rhashtable.c 20.6 KB
Newer Older
1 2 3
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
4
 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 7 8
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Code partially derived from nft_hash
9 10
 * Rewritten with rehash code from br_multicast plus single list
 * pointer as suggested by Josh Triplett
11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17
#include <linux/atomic.h>
18 19 20
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
E
Eric Dumazet 已提交
21
#include <linux/sched.h>
22 23 24
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
25
#include <linux/jhash.h>
26 27
#include <linux/random.h>
#include <linux/rhashtable.h>
28
#include <linux/err.h>
29
#include <linux/export.h>
30 31

#define HASH_DEFAULT_SIZE	64UL
32
#define HASH_MIN_SIZE		4U
33 34
#define BUCKET_LOCKS_PER_CPU   128UL

35
static u32 head_hashfn(struct rhashtable *ht,
36 37
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
38
{
39
	return rht_head_hashfn(ht, tbl, he, ht->p);
40 41
}

42 43 44 45 46 47 48 49 50 51 52
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
53
	spinlock_t *lock = rht_bucket_lock(tbl, hash);
54 55 56 57 58 59 60 61 62

	return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif


63 64
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
			      gfp_t gfp)
65 66 67 68 69 70 71 72 73 74 75
{
	unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
	unsigned int nr_pcpus = 2;
#else
	unsigned int nr_pcpus = num_possible_cpus();
#endif

	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);

76 77
	/* Never allocate more than 0.5 locks per bucket */
	size = min_t(unsigned int, size, tbl->size >> 1);
78 79 80

	if (sizeof(spinlock_t) != 0) {
#ifdef CONFIG_NUMA
81 82
		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
		    gfp == GFP_KERNEL)
83 84 85 86
			tbl->locks = vmalloc(size * sizeof(spinlock_t));
		else
#endif
		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87
					   gfp);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
		if (!tbl->locks)
			return -ENOMEM;
		for (i = 0; i < size; i++)
			spin_lock_init(&tbl->locks[i]);
	}
	tbl->locks_mask = size - 1;

	return 0;
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl)
		kvfree(tbl->locks);

	kvfree(tbl);
}

106 107 108 109 110
static void bucket_table_free_rcu(struct rcu_head *head)
{
	bucket_table_free(container_of(head, struct bucket_table, rcu));
}

111
static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112 113
					       size_t nbuckets,
					       gfp_t gfp)
114
{
115
	struct bucket_table *tbl = NULL;
116
	size_t size;
117
	int i;
118 119

	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120 121 122
	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
	    gfp != GFP_KERNEL)
		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123 124
	if (tbl == NULL && gfp == GFP_KERNEL)
		tbl = vzalloc(size);
125 126 127 128 129
	if (tbl == NULL)
		return NULL;

	tbl->size = nbuckets;

130
	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131 132 133
		bucket_table_free(tbl);
		return NULL;
	}
134

135 136
	INIT_LIST_HEAD(&tbl->walkers);

137 138
	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));

139 140 141
	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);

142
	return tbl;
143 144
}

145 146 147 148 149 150 151 152 153 154 155 156 157
static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
						  struct bucket_table *tbl)
{
	struct bucket_table *new_tbl;

	do {
		new_tbl = tbl;
		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	} while (tbl);

	return new_tbl;
}

158
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159
{
160
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161 162
	struct bucket_table *new_tbl = rhashtable_last_table(ht,
		rht_dereference_rcu(old_tbl->future_tbl, ht));
163 164 165 166
	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
	int err = -ENOENT;
	struct rhash_head *head, *next, *entry;
	spinlock_t *new_bucket_lock;
167
	unsigned int new_hash;
168 169 170 171 172 173 174

	rht_for_each(entry, old_tbl, old_hash) {
		err = 0;
		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);

		if (rht_is_a_nulls(next))
			break;
175

176 177
		pprev = &entry->next;
	}
178

179 180
	if (err)
		goto out;
181

182
	new_hash = head_hashfn(ht, new_tbl, entry);
183

184
	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185

186
	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187 188
	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
				      new_tbl, new_hash);
189

190
	RCU_INIT_POINTER(entry->next, head);
191

192 193
	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
	spin_unlock(new_bucket_lock);
194

195
	rcu_assign_pointer(*pprev, next);
196

197 198 199
out:
	return err;
}
200

201 202
static void rhashtable_rehash_chain(struct rhashtable *ht,
				    unsigned int old_hash)
203 204 205 206
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	spinlock_t *old_bucket_lock;

207
	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208

209 210 211
	spin_lock_bh(old_bucket_lock);
	while (!rhashtable_rehash_one(ht, old_hash))
		;
212
	old_tbl->rehash++;
213
	spin_unlock_bh(old_bucket_lock);
214 215
}

216 217 218
static int rhashtable_rehash_attach(struct rhashtable *ht,
				    struct bucket_table *old_tbl,
				    struct bucket_table *new_tbl)
219
{
220 221 222 223 224 225 226 227
	/* Protect future_tbl using the first bucket lock. */
	spin_lock_bh(old_tbl->locks);

	/* Did somebody beat us to it? */
	if (rcu_access_pointer(old_tbl->future_tbl)) {
		spin_unlock_bh(old_tbl->locks);
		return -EEXIST;
	}
228

229 230 231
	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 */
232
	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233

H
Herbert Xu 已提交
234 235 236
	/* Ensure the new table is visible to readers. */
	smp_wmb();

237 238 239 240 241 242 243 244 245 246
	spin_unlock_bh(old_tbl->locks);

	return 0;
}

static int rhashtable_rehash_table(struct rhashtable *ht)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct bucket_table *new_tbl;
	struct rhashtable_walker *walker;
247
	unsigned int old_hash;
248 249 250 251 252

	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
	if (!new_tbl)
		return 0;

253 254 255 256 257 258
	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
		rhashtable_rehash_chain(ht, old_hash);

	/* Publish the new table pointer. */
	rcu_assign_pointer(ht->tbl, new_tbl);

259
	spin_lock(&ht->lock);
260 261
	list_for_each_entry(walker, &old_tbl->walkers, list)
		walker->tbl = NULL;
262
	spin_unlock(&ht->lock);
263

264 265 266 267
	/* Wait for readers. All new readers will see the new
	 * table, and thus no references to the old table will
	 * remain.
	 */
268
	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
269 270

	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
271 272 273 274 275 276
}

/**
 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 * @ht:		the hash table to expand
 *
277
 * A secondary bucket array is allocated and the hash entries are migrated.
278 279 280 281
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
282 283 284 285 286
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
287
 */
288
static int rhashtable_expand(struct rhashtable *ht)
289 290
{
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
291
	int err;
292 293 294

	ASSERT_RHT_MUTEX(ht);

295 296
	old_tbl = rhashtable_last_table(ht, old_tbl);

297
	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
298 299 300
	if (new_tbl == NULL)
		return -ENOMEM;

301 302 303 304 305
	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
	if (err)
		bucket_table_free(new_tbl);

	return err;
306 307 308 309 310 311
}

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
H
Herbert Xu 已提交
312 313
 * This function shrinks the hash table to fit, i.e., the smallest
 * size would not cause it to expand right away automatically.
314
 *
315 316 317
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
318 319
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
320 321 322
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
323
 */
324
static int rhashtable_shrink(struct rhashtable *ht)
325
{
326
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
327
	unsigned int size;
328
	int err;
329 330 331

	ASSERT_RHT_MUTEX(ht);

332
	size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
H
Herbert Xu 已提交
333 334 335 336 337 338
	if (size < ht->p.min_size)
		size = ht->p.min_size;

	if (old_tbl->size <= size)
		return 0;

339 340 341
	if (rht_dereference(old_tbl->future_tbl, ht))
		return -EEXIST;

342
	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
343
	if (new_tbl == NULL)
344 345
		return -ENOMEM;

346 347 348 349 350
	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
	if (err)
		bucket_table_free(new_tbl);

	return err;
351 352
}

353 354 355 356
static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;
357
	int err = 0;
358

359
	ht = container_of(work, struct rhashtable, run_work);
360
	mutex_lock(&ht->mutex);
361

362
	tbl = rht_dereference(ht->tbl, ht);
363
	tbl = rhashtable_last_table(ht, tbl);
364

365
	if (rht_grow_above_75(ht, tbl))
366
		rhashtable_expand(ht);
367
	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
368
		rhashtable_shrink(ht);
369 370 371

	err = rhashtable_rehash_table(ht);

372
	mutex_unlock(&ht->mutex);
373 374 375

	if (err)
		schedule_work(&ht->run_work);
376 377
}

378 379
static bool rhashtable_check_elasticity(struct rhashtable *ht,
					struct bucket_table *tbl,
380
					unsigned int hash)
381
{
382
	unsigned int elasticity = ht->elasticity;
383 384 385 386 387 388 389 390 391
	struct rhash_head *head;

	rht_for_each(head, tbl, hash)
		if (!--elasticity)
			return true;

	return false;
}

392 393
int rhashtable_insert_rehash(struct rhashtable *ht,
			     struct bucket_table *tbl)
394 395 396 397 398 399 400 401 402 403
{
	struct bucket_table *old_tbl;
	struct bucket_table *new_tbl;
	unsigned int size;
	int err;

	old_tbl = rht_dereference_rcu(ht->tbl, ht);

	size = tbl->size;

404 405
	err = -EBUSY;

406 407
	if (rht_grow_above_75(ht, tbl))
		size *= 2;
408 409
	/* Do not schedule more than one rehash */
	else if (old_tbl != tbl)
410 411 412
		goto fail;

	err = -ENOMEM;
413 414

	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
415 416
	if (new_tbl == NULL)
		goto fail;
417 418 419 420 421 422 423 424 425 426

	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
	if (err) {
		bucket_table_free(new_tbl);
		if (err == -EEXIST)
			err = 0;
	} else
		schedule_work(&ht->run_work);

	return err;
427 428 429 430 431 432 433 434 435 436 437

fail:
	/* Do not fail the insert if someone else did a rehash. */
	if (likely(rcu_dereference_raw(tbl->future_tbl)))
		return 0;

	/* Schedule async rehash to retry allocation in process context. */
	if (err == -ENOMEM)
		schedule_work(&ht->run_work);

	return err;
438 439 440
}
EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);

441 442 443 444
struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
					    const void *key,
					    struct rhash_head *obj,
					    struct bucket_table *tbl)
445 446
{
	struct rhash_head *head;
447
	unsigned int hash;
448
	int err;
449

450
	tbl = rhashtable_last_table(ht, tbl);
451 452 453
	hash = head_hashfn(ht, tbl, obj);
	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);

454
	err = -EEXIST;
455 456 457
	if (key && rhashtable_lookup_fast(ht, key, ht->p))
		goto exit;

458 459 460 461
	err = -E2BIG;
	if (unlikely(rht_grow_above_max(ht, tbl)))
		goto exit;

462 463 464 465 466
	err = -EAGAIN;
	if (rhashtable_check_elasticity(ht, tbl, hash) ||
	    rht_grow_above_100(ht, tbl))
		goto exit;

467 468 469 470 471 472 473 474 475 476 477 478 479
	err = 0;

	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);

	RCU_INIT_POINTER(obj->next, head);

	rcu_assign_pointer(tbl->buckets[hash], obj);

	atomic_inc(&ht->nelems);

exit:
	spin_unlock(rht_bucket_lock(tbl, hash));

480 481 482 483 484 485
	if (err == 0)
		return NULL;
	else if (err == -EAGAIN)
		return tbl;
	else
		return ERR_PTR(err);
486 487 488
}
EXPORT_SYMBOL_GPL(rhashtable_insert_slow);

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/**
 * rhashtable_walk_init - Initialise an iterator
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may sleep so you must not call it from interrupt
 * context or with spin locks held.
 *
 * You must call rhashtable_walk_exit if this function returns
 * successfully.
 */
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;

	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
	if (!iter->walker)
		return -ENOMEM;

	mutex_lock(&ht->mutex);
522 523
	iter->walker->tbl = rht_dereference(ht->tbl, ht);
	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	mutex_unlock(&ht->mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_init);

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_init.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
	mutex_lock(&iter->ht->mutex);
539 540
	if (iter->walker->tbl)
		list_del(&iter->walker->list);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	mutex_unlock(&iter->ht->mutex);
	kfree(iter->walker);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk.  Note that we take the RCU lock in all
 * cases including when we return an error.  So you must always call
 * rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 */
int rhashtable_walk_start(struct rhashtable_iter *iter)
561
	__acquires(RCU)
562
{
563 564 565 566 567 568 569
	struct rhashtable *ht = iter->ht;

	mutex_lock(&ht->mutex);

	if (iter->walker->tbl)
		list_del(&iter->walker->list);

570 571
	rcu_read_lock();

572 573 574 575
	mutex_unlock(&ht->mutex);

	if (!iter->walker->tbl) {
		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		return -EAGAIN;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
597
	struct bucket_table *tbl = iter->walker->tbl;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;

	if (p) {
		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
		goto next;
	}

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
T
Thomas Graf 已提交
619
			return rht_obj(ht, p);
620 621 622 623 624
		}

		iter->skip = 0;
	}

625 626
	iter->p = NULL;

627 628 629
	/* Ensure we see any new tables. */
	smp_rmb();

630 631
	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	if (iter->walker->tbl) {
632 633 634 635 636
		iter->slot = 0;
		iter->skip = 0;
		return ERR_PTR(-EAGAIN);
	}

T
Thomas Graf 已提交
637
	return NULL;
638 639 640 641 642 643 644 645 646 647
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
648
	__releases(RCU)
649
{
650 651 652 653
	struct rhashtable *ht;
	struct bucket_table *tbl = iter->walker->tbl;

	if (!tbl)
654
		goto out;
655 656 657

	ht = iter->ht;

658
	spin_lock(&ht->lock);
659
	if (tbl->rehash < tbl->size)
660 661 662
		list_add(&iter->walker->list, &tbl->walkers);
	else
		iter->walker->tbl = NULL;
663
	spin_unlock(&ht->lock);
664

665
	iter->p = NULL;
666 667 668

out:
	rcu_read_unlock();
669 670 671
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

672
static size_t rounded_hashtable_size(const struct rhashtable_params *params)
673
{
674
	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
675
		   (unsigned long)params->min_size);
676 677
}

678 679 680 681 682
static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
{
	return jhash2(key, length, seed);
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
703
 *	.hashfn = jhash,
704
 *	.nulls_base = (1U << RHT_BASE_SHIFT),
705 706 707 708 709 710 711 712
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
713
 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
714 715 716 717 718 719 720 721
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
722
 *	.hashfn = jhash,
723 724 725
 *	.obj_hashfn = my_hash_fn,
 * };
 */
726 727
int rhashtable_init(struct rhashtable *ht,
		    const struct rhashtable_params *params)
728 729 730 731 732 733
{
	struct bucket_table *tbl;
	size_t size;

	size = HASH_DEFAULT_SIZE;

734
	if ((!params->key_len && !params->obj_hashfn) ||
735
	    (params->obj_hashfn && !params->obj_cmpfn))
736 737
		return -EINVAL;

738 739 740
	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
		return -EINVAL;

741 742
	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
743
	spin_lock_init(&ht->lock);
744 745
	memcpy(&ht->p, params, sizeof(*params));

746 747 748 749 750 751
	if (params->min_size)
		ht->p.min_size = roundup_pow_of_two(params->min_size);

	if (params->max_size)
		ht->p.max_size = rounddown_pow_of_two(params->max_size);

752 753 754 755 756 757
	if (params->insecure_max_entries)
		ht->p.insecure_max_entries =
			rounddown_pow_of_two(params->insecure_max_entries);
	else
		ht->p.insecure_max_entries = ht->p.max_size * 2;

758
	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
759

760 761 762
	if (params->nelem_hint)
		size = rounded_hashtable_size(&ht->p);

763 764 765 766 767 768 769 770 771 772 773 774
	/* The maximum (not average) chain length grows with the
	 * size of the hash table, at a rate of (log N)/(log log N).
	 * The value of 16 is selected so that even if the hash
	 * table grew to 2^32 you would not expect the maximum
	 * chain length to exceed it unless we are under attack
	 * (or extremely unlucky).
	 *
	 * As this limit is only to detect attacks, we don't need
	 * to set it to a lower value as you'd need the chain
	 * length to vastly exceed 16 to have any real effect
	 * on the system.
	 */
775 776 777
	if (!params->insecure_elasticity)
		ht->elasticity = 16;

778 779 780 781 782
	if (params->locks_mul)
		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
	else
		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;

783 784 785 786 787 788 789 790 791 792
	ht->key_len = ht->p.key_len;
	if (!params->hashfn) {
		ht->p.hashfn = jhash;

		if (!(ht->key_len & (sizeof(u32) - 1))) {
			ht->key_len /= sizeof(u32);
			ht->p.hashfn = rhashtable_jhash2;
		}
	}

793
	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
794 795 796
	if (tbl == NULL)
		return -ENOMEM;

797
	atomic_set(&ht->nelems, 0);
798

799 800
	RCU_INIT_POINTER(ht->tbl, tbl);

801
	INIT_WORK(&ht->run_work, rht_deferred_worker);
802

803 804 805 806 807
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
808
 * rhashtable_free_and_destroy - free elements and destroy hash table
809
 * @ht:		the hash table to destroy
810 811
 * @free_fn:	callback to release resources of element
 * @arg:	pointer passed to free_fn
812
 *
813 814 815 816 817 818 819 820
 * Stops an eventual async resize. If defined, invokes free_fn for each
 * element to releasal resources. Please note that RCU protected
 * readers may still be accessing the elements. Releasing of resources
 * must occur in a compatible manner. Then frees the bucket array.
 *
 * This function will eventually sleep to wait for an async resize
 * to complete. The caller is responsible that no further write operations
 * occurs in parallel.
821
 */
822 823 824
void rhashtable_free_and_destroy(struct rhashtable *ht,
				 void (*free_fn)(void *ptr, void *arg),
				 void *arg)
825
{
826 827
	const struct bucket_table *tbl;
	unsigned int i;
828

829
	cancel_work_sync(&ht->run_work);
830

831
	mutex_lock(&ht->mutex);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	tbl = rht_dereference(ht->tbl, ht);
	if (free_fn) {
		for (i = 0; i < tbl->size; i++) {
			struct rhash_head *pos, *next;

			for (pos = rht_dereference(tbl->buckets[i], ht),
			     next = !rht_is_a_nulls(pos) ?
					rht_dereference(pos->next, ht) : NULL;
			     !rht_is_a_nulls(pos);
			     pos = next,
			     next = !rht_is_a_nulls(pos) ?
					rht_dereference(pos->next, ht) : NULL)
				free_fn(rht_obj(ht, pos), arg);
		}
	}

	bucket_table_free(tbl);
849
	mutex_unlock(&ht->mutex);
850
}
851 852 853 854 855 856
EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);

void rhashtable_destroy(struct rhashtable *ht)
{
	return rhashtable_free_and_destroy(ht, NULL, NULL);
}
857
EXPORT_SYMBOL_GPL(rhashtable_destroy);