holding ring information
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
 *
 * Pad the IB with NOPs to a boundary multiple of 8.
 */
static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
	u32 pad_count;
	int i;

	pad_count = (-ib->length_dw) & 0x7;
	for (i = 0; i < pad_count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
		else
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
}


/**
 * sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline
 *
 * @ring: amdgpu_ring pointer
 *
 * Make sure all previous operations are completed (CIK).
 */
static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
	uint32_t seq = ring->fence_drv.sync_seq;
	uint64_t addr = ring->fence_drv.gpu_addr;

	/* wait for idle */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
	amdgpu_ring_write(ring, addr & 0xfffffffc);
	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
	amdgpu_ring_write(ring, seq); /* reference */
	amdgpu_ring_write(ring, 0xffffffff); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
}


/**
 * sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA
 *
 * @ring: amdgpu_ring pointer
1178 1179
 * @vmid: vmid number to use
 * @pd_addr: address
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 *
 * Update the page table base and flush the VM TLB
 * using sDMA.
 */
static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
					 unsigned vmid, uint64_t pd_addr)
{
	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
}

static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring,
				     uint32_t reg, uint32_t val)
{
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
	amdgpu_ring_write(ring, reg);
	amdgpu_ring_write(ring, val);
}

static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
					 uint32_t val, uint32_t mask)
{
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
	amdgpu_ring_write(ring, reg << 2);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, val); /* reference */
	amdgpu_ring_write(ring, mask); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
}

static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
						   uint32_t reg0, uint32_t reg1,
						   uint32_t ref, uint32_t mask)
{
	amdgpu_ring_emit_wreg(ring, reg0, ref);
	/* wait for a cycle to reset vm_inv_eng*_ack */
	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
}

static int sdma_v5_2_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1227 1228 1229 1230 1231
	switch (adev->asic_type) {
	case CHIP_SIENNA_CICHLID:
		adev->sdma.num_instances = 4;
		break;
	case CHIP_NAVY_FLOUNDER:
1232
	case CHIP_DIMGREY_CAVEFISH:
1233 1234
		adev->sdma.num_instances = 2;
		break;
1235
	case CHIP_VANGOGH:
1236
	case CHIP_BEIGE_GOBY:
1237
	case CHIP_YELLOW_CARP:
1238 1239
		adev->sdma.num_instances = 1;
		break;
1240 1241 1242
	default:
		break;
	}
1243 1244 1245 1246 1247 1248 1249 1250 1251

	sdma_v5_2_set_ring_funcs(adev);
	sdma_v5_2_set_buffer_funcs(adev);
	sdma_v5_2_set_vm_pte_funcs(adev);
	sdma_v5_2_set_irq_funcs(adev);

	return 0;
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
static unsigned sdma_v5_2_seq_to_irq_id(int seq_num)
{
	switch (seq_num) {
	case 0:
		return SOC15_IH_CLIENTID_SDMA0;
	case 1:
		return SOC15_IH_CLIENTID_SDMA1;
	case 2:
		return SOC15_IH_CLIENTID_SDMA2;
	case 3:
		return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid;
	default:
		break;
	}
	return -EINVAL;
}

static unsigned sdma_v5_2_seq_to_trap_id(int seq_num)
{
	switch (seq_num) {
	case 0:
		return SDMA0_5_0__SRCID__SDMA_TRAP;
	case 1:
		return SDMA1_5_0__SRCID__SDMA_TRAP;
	case 2:
		return SDMA2_5_0__SRCID__SDMA_TRAP;
	case 3:
		return SDMA3_5_0__SRCID__SDMA_TRAP;
	default:
		break;
	}
	return -EINVAL;
}

1286 1287 1288 1289 1290 1291 1292
static int sdma_v5_2_sw_init(void *handle)
{
	struct amdgpu_ring *ring;
	int r, i;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	/* SDMA trap event */
1293 1294 1295 1296 1297 1298 1299
	for (i = 0; i < adev->sdma.num_instances; i++) {
		r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i),
				      sdma_v5_2_seq_to_trap_id(i),
				      &adev->sdma.trap_irq);
		if (r)
			return r;
	}
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	r = sdma_v5_2_init_microcode(adev);
	if (r) {
		DRM_ERROR("Failed to load sdma firmware!\n");
		return r;
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		ring->ring_obj = NULL;
		ring->use_doorbell = true;
1311
		ring->me = i;
1312 1313 1314 1315 1316 1317 1318 1319

		DRM_INFO("use_doorbell being set to: [%s]\n",
				ring->use_doorbell?"true":"false");

		ring->doorbell_index =
			(adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset

		sprintf(ring->name, "sdma%d", i);
1320
		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1321
				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1322
				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		if (r)
			return r;
	}

	return r;
}

static int sdma_v5_2_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1333 1334 1335 1336
	int i;

	for (i = 0; i < adev->sdma.num_instances; i++)
		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1337

1338
	sdma_v5_2_destroy_inst_ctx(adev);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	return 0;
}

static int sdma_v5_2_hw_init(void *handle)
{
	int r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	sdma_v5_2_init_golden_registers(adev);

	r = sdma_v5_2_start(adev);

	return r;
}

static int sdma_v5_2_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (amdgpu_sriov_vf(adev))
		return 0;

	sdma_v5_2_ctx_switch_enable(adev, false);
	sdma_v5_2_enable(adev, false);

	return 0;
}

static int sdma_v5_2_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v5_2_hw_fini(adev);
}

static int sdma_v5_2_resume(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v5_2_hw_init(adev);
}

static bool sdma_v5_2_is_idle(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 i;

	for (i = 0; i < adev->sdma.num_instances; i++) {
		u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));

		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
			return false;
	}

	return true;
}

static int sdma_v5_2_wait_for_idle(void *handle)
{
	unsigned i;
	u32 sdma0, sdma1, sdma2, sdma3;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	for (i = 0; i < adev->usec_timeout; i++) {
		sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
		sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
		sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG));
		sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG));

		if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK)
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
}

static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring)
{
	int i, r = 0;
	struct amdgpu_device *adev = ring->adev;
	u32 index = 0;
	u64 sdma_gfx_preempt;

	amdgpu_sdma_get_index_from_ring(ring, &index);
	sdma_gfx_preempt =
		sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT);

	/* assert preemption condition */
	amdgpu_ring_set_preempt_cond_exec(ring, false);

	/* emit the trailing fence */
	ring->trail_seq += 1;
	amdgpu_ring_alloc(ring, 10);
	sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
				  ring->trail_seq, 0);
	amdgpu_ring_commit(ring);

	/* assert IB preemption */
	WREG32(sdma_gfx_preempt, 1);

	/* poll the trailing fence */
	for (i = 0; i < adev->usec_timeout; i++) {
		if (ring->trail_seq ==
		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
			break;
		udelay(1);
	}

	if (i >= adev->usec_timeout) {
		r = -EINVAL;
		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
	}

	/* deassert IB preemption */
	WREG32(sdma_gfx_preempt, 0);

	/* deassert the preemption condition */
	amdgpu_ring_set_preempt_cond_exec(ring, true);
	return r;
}

static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev,
					struct amdgpu_irq_src *source,
					unsigned type,
					enum amdgpu_interrupt_state state)
{
	u32 sdma_cntl;

	u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL);

	sdma_cntl = RREG32(reg_offset);
	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
	WREG32(reg_offset, sdma_cntl);

	return 0;
}

static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev,
				      struct amdgpu_irq_src *source,
				      struct amdgpu_iv_entry *entry)
{
	DRM_DEBUG("IH: SDMA trap\n");
	switch (entry->client_id) {
	case SOC15_IH_CLIENTID_SDMA0:
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[0].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
	case SOC15_IH_CLIENTID_SDMA1:
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[1].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
	case SOC15_IH_CLIENTID_SDMA2:
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[2].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
1532
	case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid:
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[3].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
	}
	return 0;
}

static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev,
					      struct amdgpu_irq_src *source,
					      struct amdgpu_iv_entry *entry)
{
	return 0;
}

static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev,
						       bool enable)
{
	uint32_t data, def;
	int i;

	for (i = 0; i < adev->sdma.num_instances; i++) {
1566 1567 1568 1569

		if (adev->sdma.instance[i].fw_version < 70 && adev->asic_type == CHIP_VANGOGH)
			adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_MGCG;

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
			/* Enable sdma clock gating */
			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
				  SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
			if (def != data)
				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
		} else {
			/* Disable sdma clock gating */
			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
				 SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
			if (def != data)
				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
		}
	}
}

static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev,
						      bool enable)
{
	uint32_t data, def;
	int i;

	for (i = 0; i < adev->sdma.num_instances; i++) {
1603 1604 1605 1606

		if (adev->sdma.instance[i].fw_version < 70 && adev->asic_type == CHIP_VANGOGH)
			adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_LS;

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
			/* Enable sdma mem light sleep */
			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);

		} else {
			/* Disable sdma mem light sleep */
			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);

		}
	}
}

static int sdma_v5_2_set_clockgating_state(void *handle,
					   enum amd_clockgating_state state)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (amdgpu_sriov_vf(adev))
		return 0;

	switch (adev->asic_type) {
	case CHIP_SIENNA_CICHLID:
1635
	case CHIP_NAVY_FLOUNDER:
1636
	case CHIP_VANGOGH:
1637
	case CHIP_DIMGREY_CAVEFISH:
1638
	case CHIP_BEIGE_GOBY:
1639
	case CHIP_YELLOW_CARP:
1640
		sdma_v5_2_update_medium_grain_clock_gating(adev,
1641
				state == AMD_CG_STATE_GATE);
1642
		sdma_v5_2_update_medium_grain_light_sleep(adev,
1643
				state == AMD_CG_STATE_GATE);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		break;
	default:
		break;
	}

	return 0;
}

static int sdma_v5_2_set_powergating_state(void *handle,
					  enum amd_powergating_state state)
{
	return 0;
}

static void sdma_v5_2_get_clockgating_state(void *handle, u32 *flags)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int data;

	if (amdgpu_sriov_vf(adev))
		*flags = 0;

	/* AMD_CG_SUPPORT_SDMA_LS */
1667
	data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
		*flags |= AMD_CG_SUPPORT_SDMA_LS;
}

const struct amd_ip_funcs sdma_v5_2_ip_funcs = {
	.name = "sdma_v5_2",
	.early_init = sdma_v5_2_early_init,
	.late_init = NULL,
	.sw_init = sdma_v5_2_sw_init,
	.sw_fini = sdma_v5_2_sw_fini,
	.hw_init = sdma_v5_2_hw_init,
	.hw_fini = sdma_v5_2_hw_fini,
	.suspend = sdma_v5_2_suspend,
	.resume = sdma_v5_2_resume,
	.is_idle = sdma_v5_2_is_idle,
	.wait_for_idle = sdma_v5_2_wait_for_idle,
	.soft_reset = sdma_v5_2_soft_reset,
	.set_clockgating_state = sdma_v5_2_set_clockgating_state,
	.set_powergating_state = sdma_v5_2_set_powergating_state,
	.get_clockgating_state = sdma_v5_2_get_clockgating_state,
};

static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = {
	.type = AMDGPU_RING_TYPE_SDMA,
	.align_mask = 0xf,
	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
	.support_64bit_ptrs = true,
	.vmhub = AMDGPU_GFXHUB_0,
	.get_rptr = sdma_v5_2_ring_get_rptr,
	.get_wptr = sdma_v5_2_ring_get_wptr,
	.set_wptr = sdma_v5_2_ring_set_wptr,
	.emit_frame_size =
		5 + /* sdma_v5_2_ring_init_cond_exec */
		6 + /* sdma_v5_2_ring_emit_hdp_flush */
		3 + /* hdp_invalidate */
		6 + /* sdma_v5_2_ring_emit_pipeline_sync */
		/* sdma_v5_2_ring_emit_vm_flush */
		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
		10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */
	.emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */
	.emit_ib = sdma_v5_2_ring_emit_ib,
1710
	.emit_mem_sync = sdma_v5_2_ring_emit_mem_sync,
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	.emit_fence = sdma_v5_2_ring_emit_fence,
	.emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync,
	.emit_vm_flush = sdma_v5_2_ring_emit_vm_flush,
	.emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush,
	.test_ring = sdma_v5_2_ring_test_ring,
	.test_ib = sdma_v5_2_ring_test_ib,
	.insert_nop = sdma_v5_2_ring_insert_nop,
	.pad_ib = sdma_v5_2_ring_pad_ib,
	.emit_wreg = sdma_v5_2_ring_emit_wreg,
	.emit_reg_wait = sdma_v5_2_ring_emit_reg_wait,
	.emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait,
	.init_cond_exec = sdma_v5_2_ring_init_cond_exec,
	.patch_cond_exec = sdma_v5_2_ring_patch_cond_exec,
	.preempt_ib = sdma_v5_2_ring_preempt_ib,
};

static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev)
{
	int i;

	for (i = 0; i < adev->sdma.num_instances; i++) {
		adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs;
		adev->sdma.instance[i].ring.me = i;
	}
}

static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = {
	.set = sdma_v5_2_set_trap_irq_state,
	.process = sdma_v5_2_process_trap_irq,
};

static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = {
	.process = sdma_v5_2_process_illegal_inst_irq,
};

static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev)
{
	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
					adev->sdma.num_instances;
	adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs;
	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs;
}

/**
 * sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine
 *
1757
 * @ib: indirect buffer to copy to
1758 1759 1760
 * @src_offset: src GPU address
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
1761
 * @tmz: if a secure copy should be used
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
 *
 * Copy GPU buffers using the DMA engine.
 * Used by the amdgpu ttm implementation to move pages if
 * registered as the asic copy callback.
 */
static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib,
				       uint64_t src_offset,
				       uint64_t dst_offset,
				       uint32_t byte_count,
				       bool tmz)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
	ib->ptr[ib->length_dw++] = byte_count - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
}

/**
 * sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine
 *
1787
 * @ib: indirect buffer to fill
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
 * @src_data: value to write to buffer
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
 *
 * Fill GPU buffers using the DMA engine.
 */
static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib,
				       uint32_t src_data,
				       uint64_t dst_offset,
				       uint32_t byte_count)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = src_data;
	ib->ptr[ib->length_dw++] = byte_count - 1;
}

static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = {
	.copy_max_bytes = 0x400000,
	.copy_num_dw = 7,
	.emit_copy_buffer = sdma_v5_2_emit_copy_buffer,

	.fill_max_bytes = 0x400000,
	.fill_num_dw = 5,
	.emit_fill_buffer = sdma_v5_2_emit_fill_buffer,
};

static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev)
{
	if (adev->mman.buffer_funcs == NULL) {
		adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs;
		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
	}
}

static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = {
	.copy_pte_num_dw = 7,
	.copy_pte = sdma_v5_2_vm_copy_pte,
	.write_pte = sdma_v5_2_vm_write_pte,
	.set_pte_pde = sdma_v5_2_vm_set_pte_pde,
};

static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev)
{
	unsigned i;

	if (adev->vm_manager.vm_pte_funcs == NULL) {
		adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs;
		for (i = 0; i < adev->sdma.num_instances; i++) {
			adev->vm_manager.vm_pte_scheds[i] =
				&adev->sdma.instance[i].ring.sched;
		}
		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
	}
}

const struct amdgpu_ip_block_version sdma_v5_2_ip_block = {
	.type = AMD_IP_BLOCK_TYPE_SDMA,
	.major = 5,
	.minor = 2,
	.rev = 0,
	.funcs = &sdma_v5_2_ip_funcs,
};