super.c 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2003 Erez Zadok
 * Copyright (C) 2001-2003 Stony Brook University
 * Copyright (C) 2004-2006 International Business Machines Corp.
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *              Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/key.h>
#include <linux/seq_file.h>
30
#include <linux/file.h>
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include <linux/crypto.h>
#include "ecryptfs_kernel.h"

struct kmem_cache *ecryptfs_inode_info_cache;

/**
 * ecryptfs_alloc_inode - allocate an ecryptfs inode
 * @sb: Pointer to the ecryptfs super block
 *
 * Called to bring an inode into existence.
 *
 * Only handle allocation, setting up structures should be done in
 * ecryptfs_read_inode. This is because the kernel, between now and
 * then, will 0 out the private data pointer.
 *
 * Returns a pointer to a newly allocated inode, NULL otherwise
 */
static struct inode *ecryptfs_alloc_inode(struct super_block *sb)
{
50
	struct ecryptfs_inode_info *inode_info;
51 52
	struct inode *inode = NULL;

53 54
	inode_info = kmem_cache_alloc(ecryptfs_inode_info_cache, GFP_KERNEL);
	if (unlikely(!inode_info))
55
		goto out;
56 57 58 59
	ecryptfs_init_crypt_stat(&inode_info->crypt_stat);
	mutex_init(&inode_info->lower_file_mutex);
	inode_info->lower_file = NULL;
	inode = &inode_info->vfs_inode;
60 61 62 63 64 65 66 67
out:
	return inode;
}

/**
 * ecryptfs_destroy_inode
 * @inode: The ecryptfs inode
 *
68 69 70 71
 * This is used during the final destruction of the inode.  All
 * allocation of memory related to the inode, including allocated
 * memory in the crypt_stat struct, will be released here. This
 * function also fput()'s the persistent file for the lower inode.
72 73 74 75 76 77 78
 * There should be no chance that this deallocation will be missed.
 */
static void ecryptfs_destroy_inode(struct inode *inode)
{
	struct ecryptfs_inode_info *inode_info;

	inode_info = ecryptfs_inode_to_private(inode);
79 80 81 82 83 84 85 86 87 88 89 90 91
	mutex_lock(&inode_info->lower_file_mutex);
	if (inode_info->lower_file) {
		struct dentry *lower_dentry =
			inode_info->lower_file->f_dentry;

		BUG_ON(!lower_dentry);
		if (lower_dentry->d_inode) {
			fput(inode_info->lower_file);
			inode_info->lower_file = NULL;
			d_drop(lower_dentry);
		}
	}
	mutex_unlock(&inode_info->lower_file_mutex);
92
	ecryptfs_destroy_crypt_stat(&inode_info->crypt_stat);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	kmem_cache_free(ecryptfs_inode_info_cache, inode_info);
}

/**
 * ecryptfs_init_inode
 * @inode: The ecryptfs inode
 *
 * Set up the ecryptfs inode.
 */
void ecryptfs_init_inode(struct inode *inode, struct inode *lower_inode)
{
	ecryptfs_set_inode_lower(inode, lower_inode);
	inode->i_ino = lower_inode->i_ino;
	inode->i_version++;
	inode->i_op = &ecryptfs_main_iops;
	inode->i_fop = &ecryptfs_main_fops;
	inode->i_mapping->a_ops = &ecryptfs_aops;
}

/**
 * ecryptfs_put_super
 * @sb: Pointer to the ecryptfs super block
 *
 * Final actions when unmounting a file system.
 * This will handle deallocation and release of our private data.
 */
static void ecryptfs_put_super(struct super_block *sb)
{
	struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);

123
	ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
	ecryptfs_set_superblock_private(sb, NULL);
}

/**
 * ecryptfs_statfs
 * @sb: The ecryptfs super block
 * @buf: The struct kstatfs to fill in with stats
 *
 * Get the filesystem statistics. Currently, we let this pass right through
 * to the lower filesystem and take no action ourselves.
 */
static int ecryptfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
	return vfs_statfs(ecryptfs_dentry_to_lower(dentry), buf);
}

/**
 * ecryptfs_clear_inode
 * @inode - The ecryptfs inode
 *
 * Called by iput() when the inode reference count reached zero
 * and the inode is not hashed anywhere.  Used to clear anything
 * that needs to be, before the inode is completely destroyed and put
 * on the inode free list. We use this to drop out reference to the
 * lower inode.
 */
static void ecryptfs_clear_inode(struct inode *inode)
{
	iput(ecryptfs_inode_to_lower(inode));
}

/**
 * ecryptfs_show_options
 *
159 160
 * Prints the mount options for a given superblock.
 * Returns zero; does not fail.
161 162 163 164
 */
static int ecryptfs_show_options(struct seq_file *m, struct vfsmount *mnt)
{
	struct super_block *sb = mnt->mnt_sb;
165 166 167 168 169 170 171 172
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
	struct ecryptfs_global_auth_tok *walker;

	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry(walker,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
173 174 175 176
		if (walker->flags & ECRYPTFS_AUTH_TOK_FNEK)
			seq_printf(m, ",ecryptfs_fnek_sig=%s", walker->sig);
		else
			seq_printf(m, ",ecryptfs_sig=%s", walker->sig);
177
	}
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);

	seq_printf(m, ",ecryptfs_cipher=%s",
		mount_crypt_stat->global_default_cipher_name);

	if (mount_crypt_stat->global_default_cipher_key_size)
		seq_printf(m, ",ecryptfs_key_bytes=%zd",
			   mount_crypt_stat->global_default_cipher_key_size);
	if (mount_crypt_stat->flags & ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)
		seq_printf(m, ",ecryptfs_passthrough");
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		seq_printf(m, ",ecryptfs_xattr_metadata");
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		seq_printf(m, ",ecryptfs_encrypted_view");

	return 0;
194 195
}

196
const struct super_operations ecryptfs_sops = {
197 198 199 200 201 202 203 204 205
	.alloc_inode = ecryptfs_alloc_inode,
	.destroy_inode = ecryptfs_destroy_inode,
	.drop_inode = generic_delete_inode,
	.put_super = ecryptfs_put_super,
	.statfs = ecryptfs_statfs,
	.remount_fs = NULL,
	.clear_inode = ecryptfs_clear_inode,
	.show_options = ecryptfs_show_options
};