dcn30_mpc.c 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Copyright 2020 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "reg_helper.h"
#include "dcn30_mpc.h"
#include "dcn30_cm_common.h"
#include "basics/conversion.h"
#include "dcn10/dcn10_cm_common.h"
#include "dc.h"

#define REG(reg)\
	mpc30->mpc_regs->reg

#define CTX \
	mpc30->base.ctx

#undef FN
#define FN(reg_name, field_name) \
	mpc30->mpc_shift->field_name, mpc30->mpc_mask->field_name


#define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))


static bool mpc3_is_dwb_idle(
	struct mpc *mpc,
	int dwb_id)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	unsigned int status;

	REG_GET(DWB_MUX[dwb_id], MPC_DWB0_MUX_STATUS, &status);

	if (status == 0xf)
		return true;
	else
		return false;
}

static void mpc3_set_dwb_mux(
	struct mpc *mpc,
	int dwb_id,
	int mpcc_id)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_SET(DWB_MUX[dwb_id], 0,
		MPC_DWB0_MUX, mpcc_id);
}

static void mpc3_disable_dwb_mux(
	struct mpc *mpc,
	int dwb_id)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_SET(DWB_MUX[dwb_id], 0,
		MPC_DWB0_MUX, 0xf);
}

static void mpc3_set_out_rate_control(
	struct mpc *mpc,
	int opp_id,
	bool enable,
	bool rate_2x_mode,
	struct mpc_dwb_flow_control *flow_control)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_UPDATE_2(MUX[opp_id],
			MPC_OUT_RATE_CONTROL_DISABLE, !enable,
			MPC_OUT_RATE_CONTROL, rate_2x_mode);

	if (flow_control)
		REG_UPDATE_2(MUX[opp_id],
			MPC_OUT_FLOW_CONTROL_MODE, flow_control->flow_ctrl_mode,
			MPC_OUT_FLOW_CONTROL_COUNT, flow_control->flow_ctrl_cnt1);
}

static enum dc_lut_mode mpc3_get_ogam_current(struct mpc *mpc, int mpcc_id)
{
	/*Contrary to DCN2 and DCN1 wherein a single status register field holds this info;
	 *in DCN3/3AG, we need to read two separate fields to retrieve the same info
	 */
	enum dc_lut_mode mode;
	uint32_t state_mode;
	uint32_t state_ram_lut_in_use;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_GET_2(MPCC_OGAM_CONTROL[mpcc_id],
			MPCC_OGAM_MODE_CURRENT, &state_mode,
			MPCC_OGAM_SELECT_CURRENT, &state_ram_lut_in_use);

		switch (state_mode) {
		case 0:
			mode = LUT_BYPASS;
			break;
		case 2:
			switch (state_ram_lut_in_use) {
			case 0:
				mode = LUT_RAM_A;
				break;
			case 1:
				mode = LUT_RAM_B;
				break;
			default:
				mode = LUT_BYPASS;
				break;
			}
			break;
		default:
			mode = LUT_BYPASS;
			break;
		}
		return mode;
}

static void mpc3_power_on_ogam_lut(
		struct mpc *mpc, int mpcc_id,
		bool power_on)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

146 147 148 149 150 151 152 153 154 155
	if (mpc->ctx->dc->debug.enable_mpc_mem_powerdown) {
		// Force power on
		REG_UPDATE(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0);
		// Wait for confirmation when powering on
		if (power_on)
			REG_WAIT(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_PWR_STATE, 0, 10, 10);
	} else {
		REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0,
				MPCC_OGAM_MEM_PWR_FORCE, power_on == true ? 0 : 1);
	}
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}

static void mpc3_configure_ogam_lut(
		struct mpc *mpc, int mpcc_id,
		bool is_ram_a)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_UPDATE_2(MPCC_OGAM_LUT_CONTROL[mpcc_id],
			MPCC_OGAM_LUT_WRITE_COLOR_MASK, 7,
			MPCC_OGAM_LUT_HOST_SEL, is_ram_a == true ? 0:1);

	REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);
}

static void mpc3_ogam_get_reg_field(
		struct mpc *mpc,
		struct dcn3_xfer_func_reg *reg)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	reg->shifts.field_region_start_base = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_BASE_B;
	reg->masks.field_region_start_base = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_BASE_B;
	reg->shifts.field_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_OFFSET_B;
	reg->masks.field_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_OFFSET_B;

	reg->shifts.exp_region0_lut_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
	reg->masks.exp_region0_lut_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
	reg->shifts.exp_region0_num_segments = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
	reg->masks.exp_region0_num_segments = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
	reg->shifts.exp_region1_lut_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
	reg->masks.exp_region1_lut_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
	reg->shifts.exp_region1_num_segments = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
	reg->masks.exp_region1_num_segments = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;

	reg->shifts.field_region_end = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B;
	reg->masks.field_region_end = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B;
	reg->shifts.field_region_end_slope = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
	reg->masks.field_region_end_slope = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
	reg->shifts.field_region_end_base = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
	reg->masks.field_region_end_base = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
	reg->shifts.field_region_linear_slope = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SLOPE_B;
	reg->masks.field_region_linear_slope = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SLOPE_B;
	reg->shifts.exp_region_start = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B;
	reg->masks.exp_region_start = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B;
	reg->shifts.exp_resion_start_segment = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
	reg->masks.exp_resion_start_segment = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
}

static void mpc3_program_luta(struct mpc *mpc, int mpcc_id,
		const struct pwl_params *params)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	struct dcn3_xfer_func_reg gam_regs;

	mpc3_ogam_get_reg_field(mpc, &gam_regs);

	gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]);
	gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]);
	gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]);
	gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_B[mpcc_id]);
	gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_G[mpcc_id]);
	gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_R[mpcc_id]);
	gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]);
	gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]);
	gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]);
	gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]);
	gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]);
	gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]);
	gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]);
	gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]);
	//New registers in DCN3AG/DCN OGAM block
	gam_regs.offset_b =  REG(MPCC_OGAM_RAMA_OFFSET_B[mpcc_id]);
	gam_regs.offset_g =  REG(MPCC_OGAM_RAMA_OFFSET_G[mpcc_id]);
	gam_regs.offset_r =  REG(MPCC_OGAM_RAMA_OFFSET_R[mpcc_id]);
	gam_regs.start_base_cntl_b = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_B[mpcc_id]);
	gam_regs.start_base_cntl_g = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_G[mpcc_id]);
	gam_regs.start_base_cntl_r = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_R[mpcc_id]);

	cm_helper_program_gamcor_xfer_func(mpc30->base.ctx, params, &gam_regs);
}

static void mpc3_program_lutb(struct mpc *mpc, int mpcc_id,
		const struct pwl_params *params)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	struct dcn3_xfer_func_reg gam_regs;

	mpc3_ogam_get_reg_field(mpc, &gam_regs);

	gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]);
	gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]);
	gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]);
	gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_B[mpcc_id]);
	gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_G[mpcc_id]);
	gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_R[mpcc_id]);
	gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]);
	gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]);
	gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]);
	gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]);
	gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]);
	gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]);
	gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]);
	gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]);
	//New registers in DCN3AG/DCN OGAM block
	gam_regs.offset_b =  REG(MPCC_OGAM_RAMB_OFFSET_B[mpcc_id]);
	gam_regs.offset_g =  REG(MPCC_OGAM_RAMB_OFFSET_G[mpcc_id]);
	gam_regs.offset_r =  REG(MPCC_OGAM_RAMB_OFFSET_R[mpcc_id]);
	gam_regs.start_base_cntl_b = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_B[mpcc_id]);
	gam_regs.start_base_cntl_g = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_G[mpcc_id]);
	gam_regs.start_base_cntl_r = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_R[mpcc_id]);

	cm_helper_program_gamcor_xfer_func(mpc30->base.ctx, params, &gam_regs);
}


static void mpc3_program_ogam_pwl(
		struct mpc *mpc, int mpcc_id,
		const struct pwl_result_data *rgb,
		uint32_t num)
{
	uint32_t i;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	uint32_t last_base_value_red = rgb[num-1].red_reg + rgb[num-1].delta_red_reg;
	uint32_t last_base_value_green = rgb[num-1].green_reg + rgb[num-1].delta_green_reg;
	uint32_t last_base_value_blue = rgb[num-1].blue_reg + rgb[num-1].delta_blue_reg;

	/*the entries of DCN3AG gamma LUTs take 18bit base values as opposed to
	 *38 base+delta values per entry in earlier DCN architectures
	 *last base value for our lut is compute by adding the last base value
	 *in our data + last delta
	 */

	if (is_rgb_equal(rgb,  num)) {
		for (i = 0 ; i < num; i++)
			REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg);

		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_red);

	} else {

		REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id],
				MPCC_OGAM_LUT_WRITE_COLOR_MASK, 4);

		for (i = 0 ; i < num; i++)
			REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg);

		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_red);

		REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);

		REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id],
				MPCC_OGAM_LUT_WRITE_COLOR_MASK, 2);

		for (i = 0 ; i < num; i++)
			REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg);

		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_green);

		REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);

		REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id],
				MPCC_OGAM_LUT_WRITE_COLOR_MASK, 1);

		for (i = 0 ; i < num; i++)
			REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg);

		REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_blue);
	}

}

void mpc3_set_output_gamma(
		struct mpc *mpc,
		int mpcc_id,
		const struct pwl_params *params)
{
	enum dc_lut_mode current_mode;
	enum dc_lut_mode next_mode;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	if (mpc->ctx->dc->debug.cm_in_bypass) {
		REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
		return;
	}

	if (params == NULL) { //disable OGAM
		REG_SET(MPCC_OGAM_CONTROL[mpcc_id], 0, MPCC_OGAM_MODE, 0);
		return;
	}
	//enable OGAM
	REG_SET(MPCC_OGAM_CONTROL[mpcc_id], 0, MPCC_OGAM_MODE, 2);

	current_mode = mpc3_get_ogam_current(mpc, mpcc_id);
	if (current_mode == LUT_BYPASS)
		next_mode = LUT_RAM_A;
	else if (current_mode == LUT_RAM_A)
		next_mode = LUT_RAM_B;
	else
		next_mode = LUT_RAM_A;

	mpc3_power_on_ogam_lut(mpc, mpcc_id, true);
	mpc3_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A ? true:false);

	if (next_mode == LUT_RAM_A)
		mpc3_program_luta(mpc, mpcc_id, params);
	else
		mpc3_program_lutb(mpc, mpcc_id, params);

	mpc3_program_ogam_pwl(
			mpc, mpcc_id, params->rgb_resulted, params->hw_points_num);

	/*we need to program 2 fields here as apposed to 1*/
	REG_UPDATE(MPCC_OGAM_CONTROL[mpcc_id],
			MPCC_OGAM_SELECT, next_mode == LUT_RAM_A ? 0:1);
371 372 373

	if (mpc->ctx->dc->debug.enable_mpc_mem_powerdown)
		mpc3_power_on_ogam_lut(mpc, mpcc_id, false);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
}

void mpc3_set_denorm(
		struct mpc *mpc,
		int opp_id,
		enum dc_color_depth output_depth)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	/* De-normalize Fixed U1.13 color data to different target bit depths. 0 is bypass*/
	int denorm_mode = 0;

	switch (output_depth) {
	case COLOR_DEPTH_666:
		denorm_mode = 1;
		break;
	case COLOR_DEPTH_888:
		denorm_mode = 2;
		break;
	case COLOR_DEPTH_999:
		denorm_mode = 3;
		break;
	case COLOR_DEPTH_101010:
		denorm_mode = 4;
		break;
	case COLOR_DEPTH_111111:
		denorm_mode = 5;
		break;
	case COLOR_DEPTH_121212:
		denorm_mode = 6;
		break;
	case COLOR_DEPTH_141414:
	case COLOR_DEPTH_161616:
	default:
		/* not valid used case! */
		break;
	}

	REG_UPDATE(DENORM_CONTROL[opp_id],
			MPC_OUT_DENORM_MODE, denorm_mode);
}

void mpc3_set_denorm_clamp(
		struct mpc *mpc,
		int opp_id,
		struct mpc_denorm_clamp denorm_clamp)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	/*program min and max clamp values for the pixel components*/
	REG_UPDATE_2(DENORM_CONTROL[opp_id],
			MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr,
			MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr);
	REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id],
			MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y,
			MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y);
	REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id],
			MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb,
			MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb);
}

static enum dc_lut_mode mpc3_get_shaper_current(struct mpc *mpc, uint32_t rmu_idx)
{
	enum dc_lut_mode mode;
	uint32_t state_mode;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_GET(SHAPER_CONTROL[rmu_idx],
			MPC_RMU_SHAPER_LUT_MODE_CURRENT, &state_mode);

		switch (state_mode) {
		case 0:
			mode = LUT_BYPASS;
			break;
		case 1:
			mode = LUT_RAM_A;
			break;
		case 2:
			mode = LUT_RAM_B;
			break;
		default:
			mode = LUT_BYPASS;
			break;
		}
		return mode;
}

static void mpc3_configure_shaper_lut(
		struct mpc *mpc,
		bool is_ram_a,
		uint32_t rmu_idx)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_UPDATE(SHAPER_LUT_WRITE_EN_MASK[rmu_idx],
			MPC_RMU_SHAPER_LUT_WRITE_EN_MASK, 7);
	REG_UPDATE(SHAPER_LUT_WRITE_EN_MASK[rmu_idx],
			MPC_RMU_SHAPER_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
	REG_SET(SHAPER_LUT_INDEX[rmu_idx], 0, MPC_RMU_SHAPER_LUT_INDEX, 0);
}

static void mpc3_program_shaper_luta_settings(
		struct mpc *mpc,
		const struct pwl_params *params,
		uint32_t rmu_idx)
{
	const struct gamma_curve *curve;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_SET_2(SHAPER_RAMA_START_CNTL_B[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
		MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
	REG_SET_2(SHAPER_RAMA_START_CNTL_G[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
	REG_SET_2(SHAPER_RAMA_START_CNTL_R[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);

	REG_SET_2(SHAPER_RAMA_END_CNTL_B[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
	REG_SET_2(SHAPER_RAMA_END_CNTL_G[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y);
	REG_SET_2(SHAPER_RAMA_END_CNTL_R[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y);

	curve = params->arr_curve_points;
	REG_SET_4(SHAPER_RAMA_REGION_0_1[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_2_3[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_4_5[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_6_7[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_8_9[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_10_11[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_12_13[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_14_15[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);


	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_16_17[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_18_19[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_20_21[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_22_23[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_24_25[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_26_27[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_28_29[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_30_31[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMA_REGION_32_33[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
}

static void mpc3_program_shaper_lutb_settings(
		struct mpc *mpc,
		const struct pwl_params *params,
		uint32_t rmu_idx)
{
	const struct gamma_curve *curve;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_SET_2(SHAPER_RAMB_START_CNTL_B[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
		MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
	REG_SET_2(SHAPER_RAMB_START_CNTL_G[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
	REG_SET_2(SHAPER_RAMB_START_CNTL_R[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);

	REG_SET_2(SHAPER_RAMB_END_CNTL_B[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
	REG_SET_2(SHAPER_RAMB_END_CNTL_G[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y);
	REG_SET_2(SHAPER_RAMB_END_CNTL_R[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x,
			MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y);

	curve = params->arr_curve_points;
	REG_SET_4(SHAPER_RAMB_REGION_0_1[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_2_3[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);


	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_4_5[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_6_7[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_8_9[rmu_idx], 0,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
		MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_10_11[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_12_13[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_14_15[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);


	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_16_17[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_18_19[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_20_21[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_22_23[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_24_25[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_26_27[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_28_29[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_30_31[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);

	curve += 2;
	REG_SET_4(SHAPER_RAMB_REGION_32_33[rmu_idx], 0,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
			MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
}


static void mpc3_program_shaper_lut(
		struct mpc *mpc,
		const struct pwl_result_data *rgb,
		uint32_t num,
		uint32_t rmu_idx)
{
	uint32_t i, red, green, blue;
	uint32_t  red_delta, green_delta, blue_delta;
	uint32_t  red_value, green_value, blue_value;

	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	for (i = 0 ; i < num; i++) {

		red   = rgb[i].red_reg;
		green = rgb[i].green_reg;
		blue  = rgb[i].blue_reg;

		red_delta   = rgb[i].delta_red_reg;
		green_delta = rgb[i].delta_green_reg;
		blue_delta  = rgb[i].delta_blue_reg;

		red_value   = ((red_delta   & 0x3ff) << 14) | (red   & 0x3fff);
		green_value = ((green_delta & 0x3ff) << 14) | (green & 0x3fff);
		blue_value  = ((blue_delta  & 0x3ff) << 14) | (blue  & 0x3fff);

		REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, red_value);
		REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, green_value);
		REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, blue_value);
	}

}

static void mpc3_power_on_shaper_3dlut(
		struct mpc *mpc,
		uint32_t rmu_idx,
	bool power_on)
{
	uint32_t power_status_shaper = 2;
	uint32_t power_status_3dlut  = 2;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
815
	int max_retries = 10;
816 817 818 819

	if (rmu_idx == 0) {
		REG_SET(MPC_RMU_MEM_PWR_CTRL, 0,
			MPC_RMU0_MEM_PWR_DIS, power_on == true ? 1:0);
820 821 822 823 824 825
		/* wait for memory to fully power up */
		if (power_on && mpc->ctx->dc->debug.enable_mpc_mem_powerdown) {
			REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_SHAPER_MEM_PWR_STATE, 0, 1, max_retries);
			REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_3DLUT_MEM_PWR_STATE, 0, 1, max_retries);
		}

826 827 828 829 830 831
		/*read status is not mandatory, it is just for debugging*/
		REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_SHAPER_MEM_PWR_STATE, &power_status_shaper);
		REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_3DLUT_MEM_PWR_STATE, &power_status_3dlut);
	} else if (rmu_idx == 1) {
		REG_SET(MPC_RMU_MEM_PWR_CTRL, 0,
			MPC_RMU1_MEM_PWR_DIS, power_on == true ? 1:0);
832 833 834 835 836
		if (power_on && mpc->ctx->dc->debug.enable_mpc_mem_powerdown) {
			REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_SHAPER_MEM_PWR_STATE, 0, 1, max_retries);
			REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_3DLUT_MEM_PWR_STATE, 0, 1, max_retries);
		}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
		REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_SHAPER_MEM_PWR_STATE, &power_status_shaper);
		REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_3DLUT_MEM_PWR_STATE, &power_status_3dlut);
	}
	/*TODO Add rmu_idx == 2 for SIENNA_CICHLID */
	if (power_status_shaper != 0 && power_on == true)
		BREAK_TO_DEBUGGER();

	if (power_status_3dlut != 0 && power_on == true)
		BREAK_TO_DEBUGGER();
}



bool mpc3_program_shaper(
		struct mpc *mpc,
		const struct pwl_params *params,
		uint32_t rmu_idx)
{
	enum dc_lut_mode current_mode;
	enum dc_lut_mode next_mode;

	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	if (params == NULL) {
		REG_SET(SHAPER_CONTROL[rmu_idx], 0, MPC_RMU_SHAPER_LUT_MODE, 0);
		return false;
	}
864 865 866 867

	if (mpc->ctx->dc->debug.enable_mpc_mem_powerdown)
		mpc3_power_on_shaper_3dlut(mpc, rmu_idx, true);

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	current_mode = mpc3_get_shaper_current(mpc, rmu_idx);

	if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
		next_mode = LUT_RAM_B;
	else
		next_mode = LUT_RAM_A;

	mpc3_configure_shaper_lut(mpc, next_mode == LUT_RAM_A ? true:false, rmu_idx);

	if (next_mode == LUT_RAM_A)
		mpc3_program_shaper_luta_settings(mpc, params, rmu_idx);
	else
		mpc3_program_shaper_lutb_settings(mpc, params, rmu_idx);

	mpc3_program_shaper_lut(
			mpc, params->rgb_resulted, params->hw_points_num, rmu_idx);

	REG_SET(SHAPER_CONTROL[rmu_idx], 0, MPC_RMU_SHAPER_LUT_MODE, next_mode == LUT_RAM_A ? 1:2);
	mpc3_power_on_shaper_3dlut(mpc, rmu_idx, false);

	return true;
}

static void mpc3_set_3dlut_mode(
		struct mpc *mpc,
		enum dc_lut_mode mode,
		bool is_color_channel_12bits,
		bool is_lut_size17x17x17,
		uint32_t rmu_idx)
{
	uint32_t lut_mode;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	if (mode == LUT_BYPASS)
		lut_mode = 0;
	else if (mode == LUT_RAM_A)
		lut_mode = 1;
	else
		lut_mode = 2;

	REG_UPDATE_2(RMU_3DLUT_MODE[rmu_idx],
			MPC_RMU_3DLUT_MODE, lut_mode,
			MPC_RMU_3DLUT_SIZE, is_lut_size17x17x17 == true ? 0 : 1);
}

static enum dc_lut_mode get3dlut_config(
			struct mpc *mpc,
			bool *is_17x17x17,
			bool *is_12bits_color_channel,
			int rmu_idx)
{
	uint32_t i_mode, i_enable_10bits, lut_size;
	enum dc_lut_mode mode;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_GET(RMU_3DLUT_MODE[rmu_idx],
			MPC_RMU_3DLUT_MODE_CURRENT,  &i_mode);

	REG_GET(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx],
			MPC_RMU_3DLUT_30BIT_EN, &i_enable_10bits);

	switch (i_mode) {
	case 0:
		mode = LUT_BYPASS;
		break;
	case 1:
		mode = LUT_RAM_A;
		break;
	case 2:
		mode = LUT_RAM_B;
		break;
	default:
		mode = LUT_BYPASS;
		break;
	}
	if (i_enable_10bits > 0)
		*is_12bits_color_channel = false;
	else
		*is_12bits_color_channel = true;

	REG_GET(RMU_3DLUT_MODE[rmu_idx], MPC_RMU_3DLUT_SIZE, &lut_size);

	if (lut_size == 0)
		*is_17x17x17 = true;
	else
		*is_17x17x17 = false;

	return mode;
}

static void mpc3_select_3dlut_ram(
		struct mpc *mpc,
		enum dc_lut_mode mode,
		bool is_color_channel_12bits,
		uint32_t rmu_idx)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_UPDATE_2(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx],
		MPC_RMU_3DLUT_RAM_SEL, mode == LUT_RAM_A ? 0 : 1,
		MPC_RMU_3DLUT_30BIT_EN, is_color_channel_12bits == true ? 0:1);
}

static void mpc3_select_3dlut_ram_mask(
		struct mpc *mpc,
		uint32_t ram_selection_mask,
		uint32_t rmu_idx)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	REG_UPDATE(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx], MPC_RMU_3DLUT_WRITE_EN_MASK,
			ram_selection_mask);
	REG_SET(RMU_3DLUT_INDEX[rmu_idx], 0, MPC_RMU_3DLUT_INDEX, 0);
}

static void mpc3_set3dlut_ram12(
		struct mpc *mpc,
		const struct dc_rgb *lut,
		uint32_t entries,
		uint32_t rmu_idx)
{
	uint32_t i, red, green, blue, red1, green1, blue1;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	for (i = 0 ; i < entries; i += 2) {
		red   = lut[i].red<<4;
		green = lut[i].green<<4;
		blue  = lut[i].blue<<4;
		red1   = lut[i+1].red<<4;
		green1 = lut[i+1].green<<4;
		blue1  = lut[i+1].blue<<4;

		REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0,
				MPC_RMU_3DLUT_DATA0, red,
				MPC_RMU_3DLUT_DATA1, red1);

		REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0,
				MPC_RMU_3DLUT_DATA0, green,
				MPC_RMU_3DLUT_DATA1, green1);

		REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0,
				MPC_RMU_3DLUT_DATA0, blue,
				MPC_RMU_3DLUT_DATA1, blue1);
	}
}

static void mpc3_set3dlut_ram10(
		struct mpc *mpc,
		const struct dc_rgb *lut,
		uint32_t entries,
		uint32_t rmu_idx)
{
	uint32_t i, red, green, blue, value;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	for (i = 0; i < entries; i++) {
		red   = lut[i].red;
		green = lut[i].green;
		blue  = lut[i].blue;
		//should we shift red 22bit and green 12? ask Nvenko
		value = (red<<20) | (green<<10) | blue;

		REG_SET(RMU_3DLUT_DATA_30BIT[rmu_idx], 0, MPC_RMU_3DLUT_DATA_30BIT, value);
	}

}


static void mpc3_init_mpcc(struct mpcc *mpcc, int mpcc_inst)
{
	mpcc->mpcc_id = mpcc_inst;
	mpcc->dpp_id = 0xf;
	mpcc->mpcc_bot = NULL;
	mpcc->blnd_cfg.overlap_only = false;
	mpcc->blnd_cfg.global_alpha = 0xff;
	mpcc->blnd_cfg.global_gain = 0xff;
	mpcc->blnd_cfg.background_color_bpc = 4;
	mpcc->blnd_cfg.bottom_gain_mode = 0;
	mpcc->blnd_cfg.top_gain = 0x1f000;
	mpcc->blnd_cfg.bottom_inside_gain = 0x1f000;
	mpcc->blnd_cfg.bottom_outside_gain = 0x1f000;
	mpcc->sm_cfg.enable = false;
	mpcc->shared_bottom = false;
}

static void program_gamut_remap(
		struct dcn30_mpc *mpc30,
		int mpcc_id,
		const uint16_t *regval,
		int select)
{
	uint16_t selection = 0;
	struct color_matrices_reg gam_regs;

	if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
		REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0,
				MPCC_GAMUT_REMAP_MODE, GAMUT_REMAP_BYPASS);
		return;
	}
	switch (select) {
	case GAMUT_REMAP_COEFF:
		selection = 1;
		break;
		/*this corresponds to GAMUT_REMAP coefficients set B
		 * we don't have common coefficient sets in dcn3ag/dcn3
		 */
	case GAMUT_REMAP_COMA_COEFF:
		selection = 2;
		break;
	default:
		break;
	}

	gam_regs.shifts.csc_c11 = mpc30->mpc_shift->MPCC_GAMUT_REMAP_C11_A;
	gam_regs.masks.csc_c11  = mpc30->mpc_mask->MPCC_GAMUT_REMAP_C11_A;
	gam_regs.shifts.csc_c12 = mpc30->mpc_shift->MPCC_GAMUT_REMAP_C12_A;
	gam_regs.masks.csc_c12 = mpc30->mpc_mask->MPCC_GAMUT_REMAP_C12_A;


	if (select == GAMUT_REMAP_COEFF) {
		gam_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_A[mpcc_id]);
		gam_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_A[mpcc_id]);

		cm_helper_program_color_matrices(
				mpc30->base.ctx,
				regval,
				&gam_regs);

	} else  if (select == GAMUT_REMAP_COMA_COEFF) {

		gam_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_B[mpcc_id]);
		gam_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_B[mpcc_id]);

		cm_helper_program_color_matrices(
				mpc30->base.ctx,
				regval,
				&gam_regs);

	}
	//select coefficient set to use
	REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0,
					MPCC_GAMUT_REMAP_MODE, selection);
}

void mpc3_set_gamut_remap(
		struct mpc *mpc,
		int mpcc_id,
		const struct mpc_grph_gamut_adjustment *adjust)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	int i = 0;
	int gamut_mode;

	if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
		program_gamut_remap(mpc30, mpcc_id, NULL, GAMUT_REMAP_BYPASS);
	else {
		struct fixed31_32 arr_matrix[12];
		uint16_t arr_reg_val[12];

		for (i = 0; i < 12; i++)
			arr_matrix[i] = adjust->temperature_matrix[i];

		convert_float_matrix(
			arr_reg_val, arr_matrix, 12);

		//current coefficient set in use
		REG_GET(MPCC_GAMUT_REMAP_MODE[mpcc_id], MPCC_GAMUT_REMAP_MODE_CURRENT, &gamut_mode);

		if (gamut_mode == 0)
			gamut_mode = 1; //use coefficient set A
		else if (gamut_mode == 1)
			gamut_mode = 2;
		else
			gamut_mode = 1;

		program_gamut_remap(mpc30, mpcc_id, arr_reg_val, gamut_mode);
	}
}

bool mpc3_program_3dlut(
		struct mpc *mpc,
		const struct tetrahedral_params *params,
		int rmu_idx)
{
	enum dc_lut_mode mode;
	bool is_17x17x17;
	bool is_12bits_color_channel;
	const struct dc_rgb *lut0;
	const struct dc_rgb *lut1;
	const struct dc_rgb *lut2;
	const struct dc_rgb *lut3;
	int lut_size0;
	int lut_size;

	if (params == NULL) {
		mpc3_set_3dlut_mode(mpc, LUT_BYPASS, false, false, rmu_idx);
		return false;
	}
	mpc3_power_on_shaper_3dlut(mpc, rmu_idx, true);

	mode = get3dlut_config(mpc, &is_17x17x17, &is_12bits_color_channel, rmu_idx);

	if (mode == LUT_BYPASS || mode == LUT_RAM_B)
		mode = LUT_RAM_A;
	else
		mode = LUT_RAM_B;

	is_17x17x17 = !params->use_tetrahedral_9;
	is_12bits_color_channel = params->use_12bits;
	if (is_17x17x17) {
		lut0 = params->tetrahedral_17.lut0;
		lut1 = params->tetrahedral_17.lut1;
		lut2 = params->tetrahedral_17.lut2;
		lut3 = params->tetrahedral_17.lut3;
		lut_size0 = sizeof(params->tetrahedral_17.lut0)/
					sizeof(params->tetrahedral_17.lut0[0]);
		lut_size  = sizeof(params->tetrahedral_17.lut1)/
					sizeof(params->tetrahedral_17.lut1[0]);
	} else {
		lut0 = params->tetrahedral_9.lut0;
		lut1 = params->tetrahedral_9.lut1;
		lut2 = params->tetrahedral_9.lut2;
		lut3 = params->tetrahedral_9.lut3;
		lut_size0 = sizeof(params->tetrahedral_9.lut0)/
				sizeof(params->tetrahedral_9.lut0[0]);
		lut_size  = sizeof(params->tetrahedral_9.lut1)/
				sizeof(params->tetrahedral_9.lut1[0]);
		}

	mpc3_select_3dlut_ram(mpc, mode,
				is_12bits_color_channel, rmu_idx);
	mpc3_select_3dlut_ram_mask(mpc, 0x1, rmu_idx);
	if (is_12bits_color_channel)
		mpc3_set3dlut_ram12(mpc, lut0, lut_size0, rmu_idx);
	else
		mpc3_set3dlut_ram10(mpc, lut0, lut_size0, rmu_idx);

	mpc3_select_3dlut_ram_mask(mpc, 0x2, rmu_idx);
	if (is_12bits_color_channel)
		mpc3_set3dlut_ram12(mpc, lut1, lut_size, rmu_idx);
	else
		mpc3_set3dlut_ram10(mpc, lut1, lut_size, rmu_idx);

	mpc3_select_3dlut_ram_mask(mpc, 0x4, rmu_idx);
	if (is_12bits_color_channel)
		mpc3_set3dlut_ram12(mpc, lut2, lut_size, rmu_idx);
	else
		mpc3_set3dlut_ram10(mpc, lut2, lut_size, rmu_idx);

	mpc3_select_3dlut_ram_mask(mpc, 0x8, rmu_idx);
	if (is_12bits_color_channel)
		mpc3_set3dlut_ram12(mpc, lut3, lut_size, rmu_idx);
	else
		mpc3_set3dlut_ram10(mpc, lut3, lut_size, rmu_idx);

	mpc3_set_3dlut_mode(mpc, mode, is_12bits_color_channel,
					is_17x17x17, rmu_idx);

1226 1227 1228
	if (mpc->ctx->dc->debug.enable_mpc_mem_powerdown)
		mpc3_power_on_shaper_3dlut(mpc, rmu_idx, false);

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	return true;
}

void mpc3_set_output_csc(
		struct mpc *mpc,
		int opp_id,
		const uint16_t *regval,
		enum mpc_output_csc_mode ocsc_mode)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	struct color_matrices_reg ocsc_regs;

	REG_WRITE(MPC_OUT_CSC_COEF_FORMAT, 0);

	REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);

	if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE)
		return;

	if (regval == NULL) {
		BREAK_TO_DEBUGGER();
		return;
	}

	ocsc_regs.shifts.csc_c11 = mpc30->mpc_shift->MPC_OCSC_C11_A;
	ocsc_regs.masks.csc_c11  = mpc30->mpc_mask->MPC_OCSC_C11_A;
	ocsc_regs.shifts.csc_c12 = mpc30->mpc_shift->MPC_OCSC_C12_A;
	ocsc_regs.masks.csc_c12 = mpc30->mpc_mask->MPC_OCSC_C12_A;

	if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
	} else {
		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
	}
	cm_helper_program_color_matrices(
			mpc30->base.ctx,
			regval,
			&ocsc_regs);
}

void mpc3_set_ocsc_default(
		struct mpc *mpc,
		int opp_id,
		enum dc_color_space color_space,
		enum mpc_output_csc_mode ocsc_mode)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	uint32_t arr_size;
	struct color_matrices_reg ocsc_regs;
	const uint16_t *regval = NULL;

	REG_WRITE(MPC_OUT_CSC_COEF_FORMAT, 0);

	REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
	if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE)
		return;

	regval = find_color_matrix(color_space, &arr_size);

	if (regval == NULL) {
		BREAK_TO_DEBUGGER();
		return;
	}

	ocsc_regs.shifts.csc_c11 = mpc30->mpc_shift->MPC_OCSC_C11_A;
	ocsc_regs.masks.csc_c11  = mpc30->mpc_mask->MPC_OCSC_C11_A;
	ocsc_regs.shifts.csc_c12 = mpc30->mpc_shift->MPC_OCSC_C12_A;
	ocsc_regs.masks.csc_c12 = mpc30->mpc_mask->MPC_OCSC_C12_A;


	if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
	} else {
		ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
		ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
	}

	cm_helper_program_color_matrices(
			mpc30->base.ctx,
			regval,
			&ocsc_regs);
}

void mpc3_set_rmu_mux(
	struct mpc *mpc,
	int rmu_idx,
	int value)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	if (rmu_idx == 0)
		REG_UPDATE(MPC_RMU_CONTROL, MPC_RMU0_MUX, value);
	else if (rmu_idx == 1)
		REG_UPDATE(MPC_RMU_CONTROL, MPC_RMU1_MUX, value);

}

uint32_t mpc3_get_rmu_mux_status(
	struct mpc *mpc,
	int rmu_idx)
{
	uint32_t status = 0xf;
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);

	if (rmu_idx == 0)
		REG_GET(MPC_RMU_CONTROL, MPC_RMU0_MUX_STATUS, &status);
	else if (rmu_idx == 1)
		REG_GET(MPC_RMU_CONTROL, MPC_RMU1_MUX_STATUS, &status);

	return status;
}

uint32_t mpcc3_acquire_rmu(struct mpc *mpc, int mpcc_id, int rmu_idx)
{
	uint32_t rmu_status;

	//determine if this mpcc is already multiplexed to an RMU unit
	rmu_status = mpc3_get_rmu_mux_status(mpc, rmu_idx);
	if (rmu_status == mpcc_id)
		//return rmu_idx of pre_acquired rmu unit
		return rmu_idx;

	if (rmu_status == 0xf) {//rmu unit is disabled
		mpc3_set_rmu_mux(mpc, rmu_idx, mpcc_id);
		return rmu_idx;
	}

	//no vacant RMU units or invalid parameters acquire_post_bldn_3dlut
	return -1;
}

int mpcc3_release_rmu(struct mpc *mpc, int mpcc_id)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	int rmu_idx;
	uint32_t rmu_status;
	int released_rmu = -1;

	for (rmu_idx = 0; rmu_idx < mpc30->num_rmu; rmu_idx++) {
		rmu_status = mpc3_get_rmu_mux_status(mpc, rmu_idx);
		if (rmu_status == mpcc_id) {
			mpc3_set_rmu_mux(mpc, rmu_idx, 0xf);
			released_rmu = rmu_idx;
			break;
		}
	}
	return released_rmu;

}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static void mpc3_mpc_init(struct mpc *mpc)
{
	struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
	int mpcc_id;

	mpc1_mpc_init(mpc);

	if (mpc->ctx->dc->debug.enable_mpc_mem_powerdown) {
		if (mpc30->mpc_mask->MPC_RMU0_MEM_LOW_PWR_MODE && mpc30->mpc_mask->MPC_RMU1_MEM_LOW_PWR_MODE) {
			REG_UPDATE(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_MEM_LOW_PWR_MODE, 3);
			REG_UPDATE(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_MEM_LOW_PWR_MODE, 3);
		}

		if (mpc30->mpc_mask->MPCC_OGAM_MEM_LOW_PWR_MODE) {
			for (mpcc_id = 0; mpcc_id < mpc30->num_mpcc; mpcc_id++)
				REG_UPDATE(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_LOW_PWR_MODE, 3);
		}
	}
}

1402 1403 1404 1405
const struct mpc_funcs dcn30_mpc_funcs = {
	.read_mpcc_state = mpc1_read_mpcc_state,
	.insert_plane = mpc1_insert_plane,
	.remove_mpcc = mpc1_remove_mpcc,
1406
	.mpc_init = mpc3_mpc_init,
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	.mpc_init_single_inst = mpc1_mpc_init_single_inst,
	.update_blending = mpc2_update_blending,
	.cursor_lock = mpc1_cursor_lock,
	.get_mpcc_for_dpp = mpc1_get_mpcc_for_dpp,
	.wait_for_idle = mpc2_assert_idle_mpcc,
	.assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect,
	.init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw,
	.set_denorm =  mpc3_set_denorm,
	.set_denorm_clamp = mpc3_set_denorm_clamp,
	.set_output_csc = mpc3_set_output_csc,
	.set_ocsc_default = mpc3_set_ocsc_default,
	.set_output_gamma = mpc3_set_output_gamma,
	.insert_plane_to_secondary = NULL,
	.remove_mpcc_from_secondary =  NULL,
	.set_dwb_mux = mpc3_set_dwb_mux,
	.disable_dwb_mux = mpc3_disable_dwb_mux,
	.is_dwb_idle = mpc3_is_dwb_idle,
	.set_out_rate_control = mpc3_set_out_rate_control,
	.set_gamut_remap = mpc3_set_gamut_remap,
	.program_shaper = mpc3_program_shaper,
	.acquire_rmu = mpcc3_acquire_rmu,
	.program_3dlut = mpc3_program_3dlut,
	.release_rmu = mpcc3_release_rmu,
	.power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut,

};

void dcn30_mpc_construct(struct dcn30_mpc *mpc30,
	struct dc_context *ctx,
	const struct dcn30_mpc_registers *mpc_regs,
	const struct dcn30_mpc_shift *mpc_shift,
	const struct dcn30_mpc_mask *mpc_mask,
	int num_mpcc,
	int num_rmu)
{
	int i;

	mpc30->base.ctx = ctx;

	mpc30->base.funcs = &dcn30_mpc_funcs;

	mpc30->mpc_regs = mpc_regs;
	mpc30->mpc_shift = mpc_shift;
	mpc30->mpc_mask = mpc_mask;

	mpc30->mpcc_in_use_mask = 0;
	mpc30->num_mpcc = num_mpcc;
	mpc30->num_rmu = num_rmu;

	for (i = 0; i < MAX_MPCC; i++)
		mpc3_init_mpcc(&mpc30->base.mpcc_array[i], i);
}