evsel.c 74.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
/*
 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
 *
 * Parts came from builtin-{top,stat,record}.c, see those files for further
 * copyright notes.
 */

9
#include <byteswap.h>
10
#include <errno.h>
11
#include <inttypes.h>
12
#include <linux/bitops.h>
13
#include <api/fs/fs.h>
14
#include <api/fs/tracing_path.h>
15 16 17
#include <traceevent/event-parse.h>
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
18
#include <linux/compiler.h>
19
#include <linux/err.h>
20
#include <linux/zalloc.h>
21
#include <sys/ioctl.h>
22
#include <sys/resource.h>
23 24
#include <sys/types.h>
#include <dirent.h>
25
#include "asm/bug.h"
26
#include "callchain.h"
27
#include "cgroup.h"
28
#include "event.h"
29
#include "evsel.h"
30
#include "evlist.h"
31
#include "cpumap.h"
32
#include "thread_map.h"
33
#include "target.h"
34
#include "perf_regs.h"
35
#include "debug.h"
36
#include "trace-event.h"
37
#include "stat.h"
38
#include "string2.h"
39
#include "memswap.h"
40
#include "util/parse-branch-options.h"
41

42
#include <linux/ctype.h>
43

44
struct perf_missing_features perf_missing_features;
45

46 47
static clockid_t clockid;

48
static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused)
49 50 51 52
{
	return 0;
}

53 54
void __weak test_attr__ready(void) { }

55
static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
56 57 58 59 60
{
}

static struct {
	size_t	size;
61 62
	int	(*init)(struct evsel *evsel);
	void	(*fini)(struct evsel *evsel);
63
} perf_evsel__object = {
64
	.size = sizeof(struct evsel),
65 66 67 68 69
	.init = perf_evsel__no_extra_init,
	.fini = perf_evsel__no_extra_fini,
};

int perf_evsel__object_config(size_t object_size,
70 71
			      int (*init)(struct evsel *evsel),
			      void (*fini)(struct evsel *evsel))
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
{

	if (object_size == 0)
		goto set_methods;

	if (perf_evsel__object.size > object_size)
		return -EINVAL;

	perf_evsel__object.size = object_size;

set_methods:
	if (init != NULL)
		perf_evsel__object.init = init;

	if (fini != NULL)
		perf_evsel__object.fini = fini;

	return 0;
}

92 93
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))

94
int __perf_evsel__sample_size(u64 sample_type)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
{
	u64 mask = sample_type & PERF_SAMPLE_MASK;
	int size = 0;
	int i;

	for (i = 0; i < 64; i++) {
		if (mask & (1ULL << i))
			size++;
	}

	size *= sizeof(u64);

	return size;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * __perf_evsel__calc_id_pos - calculate id_pos.
 * @sample_type: sample type
 *
 * This function returns the position of the event id (PERF_SAMPLE_ID or
 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
 * sample_event.
 */
static int __perf_evsel__calc_id_pos(u64 sample_type)
{
	int idx = 0;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 0;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_IP)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TID)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TIME)
		idx += 1;

	if (sample_type & PERF_SAMPLE_ADDR)
		idx += 1;

	return idx;
}

/**
 * __perf_evsel__calc_is_pos - calculate is_pos.
 * @sample_type: sample type
 *
 * This function returns the position (counting backwards) of the event id
 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
 * sample_id_all is used there is an id sample appended to non-sample events.
 */
static int __perf_evsel__calc_is_pos(u64 sample_type)
{
	int idx = 1;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 1;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_CPU)
		idx += 1;

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		idx += 1;

	return idx;
}

170
void perf_evsel__calc_id_pos(struct evsel *evsel)
171 172 173 174 175
{
	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
}

176
void __perf_evsel__set_sample_bit(struct evsel *evsel,
177 178 179 180 181
				  enum perf_event_sample_format bit)
{
	if (!(evsel->attr.sample_type & bit)) {
		evsel->attr.sample_type |= bit;
		evsel->sample_size += sizeof(u64);
182
		perf_evsel__calc_id_pos(evsel);
183 184 185
	}
}

186
void __perf_evsel__reset_sample_bit(struct evsel *evsel,
187 188 189 190 191
				    enum perf_event_sample_format bit)
{
	if (evsel->attr.sample_type & bit) {
		evsel->attr.sample_type &= ~bit;
		evsel->sample_size -= sizeof(u64);
192
		perf_evsel__calc_id_pos(evsel);
193 194 195
	}
}

196
void perf_evsel__set_sample_id(struct evsel *evsel,
197
			       bool can_sample_identifier)
198
{
199 200 201 202 203 204
	if (can_sample_identifier) {
		perf_evsel__reset_sample_bit(evsel, ID);
		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
	} else {
		perf_evsel__set_sample_bit(evsel, ID);
	}
205 206 207
	evsel->attr.read_format |= PERF_FORMAT_ID;
}

208 209 210 211 212 213 214 215
/**
 * perf_evsel__is_function_event - Return whether given evsel is a function
 * trace event
 *
 * @evsel - evsel selector to be tested
 *
 * Return %true if event is function trace event
 */
216
bool perf_evsel__is_function_event(struct evsel *evsel)
217 218 219 220 221 222 223 224 225
{
#define FUNCTION_EVENT "ftrace:function"

	return evsel->name &&
	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));

#undef FUNCTION_EVENT
}

226 227
void evsel__init(struct evsel *evsel,
		 struct perf_event_attr *attr, int idx)
228 229
{
	evsel->idx	   = idx;
230
	evsel->tracking	   = !idx;
231
	evsel->attr	   = *attr;
232
	evsel->leader	   = evsel;
233 234
	evsel->unit	   = "";
	evsel->scale	   = 1.0;
235
	evsel->max_events  = ULONG_MAX;
236
	evsel->evlist	   = NULL;
237
	evsel->bpf_obj	   = NULL;
238
	evsel->bpf_fd	   = -1;
239
	INIT_LIST_HEAD(&evsel->node);
240
	INIT_LIST_HEAD(&evsel->config_terms);
241
	perf_evsel__object.init(evsel);
242
	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243
	perf_evsel__calc_id_pos(evsel);
244
	evsel->cmdline_group_boundary = false;
245
	evsel->metric_expr   = NULL;
246
	evsel->metric_name   = NULL;
247 248
	evsel->metric_events = NULL;
	evsel->collect_stat  = false;
249
	evsel->pmu_name      = NULL;
250 251
}

252
struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
253
{
254
	struct evsel *evsel = zalloc(perf_evsel__object.size);
255

256 257
	if (!evsel)
		return NULL;
258
	evsel__init(evsel, attr, idx);
259

260
	if (perf_evsel__is_bpf_output(evsel)) {
261 262
		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
263 264 265
		evsel->attr.sample_period = 1;
	}

266 267 268 269 270 271 272 273 274 275 276
	if (perf_evsel__is_clock(evsel)) {
		/*
		 * The evsel->unit points to static alias->unit
		 * so it's ok to use static string in here.
		 */
		static const char *unit = "msec";

		evsel->unit = unit;
		evsel->scale = 1e-6;
	}

277 278 279
	return evsel;
}

280 281 282 283 284
static bool perf_event_can_profile_kernel(void)
{
	return geteuid() == 0 || perf_event_paranoid() == -1;
}

285
struct evsel *perf_evsel__new_cycles(bool precise)
286 287 288 289
{
	struct perf_event_attr attr = {
		.type	= PERF_TYPE_HARDWARE,
		.config	= PERF_COUNT_HW_CPU_CYCLES,
290
		.exclude_kernel	= !perf_event_can_profile_kernel(),
291
	};
292
	struct evsel *evsel;
293 294

	event_attr_init(&attr);
295 296 297

	if (!precise)
		goto new_event;
298

299 300 301 302
	/*
	 * Now let the usual logic to set up the perf_event_attr defaults
	 * to kick in when we return and before perf_evsel__open() is called.
	 */
303
new_event:
304
	evsel = evsel__new(&attr);
305 306 307
	if (evsel == NULL)
		goto out;

308 309
	evsel->precise_max = true;

310
	/* use asprintf() because free(evsel) assumes name is allocated */
311 312 313 314
	if (asprintf(&evsel->name, "cycles%s%s%.*s",
		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
		     attr.exclude_kernel ? "u" : "",
		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
315 316 317 318
		goto error_free;
out:
	return evsel;
error_free:
319
	evsel__delete(evsel);
320 321 322 323
	evsel = NULL;
	goto out;
}

324 325 326
/*
 * Returns pointer with encoded error via <linux/err.h> interface.
 */
327
struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
328
{
329
	struct evsel *evsel = zalloc(perf_evsel__object.size);
330
	int err = -ENOMEM;
331

332 333 334
	if (evsel == NULL) {
		goto out_err;
	} else {
335
		struct perf_event_attr attr = {
336 337 338
			.type	       = PERF_TYPE_TRACEPOINT,
			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
339 340
		};

341 342 343
		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
			goto out_free;

344
		evsel->tp_format = trace_event__tp_format(sys, name);
345 346
		if (IS_ERR(evsel->tp_format)) {
			err = PTR_ERR(evsel->tp_format);
347
			goto out_free;
348
		}
349

350
		event_attr_init(&attr);
351
		attr.config = evsel->tp_format->id;
352
		attr.sample_period = 1;
353
		evsel__init(evsel, &attr, idx);
354 355 356 357 358
	}

	return evsel;

out_free:
359
	zfree(&evsel->name);
360
	free(evsel);
361 362
out_err:
	return ERR_PTR(err);
363 364
}

365
const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
366 367 368 369 370 371 372 373 374 375 376 377
	"cycles",
	"instructions",
	"cache-references",
	"cache-misses",
	"branches",
	"branch-misses",
	"bus-cycles",
	"stalled-cycles-frontend",
	"stalled-cycles-backend",
	"ref-cycles",
};

378
static const char *__perf_evsel__hw_name(u64 config)
379 380 381 382 383 384 385
{
	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
		return perf_evsel__hw_names[config];

	return "unknown-hardware";
}

386
static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
387
{
388
	int colon = 0, r = 0;
389 390 391 392 393
	struct perf_event_attr *attr = &evsel->attr;
	bool exclude_guest_default = false;

#define MOD_PRINT(context, mod)	do {					\
		if (!attr->exclude_##context) {				\
394
			if (!colon) colon = ++r;			\
395 396 397 398 399 400 401 402 403 404 405 406
			r += scnprintf(bf + r, size - r, "%c", mod);	\
		} } while(0)

	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
		MOD_PRINT(kernel, 'k');
		MOD_PRINT(user, 'u');
		MOD_PRINT(hv, 'h');
		exclude_guest_default = true;
	}

	if (attr->precise_ip) {
		if (!colon)
407
			colon = ++r;
408 409 410 411 412 413 414 415 416 417
		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
		exclude_guest_default = true;
	}

	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
		MOD_PRINT(host, 'H');
		MOD_PRINT(guest, 'G');
	}
#undef MOD_PRINT
	if (colon)
418
		bf[colon - 1] = ':';
419 420 421
	return r;
}

422
static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
423 424 425 426 427
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

428
const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
429 430 431 432
	"cpu-clock",
	"task-clock",
	"page-faults",
	"context-switches",
433
	"cpu-migrations",
434 435 436 437
	"minor-faults",
	"major-faults",
	"alignment-faults",
	"emulation-faults",
438
	"dummy",
439 440
};

441
static const char *__perf_evsel__sw_name(u64 config)
442 443 444 445 446 447
{
	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
		return perf_evsel__sw_names[config];
	return "unknown-software";
}

448
static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
449 450 451 452 453
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
{
	int r;

	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);

	if (type & HW_BREAKPOINT_R)
		r += scnprintf(bf + r, size - r, "r");

	if (type & HW_BREAKPOINT_W)
		r += scnprintf(bf + r, size - r, "w");

	if (type & HW_BREAKPOINT_X)
		r += scnprintf(bf + r, size - r, "x");

	return r;
}

472
static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
473 474 475 476 477 478
{
	struct perf_event_attr *attr = &evsel->attr;
	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
				[PERF_EVSEL__MAX_ALIASES] = {
 { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
 { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
 { "LLC",	"L2",							},
 { "dTLB",	"d-tlb",	"Data-TLB",				},
 { "iTLB",	"i-tlb",	"Instruction-TLB",			},
 { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
 { "node",								},
};

const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
				   [PERF_EVSEL__MAX_ALIASES] = {
 { "load",	"loads",	"read",					},
 { "store",	"stores",	"write",				},
 { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
};

const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
				       [PERF_EVSEL__MAX_ALIASES] = {
 { "refs",	"Reference",	"ops",		"access",		},
 { "misses",	"miss",							},
};

#define C(x)		PERF_COUNT_HW_CACHE_##x
#define CACHE_READ	(1 << C(OP_READ))
#define CACHE_WRITE	(1 << C(OP_WRITE))
#define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
#define COP(x)		(1 << x)

/*
 * cache operartion stat
 * L1I : Read and prefetch only
 * ITLB and BPU : Read-only
 */
static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
 [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
 [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(ITLB)]	= (CACHE_READ),
 [C(BPU)]	= (CACHE_READ),
 [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
};

bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
{
	if (perf_evsel__hw_cache_stat[type] & COP(op))
		return true;	/* valid */
	else
		return false;	/* invalid */
}

int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
					    char *bf, size_t size)
{
	if (result) {
		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
				 perf_evsel__hw_cache_op[op][0],
				 perf_evsel__hw_cache_result[result][0]);
	}

	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
			 perf_evsel__hw_cache_op[op][1]);
}

545
static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
546 547 548 549
{
	u8 op, result, type = (config >>  0) & 0xff;
	const char *err = "unknown-ext-hardware-cache-type";

550
	if (type >= PERF_COUNT_HW_CACHE_MAX)
551 552 553 554
		goto out_err;

	op = (config >>  8) & 0xff;
	err = "unknown-ext-hardware-cache-op";
555
	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
556 557 558 559
		goto out_err;

	result = (config >> 16) & 0xff;
	err = "unknown-ext-hardware-cache-result";
560
	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
561 562 563 564 565 566 567 568 569 570 571
		goto out_err;

	err = "invalid-cache";
	if (!perf_evsel__is_cache_op_valid(type, op))
		goto out_err;

	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
out_err:
	return scnprintf(bf, size, "%s", err);
}

572
static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
573 574 575 576 577
{
	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

578
static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
579 580 581 582 583
{
	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

584 585 586 587 588 589
static int perf_evsel__tool_name(char *bf, size_t size)
{
	int ret = scnprintf(bf, size, "duration_time");
	return ret;
}

590
const char *perf_evsel__name(struct evsel *evsel)
591
{
592
	char bf[128];
593

594 595 596
	if (!evsel)
		goto out_unknown;

597 598
	if (evsel->name)
		return evsel->name;
599 600 601

	switch (evsel->attr.type) {
	case PERF_TYPE_RAW:
602
		perf_evsel__raw_name(evsel, bf, sizeof(bf));
603 604 605
		break;

	case PERF_TYPE_HARDWARE:
606
		perf_evsel__hw_name(evsel, bf, sizeof(bf));
607
		break;
608 609

	case PERF_TYPE_HW_CACHE:
610
		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
611 612
		break;

613
	case PERF_TYPE_SOFTWARE:
614 615 616 617
		if (evsel->tool_event)
			perf_evsel__tool_name(bf, sizeof(bf));
		else
			perf_evsel__sw_name(evsel, bf, sizeof(bf));
618 619
		break;

620
	case PERF_TYPE_TRACEPOINT:
621
		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
622 623
		break;

624 625 626 627
	case PERF_TYPE_BREAKPOINT:
		perf_evsel__bp_name(evsel, bf, sizeof(bf));
		break;

628
	default:
629 630
		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
			  evsel->attr.type);
631
		break;
632 633
	}

634 635
	evsel->name = strdup(bf);

636 637 638 639
	if (evsel->name)
		return evsel->name;
out_unknown:
	return "unknown";
640 641
}

642
const char *perf_evsel__group_name(struct evsel *evsel)
643 644 645 646
{
	return evsel->group_name ?: "anon group";
}

647 648 649 650 651 652 653 654 655 656
/*
 * Returns the group details for the specified leader,
 * with following rules.
 *
 *  For record -e '{cycles,instructions}'
 *    'anon group { cycles:u, instructions:u }'
 *
 *  For record -e 'cycles,instructions' and report --group
 *    'cycles:u, instructions:u'
 */
657
int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
658
{
659
	int ret = 0;
660
	struct evsel *pos;
661 662
	const char *group_name = perf_evsel__group_name(evsel);

663 664
	if (!evsel->forced_leader)
		ret = scnprintf(buf, size, "%s { ", group_name);
665

666
	ret += scnprintf(buf + ret, size - ret, "%s",
667 668 669 670 671 672
			 perf_evsel__name(evsel));

	for_each_group_member(pos, evsel)
		ret += scnprintf(buf + ret, size - ret, ", %s",
				 perf_evsel__name(pos));

673 674
	if (!evsel->forced_leader)
		ret += scnprintf(buf + ret, size - ret, " }");
675 676 677 678

	return ret;
}

679
static void __perf_evsel__config_callchain(struct evsel *evsel,
680 681
					   struct record_opts *opts,
					   struct callchain_param *param)
682 683 684 685 686 687
{
	bool function = perf_evsel__is_function_event(evsel);
	struct perf_event_attr *attr = &evsel->attr;

	perf_evsel__set_sample_bit(evsel, CALLCHAIN);

688 689
	attr->sample_max_stack = param->max_stack;

690 691 692 693
	if (opts->kernel_callchains)
		attr->exclude_callchain_user = 1;
	if (opts->user_callchains)
		attr->exclude_callchain_kernel = 1;
694
	if (param->record_mode == CALLCHAIN_LBR) {
695 696 697 698 699 700 701 702
		if (!opts->branch_stack) {
			if (attr->exclude_user) {
				pr_warning("LBR callstack option is only available "
					   "to get user callchain information. "
					   "Falling back to framepointers.\n");
			} else {
				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
703 704 705
							PERF_SAMPLE_BRANCH_CALL_STACK |
							PERF_SAMPLE_BRANCH_NO_CYCLES |
							PERF_SAMPLE_BRANCH_NO_FLAGS;
706 707 708 709 710 711
			}
		} else
			 pr_warning("Cannot use LBR callstack with branch stack. "
				    "Falling back to framepointers.\n");
	}

712
	if (param->record_mode == CALLCHAIN_DWARF) {
713 714 715
		if (!function) {
			perf_evsel__set_sample_bit(evsel, REGS_USER);
			perf_evsel__set_sample_bit(evsel, STACK_USER);
716 717 718 719 720 721 722 723
			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
			} else {
				attr->sample_regs_user |= PERF_REGS_MASK;
			}
724
			attr->sample_stack_user = param->dump_size;
725 726 727 728 729 730 731 732 733 734 735 736 737
			attr->exclude_callchain_user = 1;
		} else {
			pr_info("Cannot use DWARF unwind for function trace event,"
				" falling back to framepointers.\n");
		}
	}

	if (function) {
		pr_info("Disabling user space callchains for function trace event.\n");
		attr->exclude_callchain_user = 1;
	}
}

738
void perf_evsel__config_callchain(struct evsel *evsel,
739 740 741 742 743 744 745
				  struct record_opts *opts,
				  struct callchain_param *param)
{
	if (param->enabled)
		return __perf_evsel__config_callchain(evsel, opts, param);
}

746
static void
747
perf_evsel__reset_callgraph(struct evsel *evsel,
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
			    struct callchain_param *param)
{
	struct perf_event_attr *attr = &evsel->attr;

	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
	if (param->record_mode == CALLCHAIN_LBR) {
		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
					      PERF_SAMPLE_BRANCH_CALL_STACK);
	}
	if (param->record_mode == CALLCHAIN_DWARF) {
		perf_evsel__reset_sample_bit(evsel, REGS_USER);
		perf_evsel__reset_sample_bit(evsel, STACK_USER);
	}
}

764
static void apply_config_terms(struct evsel *evsel,
765
			       struct record_opts *opts, bool track)
766 767
{
	struct perf_evsel_config_term *term;
768 769
	struct list_head *config_terms = &evsel->config_terms;
	struct perf_event_attr *attr = &evsel->attr;
770 771 772 773
	/* callgraph default */
	struct callchain_param param = {
		.record_mode = callchain_param.record_mode,
	};
774
	u32 dump_size = 0;
775 776
	int max_stack = 0;
	const char *callgraph_buf = NULL;
777

778 779
	list_for_each_entry(term, config_terms, list) {
		switch (term->type) {
780
		case PERF_EVSEL__CONFIG_TERM_PERIOD:
781 782 783
			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
				attr->sample_period = term->val.period;
				attr->freq = 0;
784
				perf_evsel__reset_sample_bit(evsel, PERIOD);
785
			}
786
			break;
787
		case PERF_EVSEL__CONFIG_TERM_FREQ:
788 789 790
			if (!(term->weak && opts->user_freq != UINT_MAX)) {
				attr->sample_freq = term->val.freq;
				attr->freq = 1;
791
				perf_evsel__set_sample_bit(evsel, PERIOD);
792
			}
793
			break;
794 795 796 797 798 799
		case PERF_EVSEL__CONFIG_TERM_TIME:
			if (term->val.time)
				perf_evsel__set_sample_bit(evsel, TIME);
			else
				perf_evsel__reset_sample_bit(evsel, TIME);
			break;
800 801 802
		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
			callgraph_buf = term->val.callgraph;
			break;
803 804 805 806 807 808 809 810
		case PERF_EVSEL__CONFIG_TERM_BRANCH:
			if (term->val.branch && strcmp(term->val.branch, "no")) {
				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
				parse_branch_str(term->val.branch,
						 &attr->branch_sample_type);
			} else
				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
			break;
811 812 813
		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
			dump_size = term->val.stack_user;
			break;
814 815 816
		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
			max_stack = term->val.max_stack;
			break;
817 818 819
		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
			evsel->max_events = term->val.max_events;
			break;
820 821 822 823 824 825 826 827 828
		case PERF_EVSEL__CONFIG_TERM_INHERIT:
			/*
			 * attr->inherit should has already been set by
			 * perf_evsel__config. If user explicitly set
			 * inherit using config terms, override global
			 * opt->no_inherit setting.
			 */
			attr->inherit = term->val.inherit ? 1 : 0;
			break;
829 830 831
		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
			attr->write_backward = term->val.overwrite ? 1 : 0;
			break;
832
		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
833
			break;
834 835
		case PERF_EVSEL__CONFIG_TERM_PERCORE:
			break;
836 837 838 839
		default:
			break;
		}
	}
840 841

	/* User explicitly set per-event callgraph, clear the old setting and reset. */
842
	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
843 844
		bool sample_address = false;

845 846 847 848 849
		if (max_stack) {
			param.max_stack = max_stack;
			if (callgraph_buf == NULL)
				callgraph_buf = "fp";
		}
850 851 852

		/* parse callgraph parameters */
		if (callgraph_buf != NULL) {
853 854 855 856 857 858 859 860 861 862 863
			if (!strcmp(callgraph_buf, "no")) {
				param.enabled = false;
				param.record_mode = CALLCHAIN_NONE;
			} else {
				param.enabled = true;
				if (parse_callchain_record(callgraph_buf, &param)) {
					pr_err("per-event callgraph setting for %s failed. "
					       "Apply callgraph global setting for it\n",
					       evsel->name);
					return;
				}
864 865
				if (param.record_mode == CALLCHAIN_DWARF)
					sample_address = true;
866 867 868 869 870 871 872 873 874 875 876 877
			}
		}
		if (dump_size > 0) {
			dump_size = round_up(dump_size, sizeof(u64));
			param.dump_size = dump_size;
		}

		/* If global callgraph set, clear it */
		if (callchain_param.enabled)
			perf_evsel__reset_callgraph(evsel, &callchain_param);

		/* set perf-event callgraph */
878 879 880 881 882 883
		if (param.enabled) {
			if (sample_address) {
				perf_evsel__set_sample_bit(evsel, ADDR);
				perf_evsel__set_sample_bit(evsel, DATA_SRC);
				evsel->attr.mmap_data = track;
			}
884
			perf_evsel__config_callchain(evsel, opts, &param);
885
		}
886
	}
887 888
}

889
static bool is_dummy_event(struct evsel *evsel)
890 891 892 893 894
{
	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * The enable_on_exec/disabled value strategy:
 *
 *  1) For any type of traced program:
 *    - all independent events and group leaders are disabled
 *    - all group members are enabled
 *
 *     Group members are ruled by group leaders. They need to
 *     be enabled, because the group scheduling relies on that.
 *
 *  2) For traced programs executed by perf:
 *     - all independent events and group leaders have
 *       enable_on_exec set
 *     - we don't specifically enable or disable any event during
 *       the record command
 *
 *     Independent events and group leaders are initially disabled
 *     and get enabled by exec. Group members are ruled by group
 *     leaders as stated in 1).
 *
 *  3) For traced programs attached by perf (pid/tid):
 *     - we specifically enable or disable all events during
 *       the record command
 *
 *     When attaching events to already running traced we
 *     enable/disable events specifically, as there's no
 *     initial traced exec call.
 */
923
void perf_evsel__config(struct evsel *evsel, struct record_opts *opts,
924
			struct callchain_param *callchain)
925
{
926
	struct evsel *leader = evsel->leader;
927
	struct perf_event_attr *attr = &evsel->attr;
928
	int track = evsel->tracking;
929
	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
930

931
	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
932
	attr->inherit	    = !opts->no_inherit;
933
	attr->write_backward = opts->overwrite ? 1 : 0;
934

935 936
	perf_evsel__set_sample_bit(evsel, IP);
	perf_evsel__set_sample_bit(evsel, TID);
937

938 939 940 941 942 943 944
	if (evsel->sample_read) {
		perf_evsel__set_sample_bit(evsel, READ);

		/*
		 * We need ID even in case of single event, because
		 * PERF_SAMPLE_READ process ID specific data.
		 */
945
		perf_evsel__set_sample_id(evsel, false);
946 947 948 949 950 951 952 953 954 955 956

		/*
		 * Apply group format only if we belong to group
		 * with more than one members.
		 */
		if (leader->nr_members > 1) {
			attr->read_format |= PERF_FORMAT_GROUP;
			attr->inherit = 0;
		}
	}

957
	/*
958
	 * We default some events to have a default interval. But keep
959 960
	 * it a weak assumption overridable by the user.
	 */
961
	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
962 963
				     opts->user_interval != ULLONG_MAX)) {
		if (opts->freq) {
964
			perf_evsel__set_sample_bit(evsel, PERIOD);
965 966 967 968 969 970 971
			attr->freq		= 1;
			attr->sample_freq	= opts->freq;
		} else {
			attr->sample_period = opts->default_interval;
		}
	}

972 973 974 975 976
	/*
	 * Disable sampling for all group members other
	 * than leader in case leader 'leads' the sampling.
	 */
	if ((leader != evsel) && leader->sample_read) {
977 978 979 980
		attr->freq           = 0;
		attr->sample_freq    = 0;
		attr->sample_period  = 0;
		attr->write_backward = 0;
981 982 983 984 985 986 987 988

		/*
		 * We don't get sample for slave events, we make them
		 * when delivering group leader sample. Set the slave
		 * event to follow the master sample_type to ease up
		 * report.
		 */
		attr->sample_type = leader->attr.sample_type;
989 990
	}

991 992 993
	if (opts->no_samples)
		attr->sample_freq = 0;

994 995 996 997 998
	if (opts->inherit_stat) {
		evsel->attr.read_format |=
			PERF_FORMAT_TOTAL_TIME_ENABLED |
			PERF_FORMAT_TOTAL_TIME_RUNNING |
			PERF_FORMAT_ID;
999
		attr->inherit_stat = 1;
1000
	}
1001 1002

	if (opts->sample_address) {
1003
		perf_evsel__set_sample_bit(evsel, ADDR);
1004 1005 1006
		attr->mmap_data = track;
	}

1007 1008 1009 1010 1011 1012 1013 1014
	/*
	 * We don't allow user space callchains for  function trace
	 * event, due to issues with page faults while tracing page
	 * fault handler and its overall trickiness nature.
	 */
	if (perf_evsel__is_function_event(evsel))
		evsel->attr.exclude_callchain_user = 1;

1015
	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1016
		perf_evsel__config_callchain(evsel, opts, callchain);
1017

1018
	if (opts->sample_intr_regs) {
1019
		attr->sample_regs_intr = opts->sample_intr_regs;
1020 1021 1022
		perf_evsel__set_sample_bit(evsel, REGS_INTR);
	}

1023 1024 1025 1026 1027
	if (opts->sample_user_regs) {
		attr->sample_regs_user |= opts->sample_user_regs;
		perf_evsel__set_sample_bit(evsel, REGS_USER);
	}

1028
	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1029
		perf_evsel__set_sample_bit(evsel, CPU);
1030

1031
	/*
1032
	 * When the user explicitly disabled time don't force it here.
1033 1034 1035
	 */
	if (opts->sample_time &&
	    (!perf_missing_features.sample_id_all &&
1036 1037
	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
	     opts->sample_time_set)))
1038
		perf_evsel__set_sample_bit(evsel, TIME);
1039

1040
	if (opts->raw_samples && !evsel->no_aux_samples) {
1041 1042 1043
		perf_evsel__set_sample_bit(evsel, TIME);
		perf_evsel__set_sample_bit(evsel, RAW);
		perf_evsel__set_sample_bit(evsel, CPU);
1044 1045
	}

1046
	if (opts->sample_address)
1047
		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1048

1049 1050 1051
	if (opts->sample_phys_addr)
		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);

1052
	if (opts->no_buffering) {
1053 1054 1055
		attr->watermark = 0;
		attr->wakeup_events = 1;
	}
1056
	if (opts->branch_stack && !evsel->no_aux_samples) {
1057
		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1058 1059
		attr->branch_sample_type = opts->branch_stack;
	}
1060

1061
	if (opts->sample_weight)
1062
		perf_evsel__set_sample_bit(evsel, WEIGHT);
1063

1064
	attr->task  = track;
1065
	attr->mmap  = track;
1066
	attr->mmap2 = track && !perf_missing_features.mmap2;
1067
	attr->comm  = track;
1068
	attr->ksymbol = track && !perf_missing_features.ksymbol;
1069
	attr->bpf_event = track && !opts->no_bpf_event &&
1070
		!perf_missing_features.bpf_event;
1071

1072 1073 1074
	if (opts->record_namespaces)
		attr->namespaces  = track;

1075 1076 1077
	if (opts->record_switch_events)
		attr->context_switch = track;

1078
	if (opts->sample_transaction)
1079
		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1080

1081 1082 1083 1084 1085 1086
	if (opts->running_time) {
		evsel->attr.read_format |=
			PERF_FORMAT_TOTAL_TIME_ENABLED |
			PERF_FORMAT_TOTAL_TIME_RUNNING;
	}

1087 1088 1089 1090 1091 1092
	/*
	 * XXX see the function comment above
	 *
	 * Disabling only independent events or group leaders,
	 * keeping group members enabled.
	 */
1093
	if (perf_evsel__is_group_leader(evsel))
1094 1095 1096 1097 1098 1099
		attr->disabled = 1;

	/*
	 * Setting enable_on_exec for independent events and
	 * group leaders for traced executed by perf.
	 */
1100 1101
	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
		!opts->initial_delay)
1102
		attr->enable_on_exec = 1;
1103 1104 1105 1106 1107

	if (evsel->immediate) {
		attr->disabled = 0;
		attr->enable_on_exec = 0;
	}
1108 1109 1110 1111 1112 1113

	clockid = opts->clockid;
	if (opts->use_clockid) {
		attr->use_clockid = 1;
		attr->clockid = opts->clockid;
	}
1114

1115
	if (evsel->precise_max)
1116
		attr->precise_ip = 3;
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (opts->all_user) {
		attr->exclude_kernel = 1;
		attr->exclude_user   = 0;
	}

	if (opts->all_kernel) {
		attr->exclude_kernel = 0;
		attr->exclude_user   = 1;
	}

1128
	if (evsel->own_cpus || evsel->unit)
1129 1130
		evsel->attr.read_format |= PERF_FORMAT_ID;

1131 1132 1133 1134
	/*
	 * Apply event specific term settings,
	 * it overloads any global configuration.
	 */
1135
	apply_config_terms(evsel, opts, track);
1136 1137

	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1138 1139 1140 1141 1142 1143 1144 1145

	/* The --period option takes the precedence. */
	if (opts->period_set) {
		if (opts->period)
			perf_evsel__set_sample_bit(evsel, PERIOD);
		else
			perf_evsel__reset_sample_bit(evsel, PERIOD);
	}
1146 1147 1148 1149 1150 1151 1152 1153

	/*
	 * For initial_delay, a dummy event is added implicitly.
	 * The software event will trigger -EOPNOTSUPP error out,
	 * if BRANCH_STACK bit is set.
	 */
	if (opts->initial_delay && is_dummy_event(evsel))
		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1154 1155
}

1156
static int perf_evsel__alloc_fd(struct evsel *evsel, int ncpus, int nthreads)
1157 1158
{
	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1159 1160

	if (evsel->fd) {
1161
		int cpu, thread;
1162 1163 1164 1165 1166 1167 1168
		for (cpu = 0; cpu < ncpus; cpu++) {
			for (thread = 0; thread < nthreads; thread++) {
				FD(evsel, cpu, thread) = -1;
			}
		}
	}

1169 1170 1171
	return evsel->fd != NULL ? 0 : -ENOMEM;
}

1172
static int perf_evsel__run_ioctl(struct evsel *evsel,
1173
			  int ioc,  void *arg)
1174 1175 1176
{
	int cpu, thread;

1177 1178
	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1179
			int fd = FD(evsel, cpu, thread),
1180
			    err = ioctl(fd, ioc, arg);
1181 1182 1183 1184 1185 1186 1187 1188 1189

			if (err)
				return err;
		}
	}

	return 0;
}

1190
int evsel__apply_filter(struct evsel *evsel, const char *filter)
1191
{
1192
	return perf_evsel__run_ioctl(evsel,
1193 1194 1195 1196
				     PERF_EVENT_IOC_SET_FILTER,
				     (void *)filter);
}

1197
int perf_evsel__set_filter(struct evsel *evsel, const char *filter)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	char *new_filter = strdup(filter);

	if (new_filter != NULL) {
		free(evsel->filter);
		evsel->filter = new_filter;
		return 0;
	}

	return -1;
}

1210
static int perf_evsel__append_filter(struct evsel *evsel,
1211
				     const char *fmt, const char *filter)
1212 1213 1214 1215 1216 1217
{
	char *new_filter;

	if (evsel->filter == NULL)
		return perf_evsel__set_filter(evsel, filter);

1218
	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1219 1220 1221 1222 1223 1224 1225 1226
		free(evsel->filter);
		evsel->filter = new_filter;
		return 0;
	}

	return -1;
}

1227
int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1228 1229 1230 1231
{
	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
}

1232
int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1233 1234 1235 1236
{
	return perf_evsel__append_filter(evsel, "%s,%s", filter);
}

1237
int evsel__enable(struct evsel *evsel)
1238
{
1239 1240 1241 1242 1243 1244
	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);

	if (!err)
		evsel->disabled = false;

	return err;
1245 1246
}

1247
int evsel__disable(struct evsel *evsel)
1248
{
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
	/*
	 * We mark it disabled here so that tools that disable a event can
	 * ignore events after they disable it. I.e. the ring buffer may have
	 * already a few more events queued up before the kernel got the stop
	 * request.
	 */
	if (!err)
		evsel->disabled = true;

	return err;
1260 1261
}

1262
int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads)
1263
{
1264 1265 1266
	if (ncpus == 0 || nthreads == 0)
		return 0;

1267 1268 1269
	if (evsel->system_wide)
		nthreads = 1;

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
	if (evsel->sample_id == NULL)
		return -ENOMEM;

	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
	if (evsel->id == NULL) {
		xyarray__delete(evsel->sample_id);
		evsel->sample_id = NULL;
		return -ENOMEM;
	}

	return 0;
1282 1283
}

1284
static void perf_evsel__free_fd(struct evsel *evsel)
1285 1286 1287 1288 1289
{
	xyarray__delete(evsel->fd);
	evsel->fd = NULL;
}

1290
static void perf_evsel__free_id(struct evsel *evsel)
1291
{
1292 1293
	xyarray__delete(evsel->sample_id);
	evsel->sample_id = NULL;
1294
	zfree(&evsel->id);
1295
	evsel->ids = 0;
1296 1297
}

1298
static void perf_evsel__free_config_terms(struct evsel *evsel)
1299 1300 1301 1302
{
	struct perf_evsel_config_term *term, *h;

	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1303
		list_del_init(&term->list);
1304 1305 1306 1307
		free(term);
	}
}

1308
void perf_evsel__close_fd(struct evsel *evsel)
1309 1310 1311
{
	int cpu, thread;

1312 1313
	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1314 1315 1316 1317 1318
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
}

1319
void perf_evsel__exit(struct evsel *evsel)
1320 1321
{
	assert(list_empty(&evsel->node));
1322
	assert(evsel->evlist == NULL);
1323
	perf_evsel__free_counts(evsel);
1324 1325
	perf_evsel__free_fd(evsel);
	perf_evsel__free_id(evsel);
1326
	perf_evsel__free_config_terms(evsel);
1327
	cgroup__put(evsel->cgrp);
1328
	cpu_map__put(evsel->cpus);
1329
	cpu_map__put(evsel->own_cpus);
1330
	thread_map__put(evsel->threads);
1331 1332
	zfree(&evsel->group_name);
	zfree(&evsel->name);
1333
	perf_evsel__object.fini(evsel);
1334 1335
}

1336
void evsel__delete(struct evsel *evsel)
1337 1338
{
	perf_evsel__exit(evsel);
1339 1340
	free(evsel);
}
1341

1342
void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1343
				struct perf_counts_values *count)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
{
	struct perf_counts_values tmp;

	if (!evsel->prev_raw_counts)
		return;

	if (cpu == -1) {
		tmp = evsel->prev_raw_counts->aggr;
		evsel->prev_raw_counts->aggr = *count;
	} else {
1354 1355
		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1356 1357 1358 1359 1360 1361 1362
	}

	count->val = count->val - tmp.val;
	count->ena = count->ena - tmp.ena;
	count->run = count->run - tmp.run;
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
void perf_counts_values__scale(struct perf_counts_values *count,
			       bool scale, s8 *pscaled)
{
	s8 scaled = 0;

	if (scale) {
		if (count->run == 0) {
			scaled = -1;
			count->val = 0;
		} else if (count->run < count->ena) {
			scaled = 1;
A
Andi Kleen 已提交
1374
			count->val = (u64)((double) count->val * count->ena / count->run);
1375
		}
A
Andi Kleen 已提交
1376
	}
1377 1378 1379 1380 1381

	if (pscaled)
		*pscaled = scaled;
}

1382
static int perf_evsel__read_size(struct evsel *evsel)
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
{
	u64 read_format = evsel->attr.read_format;
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (read_format & PERF_FORMAT_GROUP) {
		nr = evsel->nr_members;
		size += sizeof(u64);
	}

	size += entry * nr;
	return size;
}

1407
int perf_evsel__read(struct evsel *evsel, int cpu, int thread,
1408 1409
		     struct perf_counts_values *count)
{
1410 1411
	size_t size = perf_evsel__read_size(evsel);

1412 1413 1414 1415 1416
	memset(count, 0, sizeof(*count));

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

1417
	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1418 1419 1420 1421 1422
		return -errno;

	return 0;
}

1423
static int
1424
perf_evsel__read_one(struct evsel *evsel, int cpu, int thread)
1425 1426 1427 1428 1429 1430 1431
{
	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);

	return perf_evsel__read(evsel, cpu, thread, count);
}

static void
1432
perf_evsel__set_count(struct evsel *counter, int cpu, int thread,
1433 1434 1435 1436 1437 1438 1439 1440 1441
		      u64 val, u64 ena, u64 run)
{
	struct perf_counts_values *count;

	count = perf_counts(counter->counts, cpu, thread);

	count->val    = val;
	count->ena    = ena;
	count->run    = run;
1442 1443

	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1444 1445 1446
}

static int
1447
perf_evsel__process_group_data(struct evsel *leader,
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
			       int cpu, int thread, u64 *data)
{
	u64 read_format = leader->attr.read_format;
	struct sample_read_value *v;
	u64 nr, ena = 0, run = 0, i;

	nr = *data++;

	if (nr != (u64) leader->nr_members)
		return -EINVAL;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		ena = *data++;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		run = *data++;

	v = (struct sample_read_value *) data;

	perf_evsel__set_count(leader, cpu, thread,
			      v[0].value, ena, run);

	for (i = 1; i < nr; i++) {
1471
		struct evsel *counter;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
		if (!counter)
			return -EINVAL;

		perf_evsel__set_count(counter, cpu, thread,
				      v[i].value, ena, run);
	}

	return 0;
}

static int
1485
perf_evsel__read_group(struct evsel *leader, int cpu, int thread)
1486
{
1487
	struct perf_stat_evsel *ps = leader->stats;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	u64 read_format = leader->attr.read_format;
	int size = perf_evsel__read_size(leader);
	u64 *data = ps->group_data;

	if (!(read_format & PERF_FORMAT_ID))
		return -EINVAL;

	if (!perf_evsel__is_group_leader(leader))
		return -EINVAL;

	if (!data) {
		data = zalloc(size);
		if (!data)
			return -ENOMEM;

		ps->group_data = data;
	}

	if (FD(leader, cpu, thread) < 0)
		return -EINVAL;

	if (readn(FD(leader, cpu, thread), data, size) <= 0)
		return -errno;

	return perf_evsel__process_group_data(leader, cpu, thread, data);
}

1515
int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1516 1517 1518 1519 1520 1521 1522 1523 1524
{
	u64 read_format = evsel->attr.read_format;

	if (read_format & PERF_FORMAT_GROUP)
		return perf_evsel__read_group(evsel, cpu, thread);
	else
		return perf_evsel__read_one(evsel, cpu, thread);
}

1525
int __perf_evsel__read_on_cpu(struct evsel *evsel,
1526 1527 1528 1529 1530 1531 1532 1533
			      int cpu, int thread, bool scale)
{
	struct perf_counts_values count;
	size_t nv = scale ? 3 : 1;

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

1534
	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1535 1536
		return -ENOMEM;

1537
	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1538 1539
		return -errno;

1540
	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1541
	perf_counts_values__scale(&count, scale, NULL);
1542
	*perf_counts(evsel->counts, cpu, thread) = count;
1543 1544 1545
	return 0;
}

1546
static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1547
{
1548
	struct evsel *leader = evsel->leader;
1549 1550
	int fd;

1551
	if (perf_evsel__is_group_leader(evsel))
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		return -1;

	/*
	 * Leader must be already processed/open,
	 * if not it's a bug.
	 */
	BUG_ON(!leader->fd);

	fd = FD(leader, cpu, thread);
	BUG_ON(fd == -1);

	return fd;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
struct bit_names {
	int bit;
	const char *name;
};

static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
{
	bool first_bit = true;
	int i = 0;

	do {
		if (value & bits[i].bit) {
			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
			first_bit = false;
		}
	} while (bits[++i].name != NULL);
}

static void __p_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_##n, #n }
	struct bit_names bits[] = {
		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1592
		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1593
		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1594 1595 1596 1597 1598 1599
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static void __p_branch_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
	struct bit_names bits[] = {
		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
static void __p_read_format(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_FORMAT_##n, #n }
	struct bit_names bits[] = {
		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
		bit_name(ID), bit_name(GROUP),
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

#define BUF_SIZE		1024

1629
#define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1630 1631 1632
#define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
#define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
#define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1633
#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
#define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)

#define PRINT_ATTRn(_n, _f, _p)				\
do {							\
	if (attr->_f) {					\
		_p(attr->_f);				\
		ret += attr__fprintf(fp, _n, buf, priv);\
	}						\
} while (0)

#define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)

int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
			     attr__fprintf_f attr__fprintf, void *priv)
{
	char buf[BUF_SIZE];
	int ret = 0;

	PRINT_ATTRf(type, p_unsigned);
	PRINT_ATTRf(size, p_unsigned);
	PRINT_ATTRf(config, p_hex);
	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
	PRINT_ATTRf(sample_type, p_sample_type);
	PRINT_ATTRf(read_format, p_read_format);

	PRINT_ATTRf(disabled, p_unsigned);
	PRINT_ATTRf(inherit, p_unsigned);
	PRINT_ATTRf(pinned, p_unsigned);
	PRINT_ATTRf(exclusive, p_unsigned);
	PRINT_ATTRf(exclude_user, p_unsigned);
	PRINT_ATTRf(exclude_kernel, p_unsigned);
	PRINT_ATTRf(exclude_hv, p_unsigned);
	PRINT_ATTRf(exclude_idle, p_unsigned);
	PRINT_ATTRf(mmap, p_unsigned);
	PRINT_ATTRf(comm, p_unsigned);
	PRINT_ATTRf(freq, p_unsigned);
	PRINT_ATTRf(inherit_stat, p_unsigned);
	PRINT_ATTRf(enable_on_exec, p_unsigned);
	PRINT_ATTRf(task, p_unsigned);
	PRINT_ATTRf(watermark, p_unsigned);
	PRINT_ATTRf(precise_ip, p_unsigned);
	PRINT_ATTRf(mmap_data, p_unsigned);
	PRINT_ATTRf(sample_id_all, p_unsigned);
	PRINT_ATTRf(exclude_host, p_unsigned);
	PRINT_ATTRf(exclude_guest, p_unsigned);
	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
	PRINT_ATTRf(mmap2, p_unsigned);
	PRINT_ATTRf(comm_exec, p_unsigned);
	PRINT_ATTRf(use_clockid, p_unsigned);
1684
	PRINT_ATTRf(context_switch, p_unsigned);
1685
	PRINT_ATTRf(write_backward, p_unsigned);
1686
	PRINT_ATTRf(namespaces, p_unsigned);
1687
	PRINT_ATTRf(ksymbol, p_unsigned);
1688
	PRINT_ATTRf(bpf_event, p_unsigned);
1689 1690 1691 1692 1693

	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
	PRINT_ATTRf(bp_type, p_unsigned);
	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1694
	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1695 1696 1697 1698
	PRINT_ATTRf(sample_regs_user, p_hex);
	PRINT_ATTRf(sample_stack_user, p_unsigned);
	PRINT_ATTRf(clockid, p_signed);
	PRINT_ATTRf(sample_regs_intr, p_hex);
1699
	PRINT_ATTRf(aux_watermark, p_unsigned);
1700
	PRINT_ATTRf(sample_max_stack, p_unsigned);
1701 1702 1703 1704

	return ret;
}

1705
static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1706
				void *priv __maybe_unused)
1707 1708 1709 1710
{
	return fprintf(fp, "  %-32s %s\n", name, val);
}

1711
static void perf_evsel__remove_fd(struct evsel *pos,
1712 1713 1714 1715 1716 1717 1718 1719
				  int nr_cpus, int nr_threads,
				  int thread_idx)
{
	for (int cpu = 0; cpu < nr_cpus; cpu++)
		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
}

1720
static int update_fds(struct evsel *evsel,
1721 1722 1723
		      int nr_cpus, int cpu_idx,
		      int nr_threads, int thread_idx)
{
1724
	struct evsel *pos;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
		return -EINVAL;

	evlist__for_each_entry(evsel->evlist, pos) {
		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;

		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);

		/*
		 * Since fds for next evsel has not been created,
		 * there is no need to iterate whole event list.
		 */
		if (pos == evsel)
			break;
	}
	return 0;
}

1744
static bool ignore_missing_thread(struct evsel *evsel,
1745
				  int nr_cpus, int cpu,
1746
				  struct perf_thread_map *threads,
1747 1748
				  int thread, int err)
{
1749 1750
	pid_t ignore_pid = thread_map__pid(threads, thread);

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (!evsel->ignore_missing_thread)
		return false;

	/* The system wide setup does not work with threads. */
	if (evsel->system_wide)
		return false;

	/* The -ESRCH is perf event syscall errno for pid's not found. */
	if (err != -ESRCH)
		return false;

	/* If there's only one thread, let it fail. */
	if (threads->nr == 1)
		return false;

1766 1767 1768 1769 1770 1771 1772
	/*
	 * We should remove fd for missing_thread first
	 * because thread_map__remove() will decrease threads->nr.
	 */
	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
		return false;

1773 1774 1775 1776
	if (thread_map__remove(threads, thread))
		return false;

	pr_warning("WARNING: Ignored open failure for pid %d\n",
1777
		   ignore_pid);
1778 1779 1780
	return true;
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
static void display_attr(struct perf_event_attr *attr)
{
	if (verbose >= 2) {
		fprintf(stderr, "%.60s\n", graph_dotted_line);
		fprintf(stderr, "perf_event_attr:\n");
		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
		fprintf(stderr, "%.60s\n", graph_dotted_line);
	}
}

1791
static int perf_event_open(struct evsel *evsel,
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
			   pid_t pid, int cpu, int group_fd,
			   unsigned long flags)
{
	int precise_ip = evsel->attr.precise_ip;
	int fd;

	while (1) {
		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
			  pid, cpu, group_fd, flags);

		fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
		if (fd >= 0)
			break;

1806 1807
		/* Do not try less precise if not requested. */
		if (!evsel->precise_max)
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
			break;

		/*
		 * We tried all the precise_ip values, and it's
		 * still failing, so leave it to standard fallback.
		 */
		if (!evsel->attr.precise_ip) {
			evsel->attr.precise_ip = precise_ip;
			break;
		}

		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
		evsel->attr.precise_ip--;
		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
		display_attr(&evsel->attr);
	}

	return fd;
}

1828 1829
int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
		struct perf_thread_map *threads)
1830
{
1831
	int cpu, thread, nthreads;
1832
	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1833
	int pid = -1, err;
1834
	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1835

1836 1837 1838
	if (perf_missing_features.write_backward && evsel->attr.write_backward)
		return -EINVAL;

1839
	if (cpus == NULL) {
1840
		static struct perf_cpu_map *empty_cpu_map;
1841 1842

		if (empty_cpu_map == NULL) {
1843
			empty_cpu_map = perf_cpu_map__dummy_new();
1844 1845 1846 1847 1848 1849 1850 1851
			if (empty_cpu_map == NULL)
				return -ENOMEM;
		}

		cpus = empty_cpu_map;
	}

	if (threads == NULL) {
1852
		static struct perf_thread_map *empty_thread_map;
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

		if (empty_thread_map == NULL) {
			empty_thread_map = thread_map__new_by_tid(-1);
			if (empty_thread_map == NULL)
				return -ENOMEM;
		}

		threads = empty_thread_map;
	}

1863 1864 1865 1866 1867
	if (evsel->system_wide)
		nthreads = 1;
	else
		nthreads = threads->nr;

1868
	if (evsel->fd == NULL &&
1869
	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1870
		return -ENOMEM;
1871

1872
	if (evsel->cgrp) {
1873
		flags |= PERF_FLAG_PID_CGROUP;
1874 1875 1876
		pid = evsel->cgrp->fd;
	}

1877
fallback_missing_features:
1878 1879 1880 1881 1882 1883
	if (perf_missing_features.clockid_wrong)
		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
	if (perf_missing_features.clockid) {
		evsel->attr.use_clockid = 0;
		evsel->attr.clockid = 0;
	}
1884 1885
	if (perf_missing_features.cloexec)
		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1886 1887
	if (perf_missing_features.mmap2)
		evsel->attr.mmap2 = 0;
1888 1889
	if (perf_missing_features.exclude_guest)
		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1890 1891 1892
	if (perf_missing_features.lbr_flags)
		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1893 1894
	if (perf_missing_features.group_read && evsel->attr.inherit)
		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1895 1896
	if (perf_missing_features.ksymbol)
		evsel->attr.ksymbol = 0;
1897 1898
	if (perf_missing_features.bpf_event)
		evsel->attr.bpf_event = 0;
1899 1900 1901 1902
retry_sample_id:
	if (perf_missing_features.sample_id_all)
		evsel->attr.sample_id_all = 0;

1903
	display_attr(&evsel->attr);
1904

1905
	for (cpu = 0; cpu < cpus->nr; cpu++) {
1906

1907
		for (thread = 0; thread < nthreads; thread++) {
1908
			int fd, group_fd;
1909

1910
			if (!evsel->cgrp && !evsel->system_wide)
1911
				pid = thread_map__pid(threads, thread);
1912

1913
			group_fd = get_group_fd(evsel, cpu, thread);
1914
retry_open:
1915 1916
			test_attr__ready();

1917 1918
			fd = perf_event_open(evsel, pid, cpus->map[cpu],
					     group_fd, flags);
1919 1920 1921 1922

			FD(evsel, cpu, thread) = fd;

			if (fd < 0) {
1923
				err = -errno;
1924

1925
				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
					/*
					 * We just removed 1 thread, so take a step
					 * back on thread index and lower the upper
					 * nthreads limit.
					 */
					nthreads--;
					thread--;

					/* ... and pretend like nothing have happened. */
					err = 0;
					continue;
				}

1939
				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1940
					  err);
1941
				goto try_fallback;
1942
			}
1943

1944
			pr_debug2(" = %d\n", fd);
1945

1946
			if (evsel->bpf_fd >= 0) {
1947
				int evt_fd = fd;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
				int bpf_fd = evsel->bpf_fd;

				err = ioctl(evt_fd,
					    PERF_EVENT_IOC_SET_BPF,
					    bpf_fd);
				if (err && errno != EEXIST) {
					pr_err("failed to attach bpf fd %d: %s\n",
					       bpf_fd, strerror(errno));
					err = -EINVAL;
					goto out_close;
				}
			}

1961
			set_rlimit = NO_CHANGE;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

			/*
			 * If we succeeded but had to kill clockid, fail and
			 * have perf_evsel__open_strerror() print us a nice
			 * error.
			 */
			if (perf_missing_features.clockid ||
			    perf_missing_features.clockid_wrong) {
				err = -EINVAL;
				goto out_close;
			}
1973
		}
1974 1975 1976 1977
	}

	return 0;

1978
try_fallback:
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * perf stat needs between 5 and 22 fds per CPU. When we run out
	 * of them try to increase the limits.
	 */
	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
		struct rlimit l;
		int old_errno = errno;

		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
			if (set_rlimit == NO_CHANGE)
				l.rlim_cur = l.rlim_max;
			else {
				l.rlim_cur = l.rlim_max + 1000;
				l.rlim_max = l.rlim_cur;
			}
			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
				set_rlimit++;
				errno = old_errno;
				goto retry_open;
			}
		}
		errno = old_errno;
	}

2003 2004 2005
	if (err != -EINVAL || cpu > 0 || thread > 0)
		goto out_close;

2006 2007 2008 2009
	/*
	 * Must probe features in the order they were added to the
	 * perf_event_attr interface.
	 */
2010 2011 2012 2013 2014
	if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
		perf_missing_features.bpf_event = true;
		pr_debug2("switching off bpf_event\n");
		goto fallback_missing_features;
	} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
2015 2016 2017 2018
		perf_missing_features.ksymbol = true;
		pr_debug2("switching off ksymbol\n");
		goto fallback_missing_features;
	} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
2019
		perf_missing_features.write_backward = true;
2020
		pr_debug2("switching off write_backward\n");
2021
		goto out_close;
2022
	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2023
		perf_missing_features.clockid_wrong = true;
2024
		pr_debug2("switching off clockid\n");
2025 2026 2027
		goto fallback_missing_features;
	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
		perf_missing_features.clockid = true;
2028
		pr_debug2("switching off use_clockid\n");
2029 2030
		goto fallback_missing_features;
	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2031
		perf_missing_features.cloexec = true;
2032
		pr_debug2("switching off cloexec flag\n");
2033 2034
		goto fallback_missing_features;
	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2035
		perf_missing_features.mmap2 = true;
2036
		pr_debug2("switching off mmap2\n");
2037 2038 2039
		goto fallback_missing_features;
	} else if (!perf_missing_features.exclude_guest &&
		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2040
		perf_missing_features.exclude_guest = true;
2041
		pr_debug2("switching off exclude_guest, exclude_host\n");
2042 2043 2044
		goto fallback_missing_features;
	} else if (!perf_missing_features.sample_id_all) {
		perf_missing_features.sample_id_all = true;
2045
		pr_debug2("switching off sample_id_all\n");
2046
		goto retry_sample_id;
2047 2048 2049 2050 2051
	} else if (!perf_missing_features.lbr_flags &&
			(evsel->attr.branch_sample_type &
			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
		perf_missing_features.lbr_flags = true;
2052
		pr_debug2("switching off branch sample type no (cycles/flags)\n");
2053
		goto fallback_missing_features;
2054 2055
	} else if (!perf_missing_features.group_read &&
		    evsel->attr.inherit &&
2056 2057
		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
		   perf_evsel__is_group_leader(evsel)) {
2058 2059 2060
		perf_missing_features.group_read = true;
		pr_debug2("switching off group read\n");
		goto fallback_missing_features;
2061
	}
2062
out_close:
2063 2064 2065
	if (err)
		threads->err_thread = thread;

2066 2067 2068 2069 2070
	do {
		while (--thread >= 0) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
2071
		thread = nthreads;
2072
	} while (--cpu >= 0);
2073 2074 2075
	return err;
}

2076
void perf_evsel__close(struct evsel *evsel)
2077 2078 2079 2080
{
	if (evsel->fd == NULL)
		return;

2081
	perf_evsel__close_fd(evsel);
2082
	perf_evsel__free_fd(evsel);
2083
	perf_evsel__free_id(evsel);
2084 2085
}

2086
int perf_evsel__open_per_cpu(struct evsel *evsel,
2087
			     struct perf_cpu_map *cpus)
2088
{
2089
	return evsel__open(evsel, cpus, NULL);
2090
}
2091

2092
int perf_evsel__open_per_thread(struct evsel *evsel,
2093
				struct perf_thread_map *threads)
2094
{
2095
	return evsel__open(evsel, NULL, threads);
2096
}
2097

2098
static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2099 2100
				       const union perf_event *event,
				       struct perf_sample *sample)
2101
{
2102
	u64 type = evsel->attr.sample_type;
2103
	const u64 *array = event->sample.array;
2104
	bool swapped = evsel->needs_swap;
2105
	union u64_swap u;
2106 2107 2108 2109

	array += ((event->header.size -
		   sizeof(event->header)) / sizeof(u64)) - 1;

2110 2111 2112 2113 2114
	if (type & PERF_SAMPLE_IDENTIFIER) {
		sample->id = *array;
		array--;
	}

2115
	if (type & PERF_SAMPLE_CPU) {
2116 2117 2118 2119 2120 2121 2122 2123
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		sample->cpu = u.val32[0];
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
		array--;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		sample->stream_id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_ID) {
		sample->id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TIME) {
		sample->time = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TID) {
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		sample->pid = u.val32[0];
		sample->tid = u.val32[1];
2153
		array--;
2154 2155 2156 2157 2158
	}

	return 0;
}

2159 2160
static inline bool overflow(const void *endp, u16 max_size, const void *offset,
			    u64 size)
2161
{
2162 2163
	return size > max_size || offset + size > endp;
}
2164

2165 2166 2167 2168 2169
#define OVERFLOW_CHECK(offset, size, max_size)				\
	do {								\
		if (overflow(endp, (max_size), (offset), (size)))	\
			return -EFAULT;					\
	} while (0)
2170

2171 2172
#define OVERFLOW_CHECK_u64(offset) \
	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static int
perf_event__check_size(union perf_event *event, unsigned int sample_size)
{
	/*
	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
	 * check the format does not go past the end of the event.
	 */
	if (sample_size + sizeof(event->header) > event->header.size)
		return -EFAULT;

	return 0;
}

2188
int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2189
			     struct perf_sample *data)
2190
{
2191
	u64 type = evsel->attr.sample_type;
2192
	bool swapped = evsel->needs_swap;
2193
	const u64 *array;
2194 2195 2196
	u16 max_size = event->header.size;
	const void *endp = (void *)event + max_size;
	u64 sz;
2197

2198 2199 2200 2201
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
2202
	union u64_swap u;
2203

2204
	memset(data, 0, sizeof(*data));
2205 2206
	data->cpu = data->pid = data->tid = -1;
	data->stream_id = data->id = data->time = -1ULL;
2207
	data->period = evsel->attr.sample_period;
2208
	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2209
	data->misc    = event->header.misc;
2210 2211
	data->id = -1ULL;
	data->data_src = PERF_MEM_DATA_SRC_NONE;
2212 2213

	if (event->header.type != PERF_RECORD_SAMPLE) {
2214
		if (!evsel->attr.sample_id_all)
2215
			return 0;
2216
		return perf_evsel__parse_id_sample(evsel, event, data);
2217 2218 2219 2220
	}

	array = event->sample.array;

2221
	if (perf_event__check_size(event, evsel->sample_size))
2222 2223
		return -EFAULT;

2224 2225 2226 2227 2228
	if (type & PERF_SAMPLE_IDENTIFIER) {
		data->id = *array;
		array++;
	}

2229
	if (type & PERF_SAMPLE_IP) {
2230
		data->ip = *array;
2231 2232 2233 2234
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		data->pid = u.val32[0];
		data->tid = u.val32[1];
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		data->time = *array;
		array++;
	}

	if (type & PERF_SAMPLE_ADDR) {
		data->addr = *array;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		data->id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		data->stream_id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
2269 2270 2271 2272 2273 2274 2275 2276 2277

		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		data->cpu = u.val32[0];
2278 2279 2280 2281 2282 2283 2284 2285 2286
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		data->period = *array;
		array++;
	}

	if (type & PERF_SAMPLE_READ) {
2287 2288
		u64 read_format = evsel->attr.read_format;

2289
		OVERFLOW_CHECK_u64(array);
2290 2291 2292 2293 2294 2295 2296 2297
		if (read_format & PERF_FORMAT_GROUP)
			data->read.group.nr = *array;
		else
			data->read.one.value = *array;

		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2298
			OVERFLOW_CHECK_u64(array);
2299 2300 2301 2302 2303
			data->read.time_enabled = *array;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2304
			OVERFLOW_CHECK_u64(array);
2305 2306 2307 2308 2309 2310
			data->read.time_running = *array;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
			const u64 max_group_nr = UINT64_MAX /
					sizeof(struct sample_read_value);

			if (data->read.group.nr > max_group_nr)
				return -EFAULT;
			sz = data->read.group.nr *
			     sizeof(struct sample_read_value);
			OVERFLOW_CHECK(array, sz, max_size);
			data->read.group.values =
					(struct sample_read_value *)array;
			array = (void *)array + sz;
2322
		} else {
2323
			OVERFLOW_CHECK_u64(array);
2324 2325 2326
			data->read.one.id = *array;
			array++;
		}
2327 2328
	}

2329
	if (evsel__has_callchain(evsel)) {
2330
		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2331

2332 2333 2334
		OVERFLOW_CHECK_u64(array);
		data->callchain = (struct ip_callchain *)array++;
		if (data->callchain->nr > max_callchain_nr)
2335
			return -EFAULT;
2336 2337 2338
		sz = data->callchain->nr * sizeof(u64);
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
2339 2340 2341
	}

	if (type & PERF_SAMPLE_RAW) {
2342
		OVERFLOW_CHECK_u64(array);
2343
		u.val64 = *array;
2344 2345 2346 2347 2348 2349 2350 2351

		/*
		 * Undo swap of u64, then swap on individual u32s,
		 * get the size of the raw area and undo all of the
		 * swap. The pevent interface handles endianity by
		 * itself.
		 */
		if (swapped) {
2352 2353 2354 2355 2356
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}
		data->raw_size = u.val32[0];
2357 2358 2359 2360 2361 2362 2363 2364

		/*
		 * The raw data is aligned on 64bits including the
		 * u32 size, so it's safe to use mem_bswap_64.
		 */
		if (swapped)
			mem_bswap_64((void *) array, data->raw_size);

2365
		array = (void *)array + sizeof(u32);
2366

2367 2368 2369
		OVERFLOW_CHECK(array, data->raw_size, max_size);
		data->raw_data = (void *)array;
		array = (void *)array + data->raw_size;
2370 2371
	}

2372
	if (type & PERF_SAMPLE_BRANCH_STACK) {
2373 2374
		const u64 max_branch_nr = UINT64_MAX /
					  sizeof(struct branch_entry);
2375

2376 2377
		OVERFLOW_CHECK_u64(array);
		data->branch_stack = (struct branch_stack *)array++;
2378

2379 2380
		if (data->branch_stack->nr > max_branch_nr)
			return -EFAULT;
2381
		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2382 2383
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
2384
	}
2385 2386

	if (type & PERF_SAMPLE_REGS_USER) {
2387
		OVERFLOW_CHECK_u64(array);
2388 2389
		data->user_regs.abi = *array;
		array++;
2390

2391
		if (data->user_regs.abi) {
2392
			u64 mask = evsel->attr.sample_regs_user;
2393

2394
			sz = hweight64(mask) * sizeof(u64);
2395
			OVERFLOW_CHECK(array, sz, max_size);
2396
			data->user_regs.mask = mask;
2397
			data->user_regs.regs = (u64 *)array;
2398
			array = (void *)array + sz;
2399 2400 2401 2402
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
2403 2404
		OVERFLOW_CHECK_u64(array);
		sz = *array++;
2405 2406 2407 2408

		data->user_stack.offset = ((char *)(array - 1)
					  - (char *) event);

2409
		if (!sz) {
2410 2411
			data->user_stack.size = 0;
		} else {
2412
			OVERFLOW_CHECK(array, sz, max_size);
2413
			data->user_stack.data = (char *)array;
2414 2415
			array = (void *)array + sz;
			OVERFLOW_CHECK_u64(array);
2416
			data->user_stack.size = *array++;
2417 2418 2419
			if (WARN_ONCE(data->user_stack.size > sz,
				      "user stack dump failure\n"))
				return -EFAULT;
2420 2421 2422
		}
	}

2423
	if (type & PERF_SAMPLE_WEIGHT) {
2424
		OVERFLOW_CHECK_u64(array);
2425 2426 2427 2428
		data->weight = *array;
		array++;
	}

2429
	if (type & PERF_SAMPLE_DATA_SRC) {
2430
		OVERFLOW_CHECK_u64(array);
2431 2432 2433 2434
		data->data_src = *array;
		array++;
	}

2435
	if (type & PERF_SAMPLE_TRANSACTION) {
2436
		OVERFLOW_CHECK_u64(array);
2437 2438 2439 2440
		data->transaction = *array;
		array++;
	}

2441 2442 2443 2444 2445 2446 2447 2448 2449
	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
	if (type & PERF_SAMPLE_REGS_INTR) {
		OVERFLOW_CHECK_u64(array);
		data->intr_regs.abi = *array;
		array++;

		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
			u64 mask = evsel->attr.sample_regs_intr;

2450
			sz = hweight64(mask) * sizeof(u64);
2451 2452 2453 2454 2455 2456 2457
			OVERFLOW_CHECK(array, sz, max_size);
			data->intr_regs.mask = mask;
			data->intr_regs.regs = (u64 *)array;
			array = (void *)array + sz;
		}
	}

2458 2459 2460 2461 2462 2463
	data->phys_addr = 0;
	if (type & PERF_SAMPLE_PHYS_ADDR) {
		data->phys_addr = *array;
		array++;
	}

2464 2465
	return 0;
}
2466

2467
int perf_evsel__parse_sample_timestamp(struct evsel *evsel,
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
				       union perf_event *event,
				       u64 *timestamp)
{
	u64 type = evsel->attr.sample_type;
	const u64 *array;

	if (!(type & PERF_SAMPLE_TIME))
		return -1;

	if (event->header.type != PERF_RECORD_SAMPLE) {
		struct perf_sample data = {
			.time = -1ULL,
		};

		if (!evsel->attr.sample_id_all)
			return -1;
		if (perf_evsel__parse_id_sample(evsel, event, &data))
			return -1;

		*timestamp = data.time;
		return 0;
	}

	array = event->sample.array;

	if (perf_event__check_size(event, evsel->sample_size))
		return -EFAULT;

	if (type & PERF_SAMPLE_IDENTIFIER)
		array++;

	if (type & PERF_SAMPLE_IP)
		array++;

	if (type & PERF_SAMPLE_TID)
		array++;

	if (type & PERF_SAMPLE_TIME)
		*timestamp = *array;

	return 0;
}

2511
size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2512
				     u64 read_format)
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
{
	size_t sz, result = sizeof(struct sample_event);

	if (type & PERF_SAMPLE_IDENTIFIER)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_IP)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TIME)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ADDR)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_STREAM_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_CPU)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_PERIOD)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_READ) {
		result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
			result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
			result += sizeof(u64);
		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		result += sizeof(u32);
		result += sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			result += sizeof(u64);
2578
			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		result += sizeof(u64);
		if (sz) {
			result += sz;
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_WEIGHT)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_DATA_SRC)
		result += sizeof(u64);

2600 2601 2602
	if (type & PERF_SAMPLE_TRANSACTION)
		result += sizeof(u64);

2603 2604 2605
	if (type & PERF_SAMPLE_REGS_INTR) {
		if (sample->intr_regs.abi) {
			result += sizeof(u64);
2606
			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2607 2608 2609 2610 2611 2612
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

2613 2614 2615
	if (type & PERF_SAMPLE_PHYS_ADDR)
		result += sizeof(u64);

2616 2617 2618
	return result;
}

2619
int perf_event__synthesize_sample(union perf_event *event, u64 type,
2620
				  u64 read_format,
2621
				  const struct perf_sample *sample)
2622 2623
{
	u64 *array;
2624
	size_t sz;
2625 2626 2627 2628
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
2629
	union u64_swap u;
2630 2631 2632

	array = event->sample.array;

2633 2634 2635 2636 2637
	if (type & PERF_SAMPLE_IDENTIFIER) {
		*array = sample->id;
		array++;
	}

2638
	if (type & PERF_SAMPLE_IP) {
2639
		*array = sample->ip;
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
		u.val32[0] = sample->pid;
		u.val32[1] = sample->tid;
		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		*array = sample->time;
		array++;
	}

	if (type & PERF_SAMPLE_ADDR) {
		*array = sample->addr;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		*array = sample->id;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		*array = sample->stream_id;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
		u.val32[0] = sample->cpu;
2672
		u.val32[1] = 0;
2673 2674 2675 2676 2677 2678 2679 2680 2681
		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		*array = sample->period;
		array++;
	}

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	if (type & PERF_SAMPLE_READ) {
		if (read_format & PERF_FORMAT_GROUP)
			*array = sample->read.group.nr;
		else
			*array = sample->read.one.value;
		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
			*array = sample->read.time_enabled;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
			*array = sample->read.time_running;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			memcpy(array, sample->read.group.values, sz);
			array = (void *)array + sz;
		} else {
			*array = sample->read.one.id;
			array++;
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		memcpy(array, sample->callchain, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		u.val32[0] = sample->raw_size;
		*array = u.val64;
		array = (void *)array + sizeof(u32);

		memcpy(array, sample->raw_data, sample->raw_size);
		array = (void *)array + sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		memcpy(array, sample->branch_stack, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			*array++ = sample->user_regs.abi;
2736
			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
			memcpy(array, sample->user_regs.regs, sz);
			array = (void *)array + sz;
		} else {
			*array++ = 0;
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		*array++ = sz;
		if (sz) {
			memcpy(array, sample->user_stack.data, sz);
			array = (void *)array + sz;
			*array++ = sz;
		}
	}

	if (type & PERF_SAMPLE_WEIGHT) {
		*array = sample->weight;
		array++;
	}

	if (type & PERF_SAMPLE_DATA_SRC) {
		*array = sample->data_src;
		array++;
	}

2764 2765 2766 2767 2768
	if (type & PERF_SAMPLE_TRANSACTION) {
		*array = sample->transaction;
		array++;
	}

2769 2770 2771
	if (type & PERF_SAMPLE_REGS_INTR) {
		if (sample->intr_regs.abi) {
			*array++ = sample->intr_regs.abi;
2772
			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2773 2774 2775 2776 2777 2778 2779
			memcpy(array, sample->intr_regs.regs, sz);
			array = (void *)array + sz;
		} else {
			*array++ = 0;
		}
	}

2780 2781 2782 2783 2784
	if (type & PERF_SAMPLE_PHYS_ADDR) {
		*array = sample->phys_addr;
		array++;
	}

2785 2786
	return 0;
}
2787

2788
struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name)
2789
{
2790
	return tep_find_field(evsel->tp_format, name);
2791 2792
}

2793
void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample,
2794 2795
			 const char *name)
{
2796
	struct tep_format_field *field = perf_evsel__field(evsel, name);
2797 2798
	int offset;

2799 2800
	if (!field)
		return NULL;
2801 2802 2803

	offset = field->offset;

2804
	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2805 2806 2807 2808 2809 2810 2811
		offset = *(int *)(sample->raw_data + field->offset);
		offset &= 0xffff;
	}

	return sample->raw_data + offset;
}

2812
u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2813
			 bool needs_swap)
2814
{
2815
	u64 value;
2816
	void *ptr = sample->raw_data + field->offset;
2817

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	switch (field->size) {
	case 1:
		return *(u8 *)ptr;
	case 2:
		value = *(u16 *)ptr;
		break;
	case 4:
		value = *(u32 *)ptr;
		break;
	case 8:
2828
		memcpy(&value, ptr, sizeof(u64));
2829 2830 2831 2832 2833
		break;
	default:
		return 0;
	}

2834
	if (!needs_swap)
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		return value;

	switch (field->size) {
	case 2:
		return bswap_16(value);
	case 4:
		return bswap_32(value);
	case 8:
		return bswap_64(value);
	default:
		return 0;
	}

	return 0;
2849
}
2850

2851
u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample,
2852 2853
		       const char *name)
{
2854
	struct tep_format_field *field = perf_evsel__field(evsel, name);
2855 2856 2857 2858 2859 2860 2861

	if (!field)
		return 0;

	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
}

2862
bool perf_evsel__fallback(struct evsel *evsel, int err,
2863 2864
			  char *msg, size_t msgsize)
{
2865 2866
	int paranoid;

2867
	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
		/*
		 * If it's cycles then fall back to hrtimer based
		 * cpu-clock-tick sw counter, which is always available even if
		 * no PMU support.
		 *
		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
		 * b0a873e).
		 */
		scnprintf(msg, msgsize, "%s",
"The cycles event is not supported, trying to fall back to cpu-clock-ticks");

		evsel->attr.type   = PERF_TYPE_SOFTWARE;
		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;

2884
		zfree(&evsel->name);
2885 2886 2887 2888 2889
		return true;
	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
		   (paranoid = perf_event_paranoid()) > 1) {
		const char *name = perf_evsel__name(evsel);
		char *new_name;
2890
		const char *sep = ":";
2891

2892 2893 2894 2895 2896 2897
		/* Is there already the separator in the name. */
		if (strchr(name, '/') ||
		    strchr(name, ':'))
			sep = "";

		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2898 2899 2900 2901 2902 2903 2904 2905 2906
			return false;

		if (evsel->name)
			free(evsel->name);
		evsel->name = new_name;
		scnprintf(msg, msgsize,
"kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
		evsel->attr.exclude_kernel = 1;

2907 2908 2909 2910 2911
		return true;
	}

	return false;
}
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
static bool find_process(const char *name)
{
	size_t len = strlen(name);
	DIR *dir;
	struct dirent *d;
	int ret = -1;

	dir = opendir(procfs__mountpoint());
	if (!dir)
		return false;

	/* Walk through the directory. */
	while (ret && (d = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		char *data;
		size_t size;

		if ((d->d_type != DT_DIR) ||
		     !strcmp(".", d->d_name) ||
		     !strcmp("..", d->d_name))
			continue;

		scnprintf(path, sizeof(path), "%s/%s/comm",
			  procfs__mountpoint(), d->d_name);

		if (filename__read_str(path, &data, &size))
			continue;

		ret = strncmp(name, data, len);
		free(data);
	}

	closedir(dir);
	return ret ? false : true;
}

2949
int perf_evsel__open_strerror(struct evsel *evsel, struct target *target,
2950 2951
			      int err, char *msg, size_t size)
{
2952
	char sbuf[STRERR_BUFSIZE];
2953
	int printed = 0;
2954

2955 2956 2957
	switch (err) {
	case EPERM:
	case EACCES:
2958 2959 2960 2961 2962 2963
		if (err == EPERM)
			printed = scnprintf(msg, size,
				"No permission to enable %s event.\n\n",
				perf_evsel__name(evsel));

		return scnprintf(msg + printed, size - printed,
2964 2965 2966 2967
		 "You may not have permission to collect %sstats.\n\n"
		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
		 "which controls use of the performance events system by\n"
		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2968
		 "The current value is %d:\n\n"
2969
		 "  -1: Allow use of (almost) all events by all users\n"
2970 2971 2972
		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2973
		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2974 2975 2976
		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
		 "	kernel.perf_event_paranoid = -1\n" ,
2977 2978
				 target->system_wide ? "system-wide " : "",
				 perf_event_paranoid());
2979 2980 2981 2982 2983 2984
	case ENOENT:
		return scnprintf(msg, size, "The %s event is not supported.",
				 perf_evsel__name(evsel));
	case EMFILE:
		return scnprintf(msg, size, "%s",
			 "Too many events are opened.\n"
2985 2986 2987
			 "Probably the maximum number of open file descriptors has been reached.\n"
			 "Hint: Try again after reducing the number of events.\n"
			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2988
	case ENOMEM:
2989
		if (evsel__has_callchain(evsel) &&
2990 2991 2992 2993
		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
			return scnprintf(msg, size,
					 "Not enough memory to setup event with callchain.\n"
					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2994
					 "Hint: Current value: %d", sysctl__max_stack());
2995
		break;
2996 2997 2998
	case ENODEV:
		if (target->cpu_list)
			return scnprintf(msg, size, "%s",
2999
	 "No such device - did you specify an out-of-range profile CPU?");
3000 3001
		break;
	case EOPNOTSUPP:
3002
		if (evsel->attr.sample_period != 0)
3003 3004 3005
			return scnprintf(msg, size,
	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
					 perf_evsel__name(evsel));
3006 3007 3008 3009 3010 3011
		if (evsel->attr.precise_ip)
			return scnprintf(msg, size, "%s",
	"\'precise\' request may not be supported. Try removing 'p' modifier.");
#if defined(__i386__) || defined(__x86_64__)
		if (evsel->attr.type == PERF_TYPE_HARDWARE)
			return scnprintf(msg, size, "%s",
3012
	"No hardware sampling interrupt available.\n");
3013 3014
#endif
		break;
3015 3016 3017 3018 3019 3020
	case EBUSY:
		if (find_process("oprofiled"))
			return scnprintf(msg, size,
	"The PMU counters are busy/taken by another profiler.\n"
	"We found oprofile daemon running, please stop it and try again.");
		break;
3021
	case EINVAL:
3022
		if (evsel->attr.write_backward && perf_missing_features.write_backward)
3023
			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3024 3025 3026 3027 3028
		if (perf_missing_features.clockid)
			return scnprintf(msg, size, "clockid feature not supported.");
		if (perf_missing_features.clockid_wrong)
			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
		break;
3029 3030 3031 3032 3033
	default:
		break;
	}

	return scnprintf(msg, size,
3034
	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3035
	"/bin/dmesg | grep -i perf may provide additional information.\n",
3036
			 err, str_error_r(err, sbuf, sizeof(sbuf)),
3037
			 perf_evsel__name(evsel));
3038
}
3039

3040
struct perf_env *perf_evsel__env(struct evsel *evsel)
3041
{
3042 3043
	if (evsel && evsel->evlist)
		return evsel->evlist->env;
3044 3045
	return NULL;
}
3046

3047
static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
{
	int cpu, thread;

	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
		for (thread = 0; thread < xyarray__max_y(evsel->fd);
		     thread++) {
			int fd = FD(evsel, cpu, thread);

			if (perf_evlist__id_add_fd(evlist, evsel,
						   cpu, thread, fd) < 0)
				return -1;
		}
	}

	return 0;
}

3065
int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
3066
{
3067
	struct perf_cpu_map *cpus = evsel->cpus;
3068
	struct perf_thread_map *threads = evsel->threads;
3069 3070 3071 3072 3073 3074

	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
		return -ENOMEM;

	return store_evsel_ids(evsel, evlist);
}
新手
引导
客服 返回
顶部