rt2x00queue.c 24.4 KB
Newer Older
1
/*
2 3
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2x00lib
	Abstract: rt2x00 queue specific routines.
 */

#include <linux/kernel.h>
#include <linux/module.h>
29
#include <linux/dma-mapping.h>
30 31 32 33

#include "rt2x00.h"
#include "rt2x00lib.h"

34 35
struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
					struct queue_entry *entry)
36
{
37 38
	struct sk_buff *skb;
	struct skb_frame_desc *skbdesc;
39 40 41
	unsigned int frame_size;
	unsigned int head_size = 0;
	unsigned int tail_size = 0;
42 43 44 45 46

	/*
	 * The frame size includes descriptor size, because the
	 * hardware directly receive the frame into the skbuffer.
	 */
47
	frame_size = entry->queue->data_size + entry->queue->desc_size;
48 49

	/*
50 51 52
	 * The payload should be aligned to a 4-byte boundary,
	 * this means we need at least 3 bytes for moving the frame
	 * into the correct offset.
53
	 */
54 55 56 57 58
	head_size = 4;

	/*
	 * For IV/EIV/ICV assembly we must make sure there is
	 * at least 8 bytes bytes available in headroom for IV/EIV
59
	 * and 8 bytes for ICV data as tailroon.
60 61 62
	 */
	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
		head_size += 8;
63
		tail_size += 8;
64
	}
65 66 67 68

	/*
	 * Allocate skbuffer.
	 */
69
	skb = dev_alloc_skb(frame_size + head_size + tail_size);
70 71 72
	if (!skb)
		return NULL;

73 74 75 76 77
	/*
	 * Make sure we not have a frame with the requested bytes
	 * available in the head and tail.
	 */
	skb_reserve(skb, head_size);
78 79
	skb_put(skb, frame_size);

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	/*
	 * Populate skbdesc.
	 */
	skbdesc = get_skb_frame_desc(skb);
	memset(skbdesc, 0, sizeof(*skbdesc));
	skbdesc->entry = entry;

	if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
		skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
						  skb->data,
						  skb->len,
						  DMA_FROM_DEVICE);
		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
	}

95 96
	return skb;
}
97

98
void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
99
{
100 101
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);

102 103 104 105 106
	/*
	 * If device has requested headroom, we should make sure that
	 * is also mapped to the DMA so it can be used for transfering
	 * additional descriptor information to the hardware.
	 */
107
	skb_push(skb, rt2x00dev->ops->extra_tx_headroom);
108 109 110 111 112 113 114

	skbdesc->skb_dma =
	    dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);

	/*
	 * Restore data pointer to original location again.
	 */
115
	skb_pull(skb, rt2x00dev->ops->extra_tx_headroom);
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
}
EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);

void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);

	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
		dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
				 DMA_FROM_DEVICE);
		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
	}

	if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
132 133 134 135 136
		/*
		 * Add headroom to the skb length, it has been removed
		 * by the driver, but it was actually mapped to DMA.
		 */
		dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
137
				 skb->len + rt2x00dev->ops->extra_tx_headroom,
138 139 140 141 142 143 144
				 DMA_TO_DEVICE);
		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
	}
}

void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
{
145 146 147
	if (!skb)
		return;

148
	rt2x00queue_unmap_skb(rt2x00dev, skb);
149 150
	dev_kfree_skb_any(skb);
}
151

152
void rt2x00queue_align_frame(struct sk_buff *skb)
153 154
{
	unsigned int frame_length = skb->len;
155
	unsigned int align = ALIGN_SIZE(skb, 0);
156 157 158 159

	if (!align)
		return;

160 161 162 163 164
	skb_push(skb, align);
	memmove(skb->data, skb->data + align, frame_length);
	skb_trim(skb, frame_length);
}

165
void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
166 167
{
	unsigned int frame_length = skb->len;
168
	unsigned int align = ALIGN_SIZE(skb, header_length);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

	if (!align)
		return;

	skb_push(skb, align);
	memmove(skb->data, skb->data + align, frame_length);
	skb_trim(skb, frame_length);
}

void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
	unsigned int frame_length = skb->len;
	unsigned int header_align = ALIGN_SIZE(skb, 0);
	unsigned int payload_align = ALIGN_SIZE(skb, header_length);
	unsigned int l2pad = 4 - (payload_align - header_align);

	if (header_align == payload_align) {
		/*
		 * Both header and payload must be moved the same
		 * amount of bytes to align them properly. This means
		 * we don't use the L2 padding but just move the entire
		 * frame.
		 */
		rt2x00queue_align_frame(skb);
	} else if (!payload_align) {
		/*
		 * Simple L2 padding, only the header needs to be moved,
		 * the payload is already properly aligned.
		 */
		skb_push(skb, header_align);
		memmove(skb->data, skb->data + header_align, frame_length);
		skbdesc->flags |= SKBDESC_L2_PADDED;
202
	} else {
203 204 205 206 207 208 209 210 211 212 213 214 215 216
		/*
		 *
		 * Complicated L2 padding, both header and payload need
		 * to be moved. By default we only move to the start
		 * of the buffer, so our header alignment needs to be
		 * increased if there is not enough room for the header
		 * to be moved.
		 */
		if (payload_align > header_align)
			header_align += 4;

		skb_push(skb, header_align);
		memmove(skb->data, skb->data + header_align, header_length);
		memmove(skb->data + header_length + l2pad,
217
			skb->data + header_length + l2pad + payload_align,
218 219
			frame_length - header_length);
		skbdesc->flags |= SKBDESC_L2_PADDED;
220 221 222
	}
}

223 224 225 226 227 228 229 230 231 232 233 234
void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
	unsigned int l2pad = 4 - (header_length & 3);

	if (!l2pad || (skbdesc->flags & SKBDESC_L2_PADDED))
		return;

	memmove(skb->data + l2pad, skb->data, header_length);
	skb_pull(skb, l2pad);
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
						 struct txentry_desc *txdesc)
{
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
	unsigned long irqflags;

	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
	    unlikely(!tx_info->control.vif))
		return;

	/*
	 * Hardware should insert sequence counter.
	 * FIXME: We insert a software sequence counter first for
	 * hardware that doesn't support hardware sequence counting.
	 *
	 * This is wrong because beacons are not getting sequence
	 * numbers assigned properly.
	 *
	 * A secondary problem exists for drivers that cannot toggle
	 * sequence counting per-frame, since those will override the
	 * sequence counter given by mac80211.
	 */
	spin_lock_irqsave(&intf->seqlock, irqflags);

	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
		intf->seqno += 0x10;
	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
	hdr->seq_ctrl |= cpu_to_le16(intf->seqno);

	spin_unlock_irqrestore(&intf->seqlock, irqflags);

	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
}

static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
						  struct txentry_desc *txdesc,
						  const struct rt2x00_rate *hwrate)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
	unsigned int data_length;
	unsigned int duration;
	unsigned int residual;

	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
	data_length = entry->skb->len + 4;
	data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);

	/*
	 * PLCP setup
	 * Length calculation depends on OFDM/CCK rate.
	 */
	txdesc->signal = hwrate->plcp;
	txdesc->service = 0x04;

	if (hwrate->flags & DEV_RATE_OFDM) {
		txdesc->length_high = (data_length >> 6) & 0x3f;
		txdesc->length_low = data_length & 0x3f;
	} else {
		/*
		 * Convert length to microseconds.
		 */
		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
		duration = GET_DURATION(data_length, hwrate->bitrate);

		if (residual != 0) {
			duration++;

			/*
			 * Check if we need to set the Length Extension
			 */
			if (hwrate->bitrate == 110 && residual <= 30)
				txdesc->service |= 0x80;
		}

		txdesc->length_high = (duration >> 8) & 0xff;
		txdesc->length_low = duration & 0xff;

		/*
		 * When preamble is enabled we should set the
		 * preamble bit for the signal.
		 */
		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
			txdesc->signal |= 0x08;
	}
}

325 326
static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
					     struct txentry_desc *txdesc)
327
{
328
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
329
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
330
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
331
	struct ieee80211_rate *rate =
332
	    ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
333 334 335 336 337 338 339 340 341 342 343 344
	const struct rt2x00_rate *hwrate;

	memset(txdesc, 0, sizeof(*txdesc));

	/*
	 * Initialize information from queue
	 */
	txdesc->queue = entry->queue->qid;
	txdesc->cw_min = entry->queue->cw_min;
	txdesc->cw_max = entry->queue->cw_max;
	txdesc->aifs = entry->queue->aifs;

345 346 347 348 349 350
	/*
	 * Header and alignment information.
	 */
	txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
	txdesc->l2pad = ALIGN_SIZE(entry->skb, txdesc->header_length);

351 352 353
	/*
	 * Check whether this frame is to be acked.
	 */
354
	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
355 356 357 358 359
		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);

	/*
	 * Check if this is a RTS/CTS frame
	 */
360 361
	if (ieee80211_is_rts(hdr->frame_control) ||
	    ieee80211_is_cts(hdr->frame_control)) {
362
		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
363
		if (ieee80211_is_rts(hdr->frame_control))
364
			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
365
		else
366
			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
367
		if (tx_info->control.rts_cts_rate_idx >= 0)
368
			rate =
369
			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
370 371 372 373 374
	}

	/*
	 * Determine retry information.
	 */
375
	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
376
	if (txdesc->retry_limit >= rt2x00dev->long_retry)
377 378 379 380 381
		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);

	/*
	 * Check if more fragments are pending
	 */
382 383
	if (ieee80211_has_morefrags(hdr->frame_control) ||
	    (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
384 385 386 387 388 389 390 391
		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
	}

	/*
	 * Beacons and probe responses require the tsf timestamp
	 * to be inserted into the frame.
	 */
392 393
	if (ieee80211_is_beacon(hdr->frame_control) ||
	    ieee80211_is_probe_resp(hdr->frame_control))
394 395 396 397 398 399 400
		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);

	/*
	 * Determine with what IFS priority this frame should be send.
	 * Set ifs to IFS_SIFS when the this is not the first fragment,
	 * or this fragment came after RTS/CTS.
	 */
401 402
	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
403 404
		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
		txdesc->ifs = IFS_BACKOFF;
405
	} else
406 407
		txdesc->ifs = IFS_SIFS;

408 409 410
	/*
	 * Determine rate modulation.
	 */
411
	hwrate = rt2x00_get_rate(rate->hw_value);
412
	txdesc->rate_mode = RATE_MODE_CCK;
413
	if (hwrate->flags & DEV_RATE_OFDM)
414
		txdesc->rate_mode = RATE_MODE_OFDM;
415

416 417 418 419
	/*
	 * Apply TX descriptor handling by components
	 */
	rt2x00crypto_create_tx_descriptor(entry, txdesc);
420
	rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
421 422
	rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
	rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
423 424
}

425 426
static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
					    struct txentry_desc *txdesc)
427
{
428 429
	struct data_queue *queue = entry->queue;
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
430 431 432 433 434 435 436 437 438 439

	rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);

	/*
	 * All processing on the frame has been completed, this means
	 * it is now ready to be dumped to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);

	/*
440 441 442 443 444 445 446 447
	 * Check if we need to kick the queue, there are however a few rules
	 *	1) Don't kick beacon queue
	 *	2) Don't kick unless this is the last in frame in a burst.
	 *	   When the burst flag is set, this frame is always followed
	 *	   by another frame which in some way are related to eachother.
	 *	   This is true for fragments, RTS or CTS-to-self frames.
	 *	3) Rule 2 can be broken when the available entries
	 *	   in the queue are less then a certain threshold.
448
	 */
449 450 451 452 453 454
	if (entry->queue->qid == QID_BEACON)
		return;

	if (rt2x00queue_threshold(queue) ||
	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
		rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
455 456
}

457 458
int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
			       bool local)
459
{
460
	struct ieee80211_tx_info *tx_info;
461 462
	struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
	struct txentry_desc txdesc;
463
	struct skb_frame_desc *skbdesc;
464
	u8 rate_idx, rate_flags;
465 466

	if (unlikely(rt2x00queue_full(queue)))
467
		return -ENOBUFS;
468

469
	if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
		ERROR(queue->rt2x00dev,
		      "Arrived at non-free entry in the non-full queue %d.\n"
		      "Please file bug report to %s.\n",
		      queue->qid, DRV_PROJECT);
		return -EINVAL;
	}

	/*
	 * Copy all TX descriptor information into txdesc,
	 * after that we are free to use the skb->cb array
	 * for our information.
	 */
	entry->skb = skb;
	rt2x00queue_create_tx_descriptor(entry, &txdesc);

485
	/*
486
	 * All information is retrieved from the skb->cb array,
487
	 * now we should claim ownership of the driver part of that
488
	 * array, preserving the bitrate index and flags.
489
	 */
490 491 492
	tx_info = IEEE80211_SKB_CB(skb);
	rate_idx = tx_info->control.rates[0].idx;
	rate_flags = tx_info->control.rates[0].flags;
493
	skbdesc = get_skb_frame_desc(skb);
494 495
	memset(skbdesc, 0, sizeof(*skbdesc));
	skbdesc->entry = entry;
496 497
	skbdesc->tx_rate_idx = rate_idx;
	skbdesc->tx_rate_flags = rate_flags;
498

499 500 501
	if (local)
		skbdesc->flags |= SKBDESC_NOT_MAC80211;

502 503 504
	/*
	 * When hardware encryption is supported, and this frame
	 * is to be encrypted, we should strip the IV/EIV data from
505
	 * the frame so we can provide it to the driver separately.
506 507
	 */
	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
508
	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
509
		if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
510
			rt2x00crypto_tx_copy_iv(skb, &txdesc);
511
		else
512
			rt2x00crypto_tx_remove_iv(skb, &txdesc);
513
	}
514

515 516 517 518 519 520 521 522
	/*
	 * When DMA allocation is required we should guarentee to the
	 * driver that the DMA is aligned to a 4-byte boundary.
	 * However some drivers require L2 padding to pad the payload
	 * rather then the header. This could be a requirement for
	 * PCI and USB devices, while header alignment only is valid
	 * for PCI devices.
	 */
523
	if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
524
		rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
525
	else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
526
		rt2x00queue_align_frame(entry->skb);
527

528 529
	/*
	 * It could be possible that the queue was corrupted and this
530 531
	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
	 * this frame will simply be dropped.
532
	 */
533
	if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
534
		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
535
		entry->skb = NULL;
536
		return -EIO;
537 538
	}

539 540 541
	if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
		rt2x00queue_map_txskb(queue->rt2x00dev, skb);

542
	set_bit(ENTRY_DATA_PENDING, &entry->flags);
543 544 545 546 547 548 549

	rt2x00queue_index_inc(queue, Q_INDEX);
	rt2x00queue_write_tx_descriptor(entry, &txdesc);

	return 0;
}

550
int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
551 552
			      struct ieee80211_vif *vif,
			      const bool enable_beacon)
553 554 555 556 557 558 559 560 561
{
	struct rt2x00_intf *intf = vif_to_intf(vif);
	struct skb_frame_desc *skbdesc;
	struct txentry_desc txdesc;
	__le32 desc[16];

	if (unlikely(!intf->beacon))
		return -ENOBUFS;

562 563 564 565 566 567 568 569
	mutex_lock(&intf->beacon_skb_mutex);

	/*
	 * Clean up the beacon skb.
	 */
	rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
	intf->beacon->skb = NULL;

570 571
	if (!enable_beacon) {
		rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
572
		mutex_unlock(&intf->beacon_skb_mutex);
573 574 575
		return 0;
	}

576
	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
577 578
	if (!intf->beacon->skb) {
		mutex_unlock(&intf->beacon_skb_mutex);
579
		return -ENOMEM;
580
	}
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

	/*
	 * Copy all TX descriptor information into txdesc,
	 * after that we are free to use the skb->cb array
	 * for our information.
	 */
	rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);

	/*
	 * For the descriptor we use a local array from where the
	 * driver can move it to the correct location required for
	 * the hardware.
	 */
	memset(desc, 0, sizeof(desc));

	/*
	 * Fill in skb descriptor
	 */
	skbdesc = get_skb_frame_desc(intf->beacon->skb);
	memset(skbdesc, 0, sizeof(*skbdesc));
	skbdesc->desc = desc;
	skbdesc->desc_len = intf->beacon->queue->desc_size;
	skbdesc->entry = intf->beacon;

	/*
	 * Write TX descriptor into reserved room in front of the beacon.
	 */
	rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);

	/*
	 * Send beacon to hardware.
	 * Also enable beacon generation, which might have been disabled
	 * by the driver during the config_beacon() callback function.
	 */
	rt2x00dev->ops->lib->write_beacon(intf->beacon);
	rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);

618 619
	mutex_unlock(&intf->beacon_skb_mutex);

620 621 622
	return 0;
}

623
struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
624
					 const enum data_queue_qid queue)
625 626 627
{
	int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);

628 629 630
	if (queue == QID_RX)
		return rt2x00dev->rx;

631
	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
632 633 634 635 636
		return &rt2x00dev->tx[queue];

	if (!rt2x00dev->bcn)
		return NULL;

637
	if (queue == QID_BEACON)
638
		return &rt2x00dev->bcn[0];
639
	else if (queue == QID_ATIM && atim)
640 641 642 643 644 645 646 647 648 649
		return &rt2x00dev->bcn[1];

	return NULL;
}
EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);

struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
					  enum queue_index index)
{
	struct queue_entry *entry;
650
	unsigned long irqflags;
651 652 653 654 655 656 657

	if (unlikely(index >= Q_INDEX_MAX)) {
		ERROR(queue->rt2x00dev,
		      "Entry requested from invalid index type (%d)\n", index);
		return NULL;
	}

658
	spin_lock_irqsave(&queue->lock, irqflags);
659 660 661

	entry = &queue->entries[queue->index[index]];

662
	spin_unlock_irqrestore(&queue->lock, irqflags);
663 664 665 666 667 668 669

	return entry;
}
EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);

void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
{
670 671
	unsigned long irqflags;

672 673 674 675 676 677
	if (unlikely(index >= Q_INDEX_MAX)) {
		ERROR(queue->rt2x00dev,
		      "Index change on invalid index type (%d)\n", index);
		return;
	}

678
	spin_lock_irqsave(&queue->lock, irqflags);
679 680 681 682 683

	queue->index[index]++;
	if (queue->index[index] >= queue->limit)
		queue->index[index] = 0;

684 685 686 687
	if (index == Q_INDEX) {
		queue->length++;
	} else if (index == Q_INDEX_DONE) {
		queue->length--;
688
		queue->count++;
689
	}
690

691
	spin_unlock_irqrestore(&queue->lock, irqflags);
692 693 694 695
}

static void rt2x00queue_reset(struct data_queue *queue)
{
696 697 698
	unsigned long irqflags;

	spin_lock_irqsave(&queue->lock, irqflags);
699 700 701 702 703

	queue->count = 0;
	queue->length = 0;
	memset(queue->index, 0, sizeof(queue->index));

704
	spin_unlock_irqrestore(&queue->lock, irqflags);
705 706
}

707 708 709 710 711 712 713 714
void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;

	txall_queue_for_each(rt2x00dev, queue)
		rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
}

715
void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
716 717 718 719
{
	struct data_queue *queue;
	unsigned int i;

720
	queue_for_each(rt2x00dev, queue) {
721 722
		rt2x00queue_reset(queue);

723 724 725
		for (i = 0; i < queue->limit; i++) {
			queue->entries[i].flags = 0;

726
			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
727
		}
728 729 730 731 732 733 734 735 736 737 738 739 740
	}
}

static int rt2x00queue_alloc_entries(struct data_queue *queue,
				     const struct data_queue_desc *qdesc)
{
	struct queue_entry *entries;
	unsigned int entry_size;
	unsigned int i;

	rt2x00queue_reset(queue);

	queue->limit = qdesc->entry_num;
741
	queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
742 743 744 745 746 747 748 749 750 751 752 753
	queue->data_size = qdesc->data_size;
	queue->desc_size = qdesc->desc_size;

	/*
	 * Allocate all queue entries.
	 */
	entry_size = sizeof(*entries) + qdesc->priv_size;
	entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
754 755
	( ((char *)(__base)) + ((__limit) * (__esize)) + \
	    ((__index) * (__psize)) )
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	for (i = 0; i < queue->limit; i++) {
		entries[i].flags = 0;
		entries[i].queue = queue;
		entries[i].skb = NULL;
		entries[i].entry_idx = i;
		entries[i].priv_data =
		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
					    sizeof(*entries), qdesc->priv_size);
	}

#undef QUEUE_ENTRY_PRIV_OFFSET

	queue->entries = entries;

	return 0;
}

774 775
static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
				  struct data_queue *queue)
776 777 778 779 780 781 782 783
{
	unsigned int i;

	if (!queue->entries)
		return;

	for (i = 0; i < queue->limit; i++) {
		if (queue->entries[i].skb)
784
			rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
785 786 787
	}
}

788 789
static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
				    struct data_queue *queue)
790 791 792 793 794
{
	unsigned int i;
	struct sk_buff *skb;

	for (i = 0; i < queue->limit; i++) {
795
		skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
796
		if (!skb)
797
			return -ENOMEM;
798 799 800 801 802 803
		queue->entries[i].skb = skb;
	}

	return 0;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	int status;

	status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
	if (status)
		goto exit;

	tx_queue_for_each(rt2x00dev, queue) {
		status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
		if (status)
			goto exit;
	}

	status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
	if (status)
		goto exit;

823 824 825 826 827 828
	if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
		status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
						   rt2x00dev->ops->atim);
		if (status)
			goto exit;
	}
829

830
	status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	if (status)
		goto exit;

	return 0;

exit:
	ERROR(rt2x00dev, "Queue entries allocation failed.\n");

	rt2x00queue_uninitialize(rt2x00dev);

	return status;
}

void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;

848
	rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
849

850 851 852 853 854 855
	queue_for_each(rt2x00dev, queue) {
		kfree(queue->entries);
		queue->entries = NULL;
	}
}

856 857 858 859 860 861 862
static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
			     struct data_queue *queue, enum data_queue_qid qid)
{
	spin_lock_init(&queue->lock);

	queue->rt2x00dev = rt2x00dev;
	queue->qid = qid;
863
	queue->txop = 0;
864 865 866 867 868
	queue->aifs = 2;
	queue->cw_min = 5;
	queue->cw_max = 10;
}

869 870 871 872 873 874 875 876 877 878
int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	enum data_queue_qid qid;
	unsigned int req_atim =
	    !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);

	/*
	 * We need the following queues:
	 * RX: 1
879
	 * TX: ops->tx_queues
880 881 882
	 * Beacon: 1
	 * Atim: 1 (if required)
	 */
883
	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
884 885 886 887 888 889 890 891 892 893 894 895

	queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
	if (!queue) {
		ERROR(rt2x00dev, "Queue allocation failed.\n");
		return -ENOMEM;
	}

	/*
	 * Initialize pointers
	 */
	rt2x00dev->rx = queue;
	rt2x00dev->tx = &queue[1];
896
	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
897 898 899 900 901 902 903

	/*
	 * Initialize queue parameters.
	 * RX: qid = QID_RX
	 * TX: qid = QID_AC_BE + index
	 * TX: cw_min: 2^5 = 32.
	 * TX: cw_max: 2^10 = 1024.
904 905
	 * BCN: qid = QID_BEACON
	 * ATIM: qid = QID_ATIM
906
	 */
907
	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
908

909 910 911
	qid = QID_AC_BE;
	tx_queue_for_each(rt2x00dev, queue)
		rt2x00queue_init(rt2x00dev, queue, qid++);
912

913
	rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
914
	if (req_atim)
915
		rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
916 917 918 919 920 921 922 923 924 925 926

	return 0;
}

void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
{
	kfree(rt2x00dev->rx);
	rt2x00dev->rx = NULL;
	rt2x00dev->tx = NULL;
	rt2x00dev->bcn = NULL;
}
新手
引导
客服 返回
顶部