drbg.c 53.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/*
 * DRBG: Deterministic Random Bits Generator
 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
 *       properties:
 *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
 *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
 *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
 *		* with and without prediction resistance
 *
 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 * DRBG Usage
 * ==========
 * The SP 800-90A DRBG allows the user to specify a personalization string
 * for initialization as well as an additional information string for each
 * random number request. The following code fragments show how a caller
 * uses the kernel crypto API to use the full functionality of the DRBG.
 *
 * Usage without any additional data
 * ---------------------------------
 * struct crypto_rng *drng;
 * int err;
 * char data[DATALEN];
 *
 * drng = crypto_alloc_rng(drng_name, 0, 0);
 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
 * crypto_free_rng(drng);
 *
 *
 * Usage with personalization string during initialization
 * -------------------------------------------------------
 * struct crypto_rng *drng;
 * int err;
 * char data[DATALEN];
 * struct drbg_string pers;
 * char personalization[11] = "some-string";
 *
 * drbg_string_fill(&pers, personalization, strlen(personalization));
 * drng = crypto_alloc_rng(drng_name, 0, 0);
 * // The reset completely re-initializes the DRBG with the provided
 * // personalization string
 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
 * crypto_free_rng(drng);
 *
 *
 * Usage with additional information string during random number request
 * ---------------------------------------------------------------------
 * struct crypto_rng *drng;
 * int err;
 * char data[DATALEN];
 * char addtl_string[11] = "some-string";
 * string drbg_string addtl;
 *
 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
 * drng = crypto_alloc_rng(drng_name, 0, 0);
 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
 * // the same error codes.
 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
 * crypto_free_rng(drng);
 *
 *
 * Usage with personalization and additional information strings
 * -------------------------------------------------------------
 * Just mix both scenarios above.
 */

#include <crypto/drbg.h>

/***************************************************************
 * Backend cipher definitions available to DRBG
 ***************************************************************/

/*
 * The order of the DRBG definitions here matter: every DRBG is registered
 * as stdrng. Each DRBG receives an increasing cra_priority values the later
 * they are defined in this array (see drbg_fill_array).
 *
 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
 * the SHA256 / AES 256 over other ciphers. Thus, the favored
 * DRBGs are the latest entries in this array.
 */
static const struct drbg_core drbg_cores[] = {
#ifdef CONFIG_CRYPTO_DRBG_CTR
	{
		.flags = DRBG_CTR | DRBG_STRENGTH128,
		.statelen = 32, /* 256 bits as defined in 10.2.1 */
		.blocklen_bytes = 16,
		.cra_name = "ctr_aes128",
122
		.backend_cra_name = "aes",
123 124 125 126 127
	}, {
		.flags = DRBG_CTR | DRBG_STRENGTH192,
		.statelen = 40, /* 320 bits as defined in 10.2.1 */
		.blocklen_bytes = 16,
		.cra_name = "ctr_aes192",
128
		.backend_cra_name = "aes",
129 130 131 132 133
	}, {
		.flags = DRBG_CTR | DRBG_STRENGTH256,
		.statelen = 48, /* 384 bits as defined in 10.2.1 */
		.blocklen_bytes = 16,
		.cra_name = "ctr_aes256",
134
		.backend_cra_name = "aes",
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	},
#endif /* CONFIG_CRYPTO_DRBG_CTR */
#ifdef CONFIG_CRYPTO_DRBG_HASH
	{
		.flags = DRBG_HASH | DRBG_STRENGTH128,
		.statelen = 55, /* 440 bits */
		.blocklen_bytes = 20,
		.cra_name = "sha1",
		.backend_cra_name = "sha1",
	}, {
		.flags = DRBG_HASH | DRBG_STRENGTH256,
		.statelen = 111, /* 888 bits */
		.blocklen_bytes = 48,
		.cra_name = "sha384",
		.backend_cra_name = "sha384",
	}, {
		.flags = DRBG_HASH | DRBG_STRENGTH256,
		.statelen = 111, /* 888 bits */
		.blocklen_bytes = 64,
		.cra_name = "sha512",
		.backend_cra_name = "sha512",
	}, {
		.flags = DRBG_HASH | DRBG_STRENGTH256,
		.statelen = 55, /* 440 bits */
		.blocklen_bytes = 32,
		.cra_name = "sha256",
		.backend_cra_name = "sha256",
	},
#endif /* CONFIG_CRYPTO_DRBG_HASH */
#ifdef CONFIG_CRYPTO_DRBG_HMAC
	{
166
		.flags = DRBG_HMAC | DRBG_STRENGTH128,
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		.statelen = 20, /* block length of cipher */
		.blocklen_bytes = 20,
		.cra_name = "hmac_sha1",
		.backend_cra_name = "hmac(sha1)",
	}, {
		.flags = DRBG_HMAC | DRBG_STRENGTH256,
		.statelen = 48, /* block length of cipher */
		.blocklen_bytes = 48,
		.cra_name = "hmac_sha384",
		.backend_cra_name = "hmac(sha384)",
	}, {
		.flags = DRBG_HMAC | DRBG_STRENGTH256,
		.statelen = 64, /* block length of cipher */
		.blocklen_bytes = 64,
		.cra_name = "hmac_sha512",
		.backend_cra_name = "hmac(sha512)",
	}, {
		.flags = DRBG_HMAC | DRBG_STRENGTH256,
		.statelen = 32, /* block length of cipher */
		.blocklen_bytes = 32,
		.cra_name = "hmac_sha256",
		.backend_cra_name = "hmac(sha256)",
	},
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
};

/******************************************************************
 * Generic helper functions
 ******************************************************************/

/*
 * Return strength of DRBG according to SP800-90A section 8.4
 *
 * @flags DRBG flags reference
 *
 * Return: normalized strength in *bytes* value or 32 as default
 *	   to counter programming errors
 */
static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
{
	switch (flags & DRBG_STRENGTH_MASK) {
	case DRBG_STRENGTH128:
		return 16;
	case DRBG_STRENGTH192:
		return 24;
	case DRBG_STRENGTH256:
		return 32;
	default:
		return 32;
	}
}

/*
 * FIPS 140-2 continuous self test
 * The test is performed on the result of one round of the output
 * function. Thus, the function implicitly knows the size of the
 * buffer.
 *
 * @drbg DRBG handle
 * @buf output buffer of random data to be checked
 *
 * return:
 *	true on success
 *	false on error
 */
static bool drbg_fips_continuous_test(struct drbg_state *drbg,
				      const unsigned char *buf)
{
#ifdef CONFIG_CRYPTO_FIPS
	int ret = 0;
	/* skip test if we test the overall system */
238
	if (list_empty(&drbg->test_data.list))
239 240 241 242 243 244 245 246 247 248 249 250
		return true;
	/* only perform test in FIPS mode */
	if (0 == fips_enabled)
		return true;
	if (!drbg->fips_primed) {
		/* Priming of FIPS test */
		memcpy(drbg->prev, buf, drbg_blocklen(drbg));
		drbg->fips_primed = true;
		/* return false due to priming, i.e. another round is needed */
		return false;
	}
	ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
251 252
	if (!ret)
		panic("DRBG continuous self test failed\n");
253 254 255 256 257 258 259 260 261 262 263 264 265
	memcpy(drbg->prev, buf, drbg_blocklen(drbg));
	/* the test shall pass when the two compared values are not equal */
	return ret != 0;
#else
	return true;
#endif /* CONFIG_CRYPTO_FIPS */
}

/*
 * Convert an integer into a byte representation of this integer.
 * The byte representation is big-endian
 *
 * @val value to be converted
266 267
 * @buf buffer holding the converted integer -- caller must ensure that
 *      buffer size is at least 32 bit
268 269
 */
#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
270
static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
271
{
272
	struct s {
273
		__be32 conv;
274 275
	};
	struct s *conversion = (struct s *) buf;
276

277
	conversion->conv = cpu_to_be32(val);
278 279 280 281 282 283 284 285
}
#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */

/******************************************************************
 * CTR DRBG callback functions
 ******************************************************************/

#ifdef CONFIG_CRYPTO_DRBG_CTR
286
#define CRYPTO_DRBG_CTR_STRING "CTR "
287 288 289 290 291 292
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
293

294 295 296 297 298 299 300 301
static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
			  unsigned char *outval, const struct drbg_string *in);
static int drbg_init_sym_kernel(struct drbg_state *drbg);
static int drbg_fini_sym_kernel(struct drbg_state *drbg);

/* BCC function for CTR DRBG as defined in 10.4.3 */
static int drbg_ctr_bcc(struct drbg_state *drbg,
			unsigned char *out, const unsigned char *key,
302
			struct list_head *in)
303
{
304 305
	int ret = 0;
	struct drbg_string *curr = NULL;
306
	struct drbg_string data;
307
	short cnt = 0;
308 309 310 311

	drbg_string_fill(&data, out, drbg_blocklen(drbg));

	/* 10.4.3 step 2 / 4 */
312 313 314
	list_for_each_entry(curr, in, list) {
		const unsigned char *pos = curr->buf;
		size_t len = curr->len;
315
		/* 10.4.3 step 4.1 */
316 317 318 319 320 321 322
		while (len) {
			/* 10.4.3 step 4.2 */
			if (drbg_blocklen(drbg) == cnt) {
				cnt = 0;
				ret = drbg_kcapi_sym(drbg, key, out, &data);
				if (ret)
					return ret;
323
			}
324 325 326 327
			out[cnt] ^= *pos;
			pos++;
			cnt++;
			len--;
328 329
		}
	}
330 331 332 333 334
	/* 10.4.3 step 4.2 for last block */
	if (cnt)
		ret = drbg_kcapi_sym(drbg, key, out, &data);

	return ret;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
}

/*
 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
 * the scratchpad is used as follows:
 * drbg_ctr_update:
 *	temp
 *		start: drbg->scratchpad
 *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
 *			note: the cipher writing into this variable works
 *			blocklen-wise. Now, when the statelen is not a multiple
 *			of blocklen, the generateion loop below "spills over"
 *			by at most blocklen. Thus, we need to give sufficient
 *			memory.
 *	df_data
 *		start: drbg->scratchpad +
 *				drbg_statelen(drbg) + drbg_blocklen(drbg)
 *		length: drbg_statelen(drbg)
 *
 * drbg_ctr_df:
 *	pad
 *		start: df_data + drbg_statelen(drbg)
 *		length: drbg_blocklen(drbg)
 *	iv
 *		start: pad + drbg_blocklen(drbg)
 *		length: drbg_blocklen(drbg)
 *	temp
 *		start: iv + drbg_blocklen(drbg)
364 365 366 367 368 369 370 371 372 373
 *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
 *			note: temp is the buffer that the BCC function operates
 *			on. BCC operates blockwise. drbg_statelen(drbg)
 *			is sufficient when the DRBG state length is a multiple
 *			of the block size. For AES192 (and maybe other ciphers)
 *			this is not correct and the length for temp is
 *			insufficient (yes, that also means for such ciphers,
 *			the final output of all BCC rounds are truncated).
 *			Therefore, add drbg_blocklen(drbg) to cover all
 *			possibilities.
374 375 376 377 378
 */

/* Derivation Function for CTR DRBG as defined in 10.4.2 */
static int drbg_ctr_df(struct drbg_state *drbg,
		       unsigned char *df_data, size_t bytes_to_return,
379
		       struct list_head *seedlist)
380 381 382 383 384
{
	int ret = -EFAULT;
	unsigned char L_N[8];
	/* S3 is input */
	struct drbg_string S1, S2, S4, cipherin;
385
	LIST_HEAD(bcc_list);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	unsigned char *pad = df_data + drbg_statelen(drbg);
	unsigned char *iv = pad + drbg_blocklen(drbg);
	unsigned char *temp = iv + drbg_blocklen(drbg);
	size_t padlen = 0;
	unsigned int templen = 0;
	/* 10.4.2 step 7 */
	unsigned int i = 0;
	/* 10.4.2 step 8 */
	const unsigned char *K = (unsigned char *)
			   "\x00\x01\x02\x03\x04\x05\x06\x07"
			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
			   "\x10\x11\x12\x13\x14\x15\x16\x17"
			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
	unsigned char *X;
	size_t generated_len = 0;
	size_t inputlen = 0;
402
	struct drbg_string *seed = NULL;
403 404 405 406 407 408 409 410 411 412 413

	memset(pad, 0, drbg_blocklen(drbg));
	memset(iv, 0, drbg_blocklen(drbg));

	/* 10.4.2 step 1 is implicit as we work byte-wise */

	/* 10.4.2 step 2 */
	if ((512/8) < bytes_to_return)
		return -EINVAL;

	/* 10.4.2 step 2 -- calculate the entire length of all input data */
414 415
	list_for_each_entry(seed, seedlist, list)
		inputlen += seed->len;
416
	drbg_cpu_to_be32(inputlen, &L_N[0]);
417 418

	/* 10.4.2 step 3 */
419
	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
	/* wrap the padlen appropriately */
	if (padlen)
		padlen = drbg_blocklen(drbg) - padlen;
	/*
	 * pad / padlen contains the 0x80 byte and the following zero bytes.
	 * As the calculated padlen value only covers the number of zero
	 * bytes, this value has to be incremented by one for the 0x80 byte.
	 */
	padlen++;
	pad[0] = 0x80;

	/* 10.4.2 step 4 -- first fill the linked list and then order it */
	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
436
	list_add_tail(&S1.list, &bcc_list);
437
	drbg_string_fill(&S2, L_N, sizeof(L_N));
438 439
	list_add_tail(&S2.list, &bcc_list);
	list_splice_tail(seedlist, &bcc_list);
440
	drbg_string_fill(&S4, pad, padlen);
441
	list_add_tail(&S4.list, &bcc_list);
442 443 444 445 446 447 448 449

	/* 10.4.2 step 9 */
	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
		/*
		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
		 * holds zeros after allocation -- even the increment of i
		 * is irrelevant as the increment remains within length of i
		 */
450
		drbg_cpu_to_be32(i, iv);
451
		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
452
		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
		if (ret)
			goto out;
		/* 10.4.2 step 9.3 */
		i++;
		templen += drbg_blocklen(drbg);
	}

	/* 10.4.2 step 11 */
	X = temp + (drbg_keylen(drbg));
	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));

	/* 10.4.2 step 12: overwriting of outval is implemented in next step */

	/* 10.4.2 step 13 */
	while (generated_len < bytes_to_return) {
		short blocklen = 0;
		/*
		 * 10.4.2 step 13.1: the truncation of the key length is
		 * implicit as the key is only drbg_blocklen in size based on
		 * the implementation of the cipher function callback
		 */
		ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
		if (ret)
			goto out;
		blocklen = (drbg_blocklen(drbg) <
				(bytes_to_return - generated_len)) ?
			    drbg_blocklen(drbg) :
				(bytes_to_return - generated_len);
		/* 10.4.2 step 13.2 and 14 */
		memcpy(df_data + generated_len, X, blocklen);
		generated_len += blocklen;
	}

	ret = 0;

out:
489
	memset(iv, 0, drbg_blocklen(drbg));
490
	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
491
	memset(pad, 0, drbg_blocklen(drbg));
492 493 494
	return ret;
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/*
 * update function of CTR DRBG as defined in 10.2.1.2
 *
 * The reseed variable has an enhanced meaning compared to the update
 * functions of the other DRBGs as follows:
 * 0 => initial seed from initialization
 * 1 => reseed via drbg_seed
 * 2 => first invocation from drbg_ctr_update when addtl is present. In
 *      this case, the df_data scratchpad is not deleted so that it is
 *      available for another calls to prevent calling the DF function
 *      again.
 * 3 => second invocation from drbg_ctr_update. When the update function
 *      was called with addtl, the df_data memory already contains the
 *      DFed addtl information and we do not need to call DF again.
 */
510 511
static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
			   int reseed)
512 513 514 515 516 517 518 519 520 521
{
	int ret = -EFAULT;
	/* 10.2.1.2 step 1 */
	unsigned char *temp = drbg->scratchpad;
	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
				 drbg_blocklen(drbg);
	unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
	unsigned int len = 0;
	struct drbg_string cipherin;

522 523
	if (3 > reseed)
		memset(df_data, 0, drbg_statelen(drbg));
524 525

	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
526 527
	if (seed) {
		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
528 529 530 531 532 533 534 535 536 537 538
		if (ret)
			goto out;
	}

	drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
	/*
	 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
	 * zeroizes all memory during initialization
	 */
	while (len < (drbg_statelen(drbg))) {
		/* 10.2.1.2 step 2.1 */
S
Stephan Mueller 已提交
539
		crypto_inc(drbg->V, drbg_blocklen(drbg));
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		/*
		 * 10.2.1.2 step 2.2 */
		ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
		if (ret)
			goto out;
		/* 10.2.1.2 step 2.3 and 3 */
		len += drbg_blocklen(drbg);
	}

	/* 10.2.1.2 step 4 */
	temp_p = temp;
	df_data_p = df_data;
	for (len = 0; len < drbg_statelen(drbg); len++) {
		*temp_p ^= *df_data_p;
		df_data_p++; temp_p++;
	}

	/* 10.2.1.2 step 5 */
	memcpy(drbg->C, temp, drbg_keylen(drbg));
	/* 10.2.1.2 step 6 */
	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
	ret = 0;

out:
564
	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
565
	if (2 != reseed)
566
		memset(df_data, 0, drbg_statelen(drbg));
567 568 569 570 571 572 573 574 575 576
	return ret;
}

/*
 * scratchpad use: drbg_ctr_update is called independently from
 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
 */
/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
static int drbg_ctr_generate(struct drbg_state *drbg,
			     unsigned char *buf, unsigned int buflen,
577
			     struct list_head *addtl)
578 579 580 581 582 583
{
	int len = 0;
	int ret = 0;
	struct drbg_string data;

	/* 10.2.1.5.2 step 2 */
584 585
	if (addtl && !list_empty(addtl)) {
		ret = drbg_ctr_update(drbg, addtl, 2);
586 587 588 589 590
		if (ret)
			return 0;
	}

	/* 10.2.1.5.2 step 4.1 */
S
Stephan Mueller 已提交
591
	crypto_inc(drbg->V, drbg_blocklen(drbg));
592 593 594 595 596 597 598 599 600 601 602 603 604
	drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
	while (len < buflen) {
		int outlen = 0;
		/* 10.2.1.5.2 step 4.2 */
		ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
		if (ret) {
			len = ret;
			goto out;
		}
		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
			  drbg_blocklen(drbg) : (buflen - len);
		if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
			/* 10.2.1.5.2 step 6 */
S
Stephan Mueller 已提交
605
			crypto_inc(drbg->V, drbg_blocklen(drbg));
606 607 608 609 610 611 612
			continue;
		}
		/* 10.2.1.5.2 step 4.3 */
		memcpy(buf + len, drbg->scratchpad, outlen);
		len += outlen;
		/* 10.2.1.5.2 step 6 */
		if (len < buflen)
S
Stephan Mueller 已提交
613
			crypto_inc(drbg->V, drbg_blocklen(drbg));
614 615
	}

616 617
	/* 10.2.1.5.2 step 6 */
	ret = drbg_ctr_update(drbg, NULL, 3);
618 619 620 621
	if (ret)
		len = ret;

out:
622
	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	return len;
}

static struct drbg_state_ops drbg_ctr_ops = {
	.update		= drbg_ctr_update,
	.generate	= drbg_ctr_generate,
	.crypto_init	= drbg_init_sym_kernel,
	.crypto_fini	= drbg_fini_sym_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_CTR */

/******************************************************************
 * HMAC DRBG callback functions
 ******************************************************************/

#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
640
			   unsigned char *outval, const struct list_head *in);
641 642 643 644 645
static int drbg_init_hash_kernel(struct drbg_state *drbg);
static int drbg_fini_hash_kernel(struct drbg_state *drbg);
#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */

#ifdef CONFIG_CRYPTO_DRBG_HMAC
646
#define CRYPTO_DRBG_HMAC_STRING "HMAC "
647 648 649 650 651 652 653 654
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
655

656
/* update function of HMAC DRBG as defined in 10.1.2.2 */
657 658
static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
			    int reseed)
659 660 661
{
	int ret = -EFAULT;
	int i = 0;
662 663 664
	struct drbg_string seed1, seed2, vdata;
	LIST_HEAD(seedlist);
	LIST_HEAD(vdatalist);
665

666 667
	if (!reseed)
		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
668 669 670
		memset(drbg->V, 1, drbg_statelen(drbg));

	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
671
	list_add_tail(&seed1.list, &seedlist);
672 673
	/* buffer of seed2 will be filled in for loop below with one byte */
	drbg_string_fill(&seed2, NULL, 1);
674
	list_add_tail(&seed2.list, &seedlist);
675
	/* input data of seed is allowed to be NULL at this point */
676 677
	if (seed)
		list_splice_tail(seed, &seedlist);
678

679 680
	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
	list_add_tail(&vdata.list, &vdatalist);
681 682 683 684 685 686 687
	for (i = 2; 0 < i; i--) {
		/* first round uses 0x0, second 0x1 */
		unsigned char prefix = DRBG_PREFIX0;
		if (1 == i)
			prefix = DRBG_PREFIX1;
		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
		seed2.buf = &prefix;
688
		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
689 690 691 692
		if (ret)
			return ret;

		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
693
		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
694 695 696 697
		if (ret)
			return ret;

		/* 10.1.2.2 step 3 */
698
		if (!seed)
699 700 701 702 703 704 705 706 707 708
			return ret;
	}

	return 0;
}

/* generate function of HMAC DRBG as defined in 10.1.2.5 */
static int drbg_hmac_generate(struct drbg_state *drbg,
			      unsigned char *buf,
			      unsigned int buflen,
709
			      struct list_head *addtl)
710 711 712 713
{
	int len = 0;
	int ret = 0;
	struct drbg_string data;
714
	LIST_HEAD(datalist);
715 716

	/* 10.1.2.5 step 2 */
717 718
	if (addtl && !list_empty(addtl)) {
		ret = drbg_hmac_update(drbg, addtl, 1);
719 720 721 722 723
		if (ret)
			return ret;
	}

	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724
	list_add_tail(&data.list, &datalist);
725 726 727
	while (len < buflen) {
		unsigned int outlen = 0;
		/* 10.1.2.5 step 4.1 */
728
		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
729 730 731 732 733 734 735 736 737 738 739 740 741
		if (ret)
			return ret;
		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
			  drbg_blocklen(drbg) : (buflen - len);
		if (!drbg_fips_continuous_test(drbg, drbg->V))
			continue;

		/* 10.1.2.5 step 4.2 */
		memcpy(buf + len, drbg->V, outlen);
		len += outlen;
	}

	/* 10.1.2.5 step 6 */
742 743 744
	if (addtl && !list_empty(addtl))
		ret = drbg_hmac_update(drbg, addtl, 1);
	else
745
		ret = drbg_hmac_update(drbg, NULL, 1);
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if (ret)
		return ret;

	return len;
}

static struct drbg_state_ops drbg_hmac_ops = {
	.update		= drbg_hmac_update,
	.generate	= drbg_hmac_generate,
	.crypto_init	= drbg_init_hash_kernel,
	.crypto_fini	= drbg_fini_hash_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_HMAC */

/******************************************************************
 * Hash DRBG callback functions
 ******************************************************************/

#ifdef CONFIG_CRYPTO_DRBG_HASH
765
#define CRYPTO_DRBG_HASH_STRING "HASH "
766 767 768 769 770 771 772 773
MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
774

S
Stephan Mueller 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/*
 * Increment buffer
 *
 * @dst buffer to increment
 * @add value to add
 */
static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
				const unsigned char *add, size_t addlen)
{
	/* implied: dstlen > addlen */
	unsigned char *dstptr;
	const unsigned char *addptr;
	unsigned int remainder = 0;
	size_t len = addlen;

	dstptr = dst + (dstlen-1);
	addptr = add + (addlen-1);
	while (len) {
		remainder += *dstptr + *addptr;
		*dstptr = remainder & 0xff;
		remainder >>= 8;
		len--; dstptr--; addptr--;
	}
	len = dstlen - addlen;
	while (len && remainder > 0) {
		remainder = *dstptr + 1;
		*dstptr = remainder & 0xff;
		remainder >>= 8;
		len--; dstptr--;
	}
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
/*
 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
 * interlinked, the scratchpad is used as follows:
 * drbg_hash_update
 *	start: drbg->scratchpad
 *	length: drbg_statelen(drbg)
 * drbg_hash_df:
 *	start: drbg->scratchpad + drbg_statelen(drbg)
 *	length: drbg_blocklen(drbg)
 *
 * drbg_hash_process_addtl uses the scratchpad, but fully completes
 * before either of the functions mentioned before are invoked. Therefore,
 * drbg_hash_process_addtl does not need to be specifically considered.
 */

/* Derivation Function for Hash DRBG as defined in 10.4.1 */
static int drbg_hash_df(struct drbg_state *drbg,
			unsigned char *outval, size_t outlen,
825
			struct list_head *entropylist)
826 827 828 829 830
{
	int ret = 0;
	size_t len = 0;
	unsigned char input[5];
	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
831
	struct drbg_string data;
832 833 834

	/* 10.4.1 step 3 */
	input[0] = 1;
835
	drbg_cpu_to_be32((outlen * 8), &input[1]);
836 837

	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
838 839
	drbg_string_fill(&data, input, 5);
	list_add(&data.list, entropylist);
840 841 842 843 844

	/* 10.4.1 step 4 */
	while (len < outlen) {
		short blocklen = 0;
		/* 10.4.1 step 4.1 */
845
		ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
846 847 848 849 850 851 852 853 854 855 856
		if (ret)
			goto out;
		/* 10.4.1 step 4.2 */
		input[0]++;
		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
			    drbg_blocklen(drbg) : (outlen - len);
		memcpy(outval + len, tmp, blocklen);
		len += blocklen;
	}

out:
857
	memset(tmp, 0, drbg_blocklen(drbg));
858 859 860 861
	return ret;
}

/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
862
static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
863 864 865 866
			    int reseed)
{
	int ret = 0;
	struct drbg_string data1, data2;
867 868
	LIST_HEAD(datalist);
	LIST_HEAD(datalist2);
869 870 871 872 873 874 875 876 877 878
	unsigned char *V = drbg->scratchpad;
	unsigned char prefix = DRBG_PREFIX1;

	if (!seed)
		return -EINVAL;

	if (reseed) {
		/* 10.1.1.3 step 1 */
		memcpy(V, drbg->V, drbg_statelen(drbg));
		drbg_string_fill(&data1, &prefix, 1);
879
		list_add_tail(&data1.list, &datalist);
880
		drbg_string_fill(&data2, V, drbg_statelen(drbg));
881
		list_add_tail(&data2.list, &datalist);
882
	}
883
	list_splice_tail(seed, &datalist);
884 885

	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
886
	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
887 888 889 890 891 892
	if (ret)
		goto out;

	/* 10.1.1.2 / 10.1.1.3 step 4  */
	prefix = DRBG_PREFIX0;
	drbg_string_fill(&data1, &prefix, 1);
893
	list_add_tail(&data1.list, &datalist2);
894
	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
895
	list_add_tail(&data2.list, &datalist2);
896
	/* 10.1.1.2 / 10.1.1.3 step 4 */
897
	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
898 899

out:
900
	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
901 902 903 904 905
	return ret;
}

/* processing of additional information string for Hash DRBG */
static int drbg_hash_process_addtl(struct drbg_state *drbg,
906
				   struct list_head *addtl)
907 908 909
{
	int ret = 0;
	struct drbg_string data1, data2;
910
	LIST_HEAD(datalist);
911 912 913
	unsigned char prefix = DRBG_PREFIX2;

	/* 10.1.1.4 step 2 */
914
	if (!addtl || list_empty(addtl))
915 916 917 918 919
		return 0;

	/* 10.1.1.4 step 2a */
	drbg_string_fill(&data1, &prefix, 1);
	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
920 921
	list_add_tail(&data1.list, &datalist);
	list_add_tail(&data2.list, &datalist);
922
	list_splice_tail(addtl, &datalist);
923
	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
924 925 926 927 928 929 930 931
	if (ret)
		goto out;

	/* 10.1.1.4 step 2b */
	drbg_add_buf(drbg->V, drbg_statelen(drbg),
		     drbg->scratchpad, drbg_blocklen(drbg));

out:
932
	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
933 934 935 936 937 938 939 940 941 942 943 944 945
	return ret;
}

/* Hashgen defined in 10.1.1.4 */
static int drbg_hash_hashgen(struct drbg_state *drbg,
			     unsigned char *buf,
			     unsigned int buflen)
{
	int len = 0;
	int ret = 0;
	unsigned char *src = drbg->scratchpad;
	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
	struct drbg_string data;
946
	LIST_HEAD(datalist);
947 948 949 950 951

	/* 10.1.1.4 step hashgen 2 */
	memcpy(src, drbg->V, drbg_statelen(drbg));

	drbg_string_fill(&data, src, drbg_statelen(drbg));
952
	list_add_tail(&data.list, &datalist);
953 954 955
	while (len < buflen) {
		unsigned int outlen = 0;
		/* 10.1.1.4 step hashgen 4.1 */
956
		ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
957 958 959 960 961 962 963
		if (ret) {
			len = ret;
			goto out;
		}
		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
			  drbg_blocklen(drbg) : (buflen - len);
		if (!drbg_fips_continuous_test(drbg, dst)) {
S
Stephan Mueller 已提交
964
			crypto_inc(src, drbg_statelen(drbg));
965 966 967 968 969 970 971
			continue;
		}
		/* 10.1.1.4 step hashgen 4.2 */
		memcpy(buf + len, dst, outlen);
		len += outlen;
		/* 10.1.1.4 hashgen step 4.3 */
		if (len < buflen)
S
Stephan Mueller 已提交
972
			crypto_inc(src, drbg_statelen(drbg));
973 974 975
	}

out:
976
	memset(drbg->scratchpad, 0,
977 978 979 980 981 982 983
	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
	return len;
}

/* generate function for Hash DRBG as defined in  10.1.1.4 */
static int drbg_hash_generate(struct drbg_state *drbg,
			      unsigned char *buf, unsigned int buflen,
984
			      struct list_head *addtl)
985 986 987
{
	int len = 0;
	int ret = 0;
988 989
	union {
		unsigned char req[8];
990
		__be64 req_int;
991
	} u;
992 993
	unsigned char prefix = DRBG_PREFIX3;
	struct drbg_string data1, data2;
994
	LIST_HEAD(datalist);
995 996 997 998 999 1000 1001 1002 1003 1004 1005

	/* 10.1.1.4 step 2 */
	ret = drbg_hash_process_addtl(drbg, addtl);
	if (ret)
		return ret;
	/* 10.1.1.4 step 3 */
	len = drbg_hash_hashgen(drbg, buf, buflen);

	/* this is the value H as documented in 10.1.1.4 */
	/* 10.1.1.4 step 4 */
	drbg_string_fill(&data1, &prefix, 1);
1006
	list_add_tail(&data1.list, &datalist);
1007
	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1008 1009
	list_add_tail(&data2.list, &datalist);
	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	if (ret) {
		len = ret;
		goto out;
	}

	/* 10.1.1.4 step 5 */
	drbg_add_buf(drbg->V, drbg_statelen(drbg),
		     drbg->scratchpad, drbg_blocklen(drbg));
	drbg_add_buf(drbg->V, drbg_statelen(drbg),
		     drbg->C, drbg_statelen(drbg));
1020 1021
	u.req_int = cpu_to_be64(drbg->reseed_ctr);
	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1022 1023

out:
1024
	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	return len;
}

/*
 * scratchpad usage: as update and generate are used isolated, both
 * can use the scratchpad
 */
static struct drbg_state_ops drbg_hash_ops = {
	.update		= drbg_hash_update,
	.generate	= drbg_hash_generate,
	.crypto_init	= drbg_init_hash_kernel,
	.crypto_fini	= drbg_fini_hash_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_HASH */

/******************************************************************
 * Functions common for DRBG implementations
 ******************************************************************/

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
			      int reseed)
{
	int ret = drbg->d_ops->update(drbg, seed, reseed);

	if (ret)
		return ret;

	drbg->seeded = true;
	/* 10.1.1.2 / 10.1.1.3 step 5 */
	drbg->reseed_ctr = 1;

	return ret;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/*
 * Seeding or reseeding of the DRBG
 *
 * @drbg: DRBG state struct
 * @pers: personalization / additional information buffer
 * @reseed: 0 for initial seed process, 1 for reseeding
 *
 * return:
 *	0 on success
 *	error value otherwise
 */
static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
		     bool reseed)
{
	int ret = 0;
	struct drbg_string data1;
1075
	LIST_HEAD(seedlist);
1076 1077 1078

	/* 9.1 / 9.2 / 9.3.1 step 3 */
	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1079
		pr_devel("DRBG: personalization string too long %zu\n",
1080 1081 1082 1083
			 pers->len);
		return -EINVAL;
	}

1084 1085 1086
	if (list_empty(&drbg->test_data.list)) {
		drbg_string_fill(&data1, drbg->test_data.buf,
				 drbg->test_data.len);
1087 1088 1089
		pr_devel("DRBG: using test entropy\n");
	} else {
		pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1090 1091 1092
			 drbg->seed_buf_len);
		get_random_bytes(drbg->seed_buf, drbg->seed_buf_len);
		drbg_string_fill(&data1, drbg->seed_buf, drbg->seed_buf_len);
1093
	}
1094
	list_add_tail(&data1.list, &seedlist);
1095 1096 1097 1098 1099 1100

	/*
	 * concatenation of entropy with personalization str / addtl input)
	 * the variable pers is directly handed in by the caller, so check its
	 * contents whether it is appropriate
	 */
1101 1102
	if (pers && pers->buf && 0 < pers->len) {
		list_add_tail(&pers->list, &seedlist);
1103 1104 1105
		pr_devel("DRBG: using personalization string\n");
	}

1106 1107 1108 1109 1110
	if (!reseed) {
		memset(drbg->V, 0, drbg_statelen(drbg));
		memset(drbg->C, 0, drbg_statelen(drbg));
	}

1111 1112 1113 1114 1115 1116 1117
	ret = __drbg_seed(drbg, &seedlist, reseed);

	/*
	 * Clear the initial entropy buffer as the async call may not overwrite
	 * that buffer for quite some time.
	 */
	memzero_explicit(drbg->seed_buf, drbg->seed_buf_len);
1118 1119
	if (ret)
		goto out;
1120 1121 1122 1123 1124 1125 1126
	/*
	 * For all subsequent seeding calls, we only need the seed buffer
	 * equal to the security strength of the DRBG. We undo the calculation
	 * in drbg_alloc_state.
	 */
	if (!reseed)
		drbg->seed_buf_len = drbg->seed_buf_len / 3 * 2;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

out:
	return ret;
}

/* Free all substructures in a DRBG state without the DRBG state structure */
static inline void drbg_dealloc_state(struct drbg_state *drbg)
{
	if (!drbg)
		return;
1137
	kzfree(drbg->V);
1138
	drbg->V = NULL;
1139
	kzfree(drbg->C);
1140
	drbg->C = NULL;
1141
	kzfree(drbg->scratchpad);
1142 1143
	drbg->scratchpad = NULL;
	drbg->reseed_ctr = 0;
1144 1145
	drbg->d_ops = NULL;
	drbg->core = NULL;
1146
#ifdef CONFIG_CRYPTO_FIPS
1147
	kzfree(drbg->prev);
1148 1149 1150
	drbg->prev = NULL;
	drbg->fips_primed = false;
#endif
1151 1152
	kzfree(drbg->seed_buf);
	drbg->seed_buf = NULL;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

/*
 * Allocate all sub-structures for a DRBG state.
 * The DRBG state structure must already be allocated.
 */
static inline int drbg_alloc_state(struct drbg_state *drbg)
{
	int ret = -ENOMEM;
	unsigned int sb_size = 0;

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	switch (drbg->core->flags & DRBG_TYPE_MASK) {
#ifdef CONFIG_CRYPTO_DRBG_HMAC
	case DRBG_HMAC:
		drbg->d_ops = &drbg_hmac_ops;
		break;
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
#ifdef CONFIG_CRYPTO_DRBG_HASH
	case DRBG_HASH:
		drbg->d_ops = &drbg_hash_ops;
		break;
#endif /* CONFIG_CRYPTO_DRBG_HASH */
#ifdef CONFIG_CRYPTO_DRBG_CTR
	case DRBG_CTR:
		drbg->d_ops = &drbg_ctr_ops;
		break;
#endif /* CONFIG_CRYPTO_DRBG_CTR */
	default:
		ret = -EOPNOTSUPP;
		goto err;
	}

1185
	drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1186 1187
	if (!drbg->V)
		goto err;
1188
	drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1189 1190 1191
	if (!drbg->C)
		goto err;
#ifdef CONFIG_CRYPTO_FIPS
1192
	drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	if (!drbg->prev)
		goto err;
	drbg->fips_primed = false;
#endif
	/* scratchpad is only generated for CTR and Hash */
	if (drbg->core->flags & DRBG_HMAC)
		sb_size = 0;
	else if (drbg->core->flags & DRBG_CTR)
		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
			  drbg_statelen(drbg) +	/* df_data */
			  drbg_blocklen(drbg) +	/* pad */
			  drbg_blocklen(drbg) +	/* iv */
1205
			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1206 1207 1208 1209 1210 1211 1212 1213
	else
		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);

	if (0 < sb_size) {
		drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
		if (!drbg->scratchpad)
			goto err;
	}
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	/*
	 * Gather entropy equal to the security strength of the DRBG.
	 * With a derivation function, a nonce is required in addition
	 * to the entropy. A nonce must be at least 1/2 of the security
	 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
	 * of the strength. The consideration of a nonce is only
	 * applicable during initial seeding.
	 */
	drbg->seed_buf_len = drbg_sec_strength(drbg->core->flags);
	if (!drbg->seed_buf_len) {
		ret = -EFAULT;
		goto err;
	}
	/* ensure we have sufficient buffer space for initial seed */
	drbg->seed_buf_len = ((drbg->seed_buf_len + 1) / 2) * 3;
	drbg->seed_buf = kzalloc(drbg->seed_buf_len, GFP_KERNEL);
	if (!drbg->seed_buf)
		goto err;

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	return 0;

err:
	drbg_dealloc_state(drbg);
	return ret;
}

/*************************************************************************
 * DRBG interface functions
 *************************************************************************/

/*
 * DRBG generate function as required by SP800-90A - this function
 * generates random numbers
 *
 * @drbg DRBG state handle
 * @buf Buffer where to store the random numbers -- the buffer must already
 *      be pre-allocated by caller
 * @buflen Length of output buffer - this value defines the number of random
 *	   bytes pulled from DRBG
 * @addtl Additional input that is mixed into state, may be NULL -- note
 *	  the entropy is pulled by the DRBG internally unconditionally
 *	  as defined in SP800-90A. The additional input is mixed into
 *	  the state in addition to the pulled entropy.
 *
1259
 * return: 0 when all bytes are generated; < 0 in case of an error
1260 1261 1262 1263 1264 1265
 */
static int drbg_generate(struct drbg_state *drbg,
			 unsigned char *buf, unsigned int buflen,
			 struct drbg_string *addtl)
{
	int len = 0;
1266
	LIST_HEAD(addtllist);
1267

1268 1269 1270 1271
	if (!drbg->core) {
		pr_devel("DRBG: not yet seeded\n");
		return -EINVAL;
	}
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	if (0 == buflen || !buf) {
		pr_devel("DRBG: no output buffer provided\n");
		return -EINVAL;
	}
	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
		pr_devel("DRBG: wrong format of additional information\n");
		return -EINVAL;
	}

	/* 9.3.1 step 2 */
	len = -EINVAL;
1283
	if (buflen > (drbg_max_request_bytes(drbg))) {
1284 1285 1286 1287 1288 1289 1290 1291
		pr_devel("DRBG: requested random numbers too large %u\n",
			 buflen);
		goto err;
	}

	/* 9.3.1 step 3 is implicit with the chosen DRBG */

	/* 9.3.1 step 4 */
1292
	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		pr_devel("DRBG: additional information string too long %zu\n",
			 addtl->len);
		goto err;
	}
	/* 9.3.1 step 5 is implicit with the chosen DRBG */

	/*
	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
	 * here. The spec is a bit convoluted here, we make it simpler.
	 */
1303 1304
	if ((drbg_max_requests(drbg)) < drbg->reseed_ctr)
		drbg->seeded = false;
1305

1306
	if (drbg->pr || !drbg->seeded) {
1307 1308 1309 1310 1311
		pr_devel("DRBG: reseeding before generation (prediction "
			 "resistance: %s, state %s)\n",
			 drbg->pr ? "true" : "false",
			 drbg->seeded ? "seeded" : "unseeded");
		/* 9.3.1 steps 7.1 through 7.3 */
1312
		len = drbg_seed(drbg, addtl, true);
1313 1314 1315 1316 1317
		if (len)
			goto err;
		/* 9.3.1 step 7.4 */
		addtl = NULL;
	}
1318 1319 1320

	if (addtl && 0 < addtl->len)
		list_add_tail(&addtl->list, &addtllist);
1321
	/* 9.3.1 step 8 and 10 */
1322
	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1323 1324

	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1325
	drbg->reseed_ctr++;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	if (0 >= len)
		goto err;

	/*
	 * Section 11.3.3 requires to re-perform self tests after some
	 * generated random numbers. The chosen value after which self
	 * test is performed is arbitrary, but it should be reasonable.
	 * However, we do not perform the self tests because of the following
	 * reasons: it is mathematically impossible that the initial self tests
	 * were successfully and the following are not. If the initial would
	 * pass and the following would not, the kernel integrity is violated.
	 * In this case, the entire kernel operation is questionable and it
	 * is unlikely that the integrity violation only affects the
	 * correct operation of the DRBG.
	 *
	 * Albeit the following code is commented out, it is provided in
	 * case somebody has a need to implement the test of 11.3.3.
	 */
#if 0
1345
	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		int err = 0;
		pr_devel("DRBG: start to perform self test\n");
		if (drbg->core->flags & DRBG_HMAC)
			err = alg_test("drbg_pr_hmac_sha256",
				       "drbg_pr_hmac_sha256", 0, 0);
		else if (drbg->core->flags & DRBG_CTR)
			err = alg_test("drbg_pr_ctr_aes128",
				       "drbg_pr_ctr_aes128", 0, 0);
		else
			err = alg_test("drbg_pr_sha256",
				       "drbg_pr_sha256", 0, 0);
		if (err) {
			pr_err("DRBG: periodical self test failed\n");
			/*
			 * uninstantiate implies that from now on, only errors
			 * are returned when reusing this DRBG cipher handle
			 */
			drbg_uninstantiate(drbg);
			return 0;
		} else {
			pr_devel("DRBG: self test successful\n");
		}
	}
#endif

1371 1372 1373 1374 1375
	/*
	 * All operations were successful, return 0 as mandated by
	 * the kernel crypto API interface.
	 */
	len = 0;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
err:
	return len;
}

/*
 * Wrapper around drbg_generate which can pull arbitrary long strings
 * from the DRBG without hitting the maximum request limitation.
 *
 * Parameters: see drbg_generate
 * Return codes: see drbg_generate -- if one drbg_generate request fails,
 *		 the entire drbg_generate_long request fails
 */
static int drbg_generate_long(struct drbg_state *drbg,
			      unsigned char *buf, unsigned int buflen,
			      struct drbg_string *addtl)
{
1392
	unsigned int len = 0;
1393 1394
	unsigned int slice = 0;
	do {
1395
		int err = 0;
1396 1397 1398
		unsigned int chunk = 0;
		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1399
		mutex_lock(&drbg->drbg_mutex);
1400
		err = drbg_generate(drbg, buf + len, chunk, addtl);
1401
		mutex_unlock(&drbg->drbg_mutex);
1402 1403 1404
		if (0 > err)
			return err;
		len += chunk;
1405
	} while (slice > 0 && (len < buflen));
1406
	return 0;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

/*
 * DRBG instantiation function as required by SP800-90A - this function
 * sets up the DRBG handle, performs the initial seeding and all sanity
 * checks required by SP800-90A
 *
 * @drbg memory of state -- if NULL, new memory is allocated
 * @pers Personalization string that is mixed into state, may be NULL -- note
 *	 the entropy is pulled by the DRBG internally unconditionally
 *	 as defined in SP800-90A. The additional input is mixed into
 *	 the state in addition to the pulled entropy.
 * @coreref reference to core
 * @pr prediction resistance enabled
 *
 * return
 *	0 on success
 *	error value otherwise
 */
static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
			    int coreref, bool pr)
{
1429 1430
	int ret;
	bool reseed = true;
1431 1432 1433

	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
		 "%s\n", coreref, pr ? "enabled" : "disabled");
1434
	mutex_lock(&drbg->drbg_mutex);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

	/* 9.1 step 1 is implicit with the selected DRBG type */

	/*
	 * 9.1 step 2 is implicit as caller can select prediction resistance
	 * and the flag is copied into drbg->flags --
	 * all DRBG types support prediction resistance
	 */

	/* 9.1 step 4 is implicit in  drbg_sec_strength */

1446 1447 1448 1449
	if (!drbg->core) {
		drbg->core = &drbg_cores[coreref];
		drbg->pr = pr;
		drbg->seeded = false;
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		ret = drbg_alloc_state(drbg);
		if (ret)
			goto unlock;

		ret = -EFAULT;
		if (drbg->d_ops->crypto_init(drbg))
			goto err;

		reseed = false;
	}

	ret = drbg_seed(drbg, pers, reseed);

	if (ret && !reseed) {
1465
		drbg->d_ops->crypto_fini(drbg);
1466
		goto err;
1467
	}
1468

1469
	mutex_unlock(&drbg->drbg_mutex);
1470
	return ret;
1471 1472 1473

err:
	drbg_dealloc_state(drbg);
1474 1475
unlock:
	mutex_unlock(&drbg->drbg_mutex);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	return ret;
}

/*
 * DRBG uninstantiate function as required by SP800-90A - this function
 * frees all buffers and the DRBG handle
 *
 * @drbg DRBG state handle
 *
 * return
 *	0 on success
 */
static int drbg_uninstantiate(struct drbg_state *drbg)
{
1490 1491
	if (drbg->d_ops)
		drbg->d_ops->crypto_fini(drbg);
1492 1493 1494 1495 1496 1497 1498 1499 1500
	drbg_dealloc_state(drbg);
	/* no scrubbing of test_data -- this shall survive an uninstantiate */
	return 0;
}

/*
 * Helper function for setting the test data in the DRBG
 *
 * @drbg DRBG state handle
1501 1502
 * @data test data
 * @len test data length
1503
 */
1504 1505
static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
				   const u8 *data, unsigned int len)
1506
{
1507 1508 1509 1510
	struct drbg_state *drbg = crypto_rng_ctx(tfm);

	mutex_lock(&drbg->drbg_mutex);
	drbg_string_fill(&drbg->test_data, data, len);
1511
	mutex_unlock(&drbg->drbg_mutex);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
}

/***************************************************************
 * Kernel crypto API cipher invocations requested by DRBG
 ***************************************************************/

#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
struct sdesc {
	struct shash_desc shash;
	char ctx[];
};

static int drbg_init_hash_kernel(struct drbg_state *drbg)
{
	struct sdesc *sdesc;
	struct crypto_shash *tfm;

	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
	if (IS_ERR(tfm)) {
		pr_info("DRBG: could not allocate digest TFM handle\n");
		return PTR_ERR(tfm);
	}
	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
			GFP_KERNEL);
	if (!sdesc) {
		crypto_free_shash(tfm);
		return -ENOMEM;
	}

	sdesc->shash.tfm = tfm;
	sdesc->shash.flags = 0;
	drbg->priv_data = sdesc;
	return 0;
}

static int drbg_fini_hash_kernel(struct drbg_state *drbg)
{
	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
	if (sdesc) {
		crypto_free_shash(sdesc->shash.tfm);
		kzfree(sdesc);
	}
	drbg->priv_data = NULL;
	return 0;
}

static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1560
			   unsigned char *outval, const struct list_head *in)
1561 1562
{
	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1563
	struct drbg_string *input = NULL;
1564 1565 1566 1567

	if (key)
		crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
	crypto_shash_init(&sdesc->shash);
1568 1569
	list_for_each_entry(input, in, list)
		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1570 1571 1572 1573 1574 1575 1576 1577
	return crypto_shash_final(&sdesc->shash, outval);
}
#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */

#ifdef CONFIG_CRYPTO_DRBG_CTR
static int drbg_init_sym_kernel(struct drbg_state *drbg)
{
	int ret = 0;
1578
	struct crypto_cipher *tfm;
1579

1580
	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1581 1582 1583 1584
	if (IS_ERR(tfm)) {
		pr_info("DRBG: could not allocate cipher TFM handle\n");
		return PTR_ERR(tfm);
	}
1585
	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1586 1587 1588 1589 1590 1591
	drbg->priv_data = tfm;
	return ret;
}

static int drbg_fini_sym_kernel(struct drbg_state *drbg)
{
1592 1593
	struct crypto_cipher *tfm =
		(struct crypto_cipher *)drbg->priv_data;
1594
	if (tfm)
1595
		crypto_free_cipher(tfm);
1596 1597 1598 1599 1600 1601 1602
	drbg->priv_data = NULL;
	return 0;
}

static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
			  unsigned char *outval, const struct drbg_string *in)
{
1603 1604
	struct crypto_cipher *tfm =
		(struct crypto_cipher *)drbg->priv_data;
1605

1606 1607 1608 1609 1610
	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
	/* there is only component in *in */
	BUG_ON(in->len < drbg_blocklen(drbg));
	crypto_cipher_encrypt_one(tfm, outval, in->buf);
	return 0;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}
#endif /* CONFIG_CRYPTO_DRBG_CTR */

/***************************************************************
 * Kernel crypto API interface to register DRBG
 ***************************************************************/

/*
 * Look up the DRBG flags by given kernel crypto API cra_name
 * The code uses the drbg_cores definition to do this
 *
 * @cra_name kernel crypto API cra_name
 * @coreref reference to integer which is filled with the pointer to
 *  the applicable core
 * @pr reference for setting prediction resistance
 *
 * return: flags
 */
static inline void drbg_convert_tfm_core(const char *cra_driver_name,
					 int *coreref, bool *pr)
{
	int i = 0;
	size_t start = 0;
	int len = 0;

	*pr = true;
	/* disassemble the names */
	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
		start = 10;
		*pr = false;
	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
		start = 8;
	} else {
		return;
	}

	/* remove the first part */
	len = strlen(cra_driver_name) - start;
	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
			    len)) {
			*coreref = i;
			return;
		}
	}
}

static int drbg_kcapi_init(struct crypto_tfm *tfm)
{
	struct drbg_state *drbg = crypto_tfm_ctx(tfm);

1662
	mutex_init(&drbg->drbg_mutex);
1663 1664

	return 0;
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
}

static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
{
	drbg_uninstantiate(crypto_tfm_ctx(tfm));
}

/*
 * Generate random numbers invoked by the kernel crypto API:
 * The API of the kernel crypto API is extended as follows:
 *
1676 1677 1678 1679
 * src is additional input supplied to the RNG.
 * slen is the length of src.
 * dst is the output buffer where random data is to be stored.
 * dlen is the length of dst.
1680
 */
1681 1682 1683
static int drbg_kcapi_random(struct crypto_rng *tfm,
			     const u8 *src, unsigned int slen,
			     u8 *dst, unsigned int dlen)
1684 1685
{
	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1686 1687 1688 1689
	struct drbg_string *addtl = NULL;
	struct drbg_string string;

	if (slen) {
1690
		/* linked list variable is now local to allow modification */
1691 1692
		drbg_string_fill(&string, src, slen);
		addtl = &string;
1693
	}
1694 1695

	return drbg_generate_long(drbg, dst, dlen, addtl);
1696 1697 1698
}

/*
1699
 * Seed the DRBG invoked by the kernel crypto API
1700
 */
1701 1702
static int drbg_kcapi_seed(struct crypto_rng *tfm,
			   const u8 *seed, unsigned int slen)
1703 1704 1705 1706
{
	struct drbg_state *drbg = crypto_rng_ctx(tfm);
	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
	bool pr = false;
1707 1708
	struct drbg_string string;
	struct drbg_string *seed_string = NULL;
1709 1710 1711 1712 1713
	int coreref = 0;

	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
			      &pr);
	if (0 < slen) {
1714 1715
		drbg_string_fill(&string, seed, slen);
		seed_string = &string;
1716
	}
1717 1718

	return drbg_instantiate(drbg, seed_string, coreref, pr);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
}

/***************************************************************
 * Kernel module: code to load the module
 ***************************************************************/

/*
 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
 * of the error handling.
 *
 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
 * as seed source of get_random_bytes does not fail.
 *
 * Note 2: There is no sensible way of testing the reseed counter
 * enforcement, so skip it.
 */
static inline int __init drbg_healthcheck_sanity(void)
{
	int len = 0;
#define OUTBUFLEN 16
	unsigned char buf[OUTBUFLEN];
	struct drbg_state *drbg = NULL;
	int ret = -EFAULT;
	int rc = -EFAULT;
	bool pr = false;
	int coreref = 0;
	struct drbg_string addtl;
	size_t max_addtllen, max_request_bytes;

	/* only perform test in FIPS mode */
	if (!fips_enabled)
		return 0;

#ifdef CONFIG_CRYPTO_DRBG_CTR
	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1754
#elif defined CONFIG_CRYPTO_DRBG_HASH
1755 1756 1757 1758 1759 1760 1761 1762 1763
	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
#else
	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
#endif

	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
	if (!drbg)
		return -ENOMEM;

1764 1765
	mutex_init(&drbg->drbg_mutex);

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	/*
	 * if the following tests fail, it is likely that there is a buffer
	 * overflow as buf is much smaller than the requested or provided
	 * string lengths -- in case the error handling does not succeed
	 * we may get an OOPS. And we want to get an OOPS as this is a
	 * grave bug.
	 */

	/* get a valid instance of DRBG for following tests */
	ret = drbg_instantiate(drbg, NULL, coreref, pr);
	if (ret) {
		rc = ret;
		goto outbuf;
	}
	max_addtllen = drbg_max_addtl(drbg);
	max_request_bytes = drbg_max_request_bytes(drbg);
	drbg_string_fill(&addtl, buf, max_addtllen + 1);
	/* overflow addtllen with additonal info string */
	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
	BUG_ON(0 < len);
	/* overflow max_bits */
	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
	BUG_ON(0 < len);
	drbg_uninstantiate(drbg);

	/* overflow max addtllen with personalization string */
	ret = drbg_instantiate(drbg, &addtl, coreref, pr);
	BUG_ON(0 == ret);
	/* all tests passed */
	rc = 0;

	pr_devel("DRBG: Sanity tests for failure code paths successfully "
		 "completed\n");

	drbg_uninstantiate(drbg);
outbuf:
	kzfree(drbg);
	return rc;
}

1806
static struct rng_alg drbg_algs[22];
1807 1808 1809 1810 1811 1812

/*
 * Fill the array drbg_algs used to register the different DRBGs
 * with the kernel crypto API. To fill the array, the information
 * from drbg_cores[] is used.
 */
1813
static inline void __init drbg_fill_array(struct rng_alg *alg,
1814 1815 1816 1817 1818
					  const struct drbg_core *core, int pr)
{
	int pos = 0;
	static int priority = 100;

1819
	memcpy(alg->base.cra_name, "stdrng", 6);
1820
	if (pr) {
1821
		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1822 1823
		pos = 8;
	} else {
1824
		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1825 1826
		pos = 10;
	}
1827
	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1828 1829
	       strlen(core->cra_name));

1830
	alg->base.cra_priority = priority;
1831 1832 1833 1834 1835 1836 1837
	priority++;
	/*
	 * If FIPS mode enabled, the selected DRBG shall have the
	 * highest cra_priority over other stdrng instances to ensure
	 * it is selected.
	 */
	if (fips_enabled)
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		alg->base.cra_priority += 200;

	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
	alg->base.cra_module	= THIS_MODULE;
	alg->base.cra_init	= drbg_kcapi_init;
	alg->base.cra_exit	= drbg_kcapi_cleanup;
	alg->generate		= drbg_kcapi_random;
	alg->seed		= drbg_kcapi_seed;
	alg->set_ent		= drbg_kcapi_set_entropy;
	alg->seedsize		= 0;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
}

static int __init drbg_init(void)
{
	unsigned int i = 0; /* pointer to drbg_algs */
	unsigned int j = 0; /* pointer to drbg_cores */
	int ret = -EFAULT;

	ret = drbg_healthcheck_sanity();
	if (ret)
		return ret;

	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
		pr_info("DRBG: Cannot register all DRBG types"
1862
			"(slots needed: %zu, slots available: %zu)\n",
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
		return ret;
	}

	/*
	 * each DRBG definition can be used with PR and without PR, thus
	 * we instantiate each DRBG in drbg_cores[] twice.
	 *
	 * As the order of placing them into the drbg_algs array matters
	 * (the later DRBGs receive a higher cra_priority) we register the
	 * prediction resistance DRBGs first as the should not be too
	 * interesting.
	 */
	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1880
	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1881 1882
}

1883
static void __exit drbg_exit(void)
1884
{
1885
	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1886 1887 1888 1889
}

module_init(drbg_init);
module_exit(drbg_exit);
1890 1891
#ifndef CRYPTO_DRBG_HASH_STRING
#define CRYPTO_DRBG_HASH_STRING ""
1892
#endif
1893 1894
#ifndef CRYPTO_DRBG_HMAC_STRING
#define CRYPTO_DRBG_HMAC_STRING ""
1895
#endif
1896 1897
#ifndef CRYPTO_DRBG_CTR_STRING
#define CRYPTO_DRBG_CTR_STRING ""
1898
#endif
1899 1900 1901 1902 1903 1904 1905
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
		   "using following cores: "
		   CRYPTO_DRBG_HASH_STRING
		   CRYPTO_DRBG_HMAC_STRING
		   CRYPTO_DRBG_CTR_STRING);