processor.c 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
// SPDX-License-Identifier: GPL-2.0
/*
 * RISC-V code
 *
 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
 */

#include <linux/compiler.h>
#include <assert.h>

#include "kvm_util.h"
#include "../kvm_util_internal.h"
#include "processor.h"

#define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN	0xac0000

static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
{
	return (v + vm->page_size) & ~(vm->page_size - 1);
}

static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
{
	return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
		PGTBL_PAGE_SIZE_SHIFT;
}

static uint64_t ptrs_per_pte(struct kvm_vm *vm)
{
	return PGTBL_PAGE_SIZE / sizeof(uint64_t);
}

static uint64_t pte_index_mask[] = {
	PGTBL_L0_INDEX_MASK,
	PGTBL_L1_INDEX_MASK,
	PGTBL_L2_INDEX_MASK,
	PGTBL_L3_INDEX_MASK,
};

static uint32_t pte_index_shift[] = {
	PGTBL_L0_INDEX_SHIFT,
	PGTBL_L1_INDEX_SHIFT,
	PGTBL_L2_INDEX_SHIFT,
	PGTBL_L3_INDEX_SHIFT,
};

static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
{
	TEST_ASSERT(level > -1,
		"Negative page table level (%d) not possible", level);
	TEST_ASSERT(level < vm->pgtable_levels,
		"Invalid page table level (%d)", level);

	return (gva & pte_index_mask[level]) >> pte_index_shift[level];
}

void virt_pgd_alloc(struct kvm_vm *vm)
{
	if (!vm->pgd_created) {
		vm_paddr_t paddr = vm_phy_pages_alloc(vm,
			page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size,
			KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
		vm->pgd = paddr;
		vm->pgd_created = true;
	}
}

void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
	uint64_t *ptep, next_ppn;
	int level = vm->pgtable_levels - 1;

	TEST_ASSERT((vaddr % vm->page_size) == 0,
		"Virtual address not on page boundary,\n"
		"  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
		(vaddr >> vm->page_shift)),
		"Invalid virtual address, vaddr: 0x%lx", vaddr);
	TEST_ASSERT((paddr % vm->page_size) == 0,
		"Physical address not on page boundary,\n"
		"  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
		"Physical address beyond maximum supported,\n"
		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
		paddr, vm->max_gfn, vm->page_size);

	ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
	if (!*ptep) {
		next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
		*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
			PGTBL_PTE_VALID_MASK;
	}
	level--;

	while (level > -1) {
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
		       pte_index(vm, vaddr, level) * 8;
		if (!*ptep && level > 0) {
			next_ppn = vm_alloc_page_table(vm) >>
				   PGTBL_PAGE_SIZE_SHIFT;
			*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
				PGTBL_PTE_VALID_MASK;
		}
		level--;
	}

	paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
	*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
		PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
}

vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
	uint64_t *ptep;
	int level = vm->pgtable_levels - 1;

	if (!vm->pgd_created)
		goto unmapped_gva;

	ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
	if (!ptep)
		goto unmapped_gva;
	level--;

	while (level > -1) {
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
		       pte_index(vm, gva, level) * 8;
		if (!ptep)
			goto unmapped_gva;
		level--;
	}

	return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));

unmapped_gva:
	TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
		  gva, level);
	exit(1);
}

static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
		     uint64_t page, int level)
{
#ifdef DEBUG
	static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
	uint64_t pte, *ptep;

	if (level < 0)
		return;

	for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
		ptep = addr_gpa2hva(vm, pte);
		if (!*ptep)
			continue;
		fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
			type[level], pte, *ptep, ptep);
		pte_dump(stream, vm, indent + 1,
			 pte_addr(vm, *ptep), level - 1);
	}
#endif
}

void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
	int level = vm->pgtable_levels - 1;
	uint64_t pgd, *ptep;

	if (!vm->pgd_created)
		return;

	for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
		ptep = addr_gpa2hva(vm, pgd);
		if (!*ptep)
			continue;
		fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
			pgd, *ptep, ptep);
		pte_dump(stream, vm, indent + 1,
			 pte_addr(vm, *ptep), level - 1);
	}
}

void riscv_vcpu_mmu_setup(struct kvm_vm *vm, int vcpuid)
{
	unsigned long satp;

	/*
	 * The RISC-V Sv48 MMU mode supports 56-bit physical address
	 * for 48-bit virtual address with 4KB last level page size.
	 */
	switch (vm->mode) {
	case VM_MODE_P52V48_4K:
	case VM_MODE_P48V48_4K:
	case VM_MODE_P40V48_4K:
		break;
	default:
		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
	}

	satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
	satp |= SATP_MODE_48;

	set_reg(vm, vcpuid, RISCV_CSR_REG(satp), satp);
}

void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
{
	struct kvm_riscv_core core;

	get_reg(vm, vcpuid, RISCV_CORE_REG(mode), &core.mode);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.pc), &core.regs.pc);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.ra), &core.regs.ra);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.sp), &core.regs.sp);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.gp), &core.regs.gp);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.tp), &core.regs.tp);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t0), &core.regs.t0);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t1), &core.regs.t1);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t2), &core.regs.t2);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s0), &core.regs.s0);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s1), &core.regs.s1);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a0), &core.regs.a0);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a1), &core.regs.a1);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a2), &core.regs.a2);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a3), &core.regs.a3);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a4), &core.regs.a4);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a5), &core.regs.a5);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a6), &core.regs.a6);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a7), &core.regs.a7);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s2), &core.regs.s2);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s3), &core.regs.s3);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s4), &core.regs.s4);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s5), &core.regs.s5);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s6), &core.regs.s6);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s7), &core.regs.s7);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s8), &core.regs.s8);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s9), &core.regs.s9);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s10), &core.regs.s10);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s11), &core.regs.s11);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t3), &core.regs.t3);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t4), &core.regs.t4);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t5), &core.regs.t5);
	get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t6), &core.regs.t6);

	fprintf(stream,
		" MODE:  0x%lx\n", core.mode);
	fprintf(stream,
		" PC: 0x%016lx   RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
		core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
	fprintf(stream,
		" TP: 0x%016lx   T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
		core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
	fprintf(stream,
		" S0: 0x%016lx   S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
		core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
	fprintf(stream,
		" A2: 0x%016lx   A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
		core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
	fprintf(stream,
		" A6: 0x%016lx   A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
		core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
	fprintf(stream,
		" S4: 0x%016lx   S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
		core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
	fprintf(stream,
		" S8: 0x%016lx   S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
		core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
	fprintf(stream,
		" T3: 0x%016lx   T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
		core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
}

static void guest_hang(void)
{
	while (1)
		;
}

void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
{
	int r;
	size_t stack_size = vm->page_size == 4096 ?
					DEFAULT_STACK_PGS * vm->page_size :
					vm->page_size;
	unsigned long stack_vaddr = vm_vaddr_alloc(vm, stack_size,
					DEFAULT_RISCV_GUEST_STACK_VADDR_MIN);
	unsigned long current_gp = 0;
	struct kvm_mp_state mps;

	vm_vcpu_add(vm, vcpuid);
	riscv_vcpu_mmu_setup(vm, vcpuid);

	/*
	 * With SBI HSM support in KVM RISC-V, all secondary VCPUs are
	 * powered-off by default so we ensure that all secondary VCPUs
	 * are powered-on using KVM_SET_MP_STATE ioctl().
	 */
	mps.mp_state = KVM_MP_STATE_RUNNABLE;
	r = _vcpu_ioctl(vm, vcpuid, KVM_SET_MP_STATE, &mps);
	TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);

	/* Setup global pointer of guest to be same as the host */
	asm volatile (
		"add %0, gp, zero" : "=r" (current_gp) : : "memory");
	set_reg(vm, vcpuid, RISCV_CORE_REG(regs.gp), current_gp);

	/* Setup stack pointer and program counter of guest */
	set_reg(vm, vcpuid, RISCV_CORE_REG(regs.sp),
		stack_vaddr + stack_size);
	set_reg(vm, vcpuid, RISCV_CORE_REG(regs.pc),
		(unsigned long)guest_code);

	/* Setup default exception vector of guest */
	set_reg(vm, vcpuid, RISCV_CSR_REG(stvec),
		(unsigned long)guest_hang);
}

void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
{
	va_list ap;
	uint64_t id = RISCV_CORE_REG(regs.a0);
	int i;

	TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
		    "  num: %u\n", num);

	va_start(ap, num);

	for (i = 0; i < num; i++) {
		switch (i) {
		case 0:
			id = RISCV_CORE_REG(regs.a0);
			break;
		case 1:
			id = RISCV_CORE_REG(regs.a1);
			break;
		case 2:
			id = RISCV_CORE_REG(regs.a2);
			break;
		case 3:
			id = RISCV_CORE_REG(regs.a3);
			break;
		case 4:
			id = RISCV_CORE_REG(regs.a4);
			break;
		case 5:
			id = RISCV_CORE_REG(regs.a5);
			break;
		case 6:
			id = RISCV_CORE_REG(regs.a6);
			break;
		case 7:
			id = RISCV_CORE_REG(regs.a7);
			break;
		};
		set_reg(vm, vcpuid, id, va_arg(ap, uint64_t));
	}

	va_end(ap);
}

void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
{
}