pci-mvebu.c 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * PCIe driver for Marvell Armada 370 and Armada XP SoCs
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2.  This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/clk.h>
12 13
#include <linux/delay.h>
#include <linux/gpio.h>
14 15
#include <linux/module.h>
#include <linux/mbus.h>
16
#include <linux/msi.h>
17 18 19 20
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
21 22
#include <linux/of_gpio.h>
#include <linux/of_pci.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include <linux/of_platform.h>

/*
 * PCIe unit register offsets.
 */
#define PCIE_DEV_ID_OFF		0x0000
#define PCIE_CMD_OFF		0x0004
#define PCIE_DEV_REV_OFF	0x0008
#define PCIE_BAR_LO_OFF(n)	(0x0010 + ((n) << 3))
#define PCIE_BAR_HI_OFF(n)	(0x0014 + ((n) << 3))
#define PCIE_HEADER_LOG_4_OFF	0x0128
#define PCIE_BAR_CTRL_OFF(n)	(0x1804 + (((n) - 1) * 4))
#define PCIE_WIN04_CTRL_OFF(n)	(0x1820 + ((n) << 4))
#define PCIE_WIN04_BASE_OFF(n)	(0x1824 + ((n) << 4))
#define PCIE_WIN04_REMAP_OFF(n)	(0x182c + ((n) << 4))
#define PCIE_WIN5_CTRL_OFF	0x1880
#define PCIE_WIN5_BASE_OFF	0x1884
#define PCIE_WIN5_REMAP_OFF	0x188c
#define PCIE_CONF_ADDR_OFF	0x18f8
#define  PCIE_CONF_ADDR_EN		0x80000000
#define  PCIE_CONF_REG(r)		((((r) & 0xf00) << 16) | ((r) & 0xfc))
#define  PCIE_CONF_BUS(b)		(((b) & 0xff) << 16)
#define  PCIE_CONF_DEV(d)		(((d) & 0x1f) << 11)
#define  PCIE_CONF_FUNC(f)		(((f) & 0x7) << 8)
#define  PCIE_CONF_ADDR(bus, devfn, where) \
	(PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn))    | \
	 PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where) | \
	 PCIE_CONF_ADDR_EN)
#define PCIE_CONF_DATA_OFF	0x18fc
#define PCIE_MASK_OFF		0x1910
#define  PCIE_MASK_ENABLE_INTS          0x0f000000
#define PCIE_CTRL_OFF		0x1a00
#define  PCIE_CTRL_X1_MODE		0x0001
#define PCIE_STAT_OFF		0x1a04
#define  PCIE_STAT_BUS                  0xff00
58
#define  PCIE_STAT_DEV                  0x1f0000
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#define  PCIE_STAT_LINK_DOWN		BIT(0)
#define PCIE_DEBUG_CTRL         0x1a60
#define  PCIE_DEBUG_SOFT_RESET		BIT(20)

/* PCI configuration space of a PCI-to-PCI bridge */
struct mvebu_sw_pci_bridge {
	u16 vendor;
	u16 device;
	u16 command;
	u16 class;
	u8 interface;
	u8 revision;
	u8 bist;
	u8 header_type;
	u8 latency_timer;
	u8 cache_line_size;
	u32 bar[2];
	u8 primary_bus;
	u8 secondary_bus;
	u8 subordinate_bus;
	u8 secondary_latency_timer;
	u8 iobase;
	u8 iolimit;
	u16 secondary_status;
	u16 membase;
	u16 memlimit;
	u16 iobaseupper;
	u16 iolimitupper;
	u8 cappointer;
	u8 reserved1;
	u16 reserved2;
	u32 romaddr;
	u8 intline;
	u8 intpin;
	u16 bridgectrl;
};

struct mvebu_pcie_port;

/* Structure representing all PCIe interfaces */
struct mvebu_pcie {
	struct platform_device *pdev;
	struct mvebu_pcie_port *ports;
102
	struct msi_controller *msi;
103 104 105 106 107 108 109 110 111 112 113 114 115 116
	struct resource io;
	struct resource realio;
	struct resource mem;
	struct resource busn;
	int nports;
};

/* Structure representing one PCIe interface */
struct mvebu_pcie_port {
	char *name;
	void __iomem *base;
	u32 port;
	u32 lane;
	int devfn;
117 118 119 120
	unsigned int mem_target;
	unsigned int mem_attr;
	unsigned int io_target;
	unsigned int io_attr;
121
	struct clk *clk;
122 123 124
	int reset_gpio;
	int reset_active_low;
	char *reset_name;
125 126 127 128 129 130 131
	struct mvebu_sw_pci_bridge bridge;
	struct device_node *dn;
	struct mvebu_pcie *pcie;
	phys_addr_t memwin_base;
	size_t memwin_size;
	phys_addr_t iowin_base;
	size_t iowin_size;
132
	u32 saved_pcie_stat;
133 134
};

135 136 137 138 139 140 141 142 143 144
static inline void mvebu_writel(struct mvebu_pcie_port *port, u32 val, u32 reg)
{
	writel(val, port->base + reg);
}

static inline u32 mvebu_readl(struct mvebu_pcie_port *port, u32 reg)
{
	return readl(port->base + reg);
}

145 146 147 148 149
static inline bool mvebu_has_ioport(struct mvebu_pcie_port *port)
{
	return port->io_target != -1 && port->io_attr != -1;
}

150 151
static bool mvebu_pcie_link_up(struct mvebu_pcie_port *port)
{
152
	return !(mvebu_readl(port, PCIE_STAT_OFF) & PCIE_STAT_LINK_DOWN);
153 154 155 156 157 158
}

static void mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port *port, int nr)
{
	u32 stat;

159
	stat = mvebu_readl(port, PCIE_STAT_OFF);
160 161
	stat &= ~PCIE_STAT_BUS;
	stat |= nr << 8;
162
	mvebu_writel(port, stat, PCIE_STAT_OFF);
163 164
}

165 166 167 168
static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port *port, int nr)
{
	u32 stat;

169
	stat = mvebu_readl(port, PCIE_STAT_OFF);
170 171
	stat &= ~PCIE_STAT_DEV;
	stat |= nr << 16;
172
	mvebu_writel(port, stat, PCIE_STAT_OFF);
173 174
}

175 176 177 178 179
/*
 * Setup PCIE BARs and Address Decode Wins:
 * BAR[0,2] -> disabled, BAR[1] -> covers all DRAM banks
 * WIN[0-3] -> DRAM bank[0-3]
 */
180
static void mvebu_pcie_setup_wins(struct mvebu_pcie_port *port)
181 182 183 184 185 186 187 188 189
{
	const struct mbus_dram_target_info *dram;
	u32 size;
	int i;

	dram = mv_mbus_dram_info();

	/* First, disable and clear BARs and windows. */
	for (i = 1; i < 3; i++) {
190 191 192
		mvebu_writel(port, 0, PCIE_BAR_CTRL_OFF(i));
		mvebu_writel(port, 0, PCIE_BAR_LO_OFF(i));
		mvebu_writel(port, 0, PCIE_BAR_HI_OFF(i));
193 194 195
	}

	for (i = 0; i < 5; i++) {
196 197 198
		mvebu_writel(port, 0, PCIE_WIN04_CTRL_OFF(i));
		mvebu_writel(port, 0, PCIE_WIN04_BASE_OFF(i));
		mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
199 200
	}

201 202 203
	mvebu_writel(port, 0, PCIE_WIN5_CTRL_OFF);
	mvebu_writel(port, 0, PCIE_WIN5_BASE_OFF);
	mvebu_writel(port, 0, PCIE_WIN5_REMAP_OFF);
204 205 206 207 208 209

	/* Setup windows for DDR banks.  Count total DDR size on the fly. */
	size = 0;
	for (i = 0; i < dram->num_cs; i++) {
		const struct mbus_dram_window *cs = dram->cs + i;

210 211 212 213 214 215 216 217
		mvebu_writel(port, cs->base & 0xffff0000,
			     PCIE_WIN04_BASE_OFF(i));
		mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
		mvebu_writel(port,
			     ((cs->size - 1) & 0xffff0000) |
			     (cs->mbus_attr << 8) |
			     (dram->mbus_dram_target_id << 4) | 1,
			     PCIE_WIN04_CTRL_OFF(i));
218 219 220 221 222 223 224 225 226

		size += cs->size;
	}

	/* Round up 'size' to the nearest power of two. */
	if ((size & (size - 1)) != 0)
		size = 1 << fls(size);

	/* Setup BAR[1] to all DRAM banks. */
227 228 229 230
	mvebu_writel(port, dram->cs[0].base, PCIE_BAR_LO_OFF(1));
	mvebu_writel(port, 0, PCIE_BAR_HI_OFF(1));
	mvebu_writel(port, ((size - 1) & 0xffff0000) | 1,
		     PCIE_BAR_CTRL_OFF(1));
231 232
}

233
static void mvebu_pcie_setup_hw(struct mvebu_pcie_port *port)
234
{
235
	u32 cmd, mask;
236 237 238 239 240

	/* Point PCIe unit MBUS decode windows to DRAM space. */
	mvebu_pcie_setup_wins(port);

	/* Master + slave enable. */
241
	cmd = mvebu_readl(port, PCIE_CMD_OFF);
242 243 244
	cmd |= PCI_COMMAND_IO;
	cmd |= PCI_COMMAND_MEMORY;
	cmd |= PCI_COMMAND_MASTER;
245
	mvebu_writel(port, cmd, PCIE_CMD_OFF);
246 247

	/* Enable interrupt lines A-D. */
248
	mask = mvebu_readl(port, PCIE_MASK_OFF);
249
	mask |= PCIE_MASK_ENABLE_INTS;
250
	mvebu_writel(port, mask, PCIE_MASK_OFF);
251 252 253 254 255 256
}

static int mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port *port,
				 struct pci_bus *bus,
				 u32 devfn, int where, int size, u32 *val)
{
257 258
	void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF;

259 260
	mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
		     PCIE_CONF_ADDR_OFF);
261

262 263 264 265 266 267 268 269 270 271 272
	switch (size) {
	case 1:
		*val = readb_relaxed(conf_data + (where & 3));
		break;
	case 2:
		*val = readw_relaxed(conf_data + (where & 2));
		break;
	case 4:
		*val = readl_relaxed(conf_data);
		break;
	}
273 274 275 276 277 278 279 280

	return PCIBIOS_SUCCESSFUL;
}

static int mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port *port,
				 struct pci_bus *bus,
				 u32 devfn, int where, int size, u32 val)
{
281
	void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF;
282

283 284
	mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
		     PCIE_CONF_ADDR_OFF);
285

286 287 288 289 290 291 292 293 294 295 296 297 298
	switch (size) {
	case 1:
		writeb(val, conf_data + (where & 3));
		break;
	case 2:
		writew(val, conf_data + (where & 2));
		break;
	case 4:
		writel(val, conf_data);
		break;
	default:
		return PCIBIOS_BAD_REGISTER_NUMBER;
	}
299 300

	return PCIBIOS_SUCCESSFUL;
301 302
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Remove windows, starting from the largest ones to the smallest
 * ones.
 */
static void mvebu_pcie_del_windows(struct mvebu_pcie_port *port,
				   phys_addr_t base, size_t size)
{
	while (size) {
		size_t sz = 1 << (fls(size) - 1);

		mvebu_mbus_del_window(base, sz);
		base += sz;
		size -= sz;
	}
}

/*
 * MBus windows can only have a power of two size, but PCI BARs do not
 * have this constraint. Therefore, we have to split the PCI BAR into
 * areas each having a power of two size. We start from the largest
 * one (i.e highest order bit set in the size).
 */
static void mvebu_pcie_add_windows(struct mvebu_pcie_port *port,
				   unsigned int target, unsigned int attribute,
				   phys_addr_t base, size_t size,
				   phys_addr_t remap)
{
	size_t size_mapped = 0;

	while (size) {
		size_t sz = 1 << (fls(size) - 1);
		int ret;

		ret = mvebu_mbus_add_window_remap_by_id(target, attribute, base,
							sz, remap);
		if (ret) {
339 340
			phys_addr_t end = base + sz - 1;

341
			dev_err(&port->pcie->pdev->dev,
342 343
				"Could not create MBus window at [mem %pa-%pa]: %d\n",
				&base, &end, ret);
344 345 346 347 348 349 350 351 352 353 354 355 356
			mvebu_pcie_del_windows(port, base - size_mapped,
					       size_mapped);
			return;
		}

		size -= sz;
		size_mapped += sz;
		base += sz;
		if (remap != MVEBU_MBUS_NO_REMAP)
			remap += sz;
	}
}

357 358 359 360 361 362
static void mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port *port)
{
	phys_addr_t iobase;

	/* Are the new iobase/iolimit values invalid? */
	if (port->bridge.iolimit < port->bridge.iobase ||
363 364
	    port->bridge.iolimitupper < port->bridge.iobaseupper ||
	    !(port->bridge.command & PCI_COMMAND_IO)) {
365 366 367

		/* If a window was configured, remove it */
		if (port->iowin_base) {
368 369
			mvebu_pcie_del_windows(port, port->iowin_base,
					       port->iowin_size);
370 371 372 373 374 375 376
			port->iowin_base = 0;
			port->iowin_size = 0;
		}

		return;
	}

377 378 379 380 381 382
	if (!mvebu_has_ioport(port)) {
		dev_WARN(&port->pcie->pdev->dev,
			 "Attempt to set IO when IO is disabled\n");
		return;
	}

383 384 385 386 387 388 389 390 391 392 393 394
	/*
	 * We read the PCI-to-PCI bridge emulated registers, and
	 * calculate the base address and size of the address decoding
	 * window to setup, according to the PCI-to-PCI bridge
	 * specifications. iobase is the bus address, port->iowin_base
	 * is the CPU address.
	 */
	iobase = ((port->bridge.iobase & 0xF0) << 8) |
		(port->bridge.iobaseupper << 16);
	port->iowin_base = port->pcie->io.start + iobase;
	port->iowin_size = ((0xFFF | ((port->bridge.iolimit & 0xF0) << 8) |
			    (port->bridge.iolimitupper << 16)) -
395
			    iobase) + 1;
396

397 398 399
	mvebu_pcie_add_windows(port, port->io_target, port->io_attr,
			       port->iowin_base, port->iowin_size,
			       iobase);
400 401 402 403 404
}

static void mvebu_pcie_handle_membase_change(struct mvebu_pcie_port *port)
{
	/* Are the new membase/memlimit values invalid? */
405 406
	if (port->bridge.memlimit < port->bridge.membase ||
	    !(port->bridge.command & PCI_COMMAND_MEMORY)) {
407 408 409

		/* If a window was configured, remove it */
		if (port->memwin_base) {
410 411
			mvebu_pcie_del_windows(port, port->memwin_base,
					       port->memwin_size);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
			port->memwin_base = 0;
			port->memwin_size = 0;
		}

		return;
	}

	/*
	 * We read the PCI-to-PCI bridge emulated registers, and
	 * calculate the base address and size of the address decoding
	 * window to setup, according to the PCI-to-PCI bridge
	 * specifications.
	 */
	port->memwin_base  = ((port->bridge.membase & 0xFFF0) << 16);
	port->memwin_size  =
		(((port->bridge.memlimit & 0xFFF0) << 16) | 0xFFFFF) -
428
		port->memwin_base + 1;
429

430 431 432
	mvebu_pcie_add_windows(port, port->mem_target, port->mem_attr,
			       port->memwin_base, port->memwin_size,
			       MVEBU_MBUS_NO_REMAP);
433 434 435 436 437 438 439 440 441 442 443 444 445 446
}

/*
 * Initialize the configuration space of the PCI-to-PCI bridge
 * associated with the given PCIe interface.
 */
static void mvebu_sw_pci_bridge_init(struct mvebu_pcie_port *port)
{
	struct mvebu_sw_pci_bridge *bridge = &port->bridge;

	memset(bridge, 0, sizeof(struct mvebu_sw_pci_bridge));

	bridge->class = PCI_CLASS_BRIDGE_PCI;
	bridge->vendor = PCI_VENDOR_ID_MARVELL;
447 448
	bridge->device = mvebu_readl(port, PCIE_DEV_ID_OFF) >> 16;
	bridge->revision = mvebu_readl(port, PCIE_DEV_REV_OFF) & 0xff;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	bridge->header_type = PCI_HEADER_TYPE_BRIDGE;
	bridge->cache_line_size = 0x10;

	/* We support 32 bits I/O addressing */
	bridge->iobase = PCI_IO_RANGE_TYPE_32;
	bridge->iolimit = PCI_IO_RANGE_TYPE_32;
}

/*
 * Read the configuration space of the PCI-to-PCI bridge associated to
 * the given PCIe interface.
 */
static int mvebu_sw_pci_bridge_read(struct mvebu_pcie_port *port,
				  unsigned int where, int size, u32 *value)
{
	struct mvebu_sw_pci_bridge *bridge = &port->bridge;

	switch (where & ~3) {
	case PCI_VENDOR_ID:
		*value = bridge->device << 16 | bridge->vendor;
		break;

	case PCI_COMMAND:
472
		*value = bridge->command;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		break;

	case PCI_CLASS_REVISION:
		*value = bridge->class << 16 | bridge->interface << 8 |
			 bridge->revision;
		break;

	case PCI_CACHE_LINE_SIZE:
		*value = bridge->bist << 24 | bridge->header_type << 16 |
			 bridge->latency_timer << 8 | bridge->cache_line_size;
		break;

	case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
		*value = bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4];
		break;

	case PCI_PRIMARY_BUS:
		*value = (bridge->secondary_latency_timer << 24 |
			  bridge->subordinate_bus         << 16 |
			  bridge->secondary_bus           <<  8 |
			  bridge->primary_bus);
		break;

	case PCI_IO_BASE:
497 498 499 500 501 502
		if (!mvebu_has_ioport(port))
			*value = bridge->secondary_status << 16;
		else
			*value = (bridge->secondary_status << 16 |
				  bridge->iolimit          <<  8 |
				  bridge->iobase);
503 504 505 506 507 508 509
		break;

	case PCI_MEMORY_BASE:
		*value = (bridge->memlimit << 16 | bridge->membase);
		break;

	case PCI_PREF_MEMORY_BASE:
510
		*value = 0;
511 512 513 514 515 516 517 518 519 520
		break;

	case PCI_IO_BASE_UPPER16:
		*value = (bridge->iolimitupper << 16 | bridge->iobaseupper);
		break;

	case PCI_ROM_ADDRESS1:
		*value = 0;
		break;

521 522 523 524 525
	case PCI_INTERRUPT_LINE:
		/* LINE PIN MIN_GNT MAX_LAT */
		*value = 0;
		break;

526
	default:
527 528 529 530 531 532 533
		/*
		 * PCI defines configuration read accesses to reserved or
		 * unimplemented registers to read as zero and complete
		 * normally.
		 */
		*value = 0;
		return PCIBIOS_SUCCESSFUL;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	}

	if (size == 2)
		*value = (*value >> (8 * (where & 3))) & 0xffff;
	else if (size == 1)
		*value = (*value >> (8 * (where & 3))) & 0xff;

	return PCIBIOS_SUCCESSFUL;
}

/* Write to the PCI-to-PCI bridge configuration space */
static int mvebu_sw_pci_bridge_write(struct mvebu_pcie_port *port,
				     unsigned int where, int size, u32 value)
{
	struct mvebu_sw_pci_bridge *bridge = &port->bridge;
	u32 mask, reg;
	int err;

	if (size == 4)
		mask = 0x0;
	else if (size == 2)
		mask = ~(0xffff << ((where & 3) * 8));
	else if (size == 1)
		mask = ~(0xff << ((where & 3) * 8));
	else
		return PCIBIOS_BAD_REGISTER_NUMBER;

	err = mvebu_sw_pci_bridge_read(port, where & ~3, 4, &reg);
	if (err)
		return err;

	value = (reg & mask) | value << ((where & 3) * 8);

	switch (where & ~3) {
	case PCI_COMMAND:
569 570 571
	{
		u32 old = bridge->command;

572 573 574
		if (!mvebu_has_ioport(port))
			value &= ~PCI_COMMAND_IO;

575
		bridge->command = value & 0xffff;
576 577 578 579
		if ((old ^ bridge->command) & PCI_COMMAND_IO)
			mvebu_pcie_handle_iobase_change(port);
		if ((old ^ bridge->command) & PCI_COMMAND_MEMORY)
			mvebu_pcie_handle_membase_change(port);
580
		break;
581
	}
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
		bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4] = value;
		break;

	case PCI_IO_BASE:
		/*
		 * We also keep bit 1 set, it is a read-only bit that
		 * indicates we support 32 bits addressing for the
		 * I/O
		 */
		bridge->iobase = (value & 0xff) | PCI_IO_RANGE_TYPE_32;
		bridge->iolimit = ((value >> 8) & 0xff) | PCI_IO_RANGE_TYPE_32;
		mvebu_pcie_handle_iobase_change(port);
		break;

	case PCI_MEMORY_BASE:
		bridge->membase = value & 0xffff;
		bridge->memlimit = value >> 16;
		mvebu_pcie_handle_membase_change(port);
		break;

	case PCI_IO_BASE_UPPER16:
		bridge->iobaseupper = value & 0xffff;
		bridge->iolimitupper = value >> 16;
		mvebu_pcie_handle_iobase_change(port);
		break;

	case PCI_PRIMARY_BUS:
		bridge->primary_bus             = value & 0xff;
		bridge->secondary_bus           = (value >> 8) & 0xff;
		bridge->subordinate_bus         = (value >> 16) & 0xff;
		bridge->secondary_latency_timer = (value >> 24) & 0xff;
		mvebu_pcie_set_local_bus_nr(port, bridge->secondary_bus);
		break;

	default:
		break;
	}

	return PCIBIOS_SUCCESSFUL;
}

static inline struct mvebu_pcie *sys_to_pcie(struct pci_sys_data *sys)
{
	return sys->private_data;
}

R
Ryan Desfosses 已提交
630 631 632
static struct mvebu_pcie_port *mvebu_pcie_find_port(struct mvebu_pcie *pcie,
						    struct pci_bus *bus,
						    int devfn)
633 634 635 636 637
{
	int i;

	for (i = 0; i < pcie->nports; i++) {
		struct mvebu_pcie_port *port = &pcie->ports[i];
638

639 640 641
		if (bus->number == 0 && port->devfn == devfn)
			return port;
		if (bus->number != 0 &&
642 643
		    bus->number >= port->bridge.secondary_bus &&
		    bus->number <= port->bridge.subordinate_bus)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
			return port;
	}

	return NULL;
}

/* PCI configuration space write function */
static int mvebu_pcie_wr_conf(struct pci_bus *bus, u32 devfn,
			      int where, int size, u32 val)
{
	struct mvebu_pcie *pcie = sys_to_pcie(bus->sysdata);
	struct mvebu_pcie_port *port;
	int ret;

	port = mvebu_pcie_find_port(pcie, bus, devfn);
	if (!port)
		return PCIBIOS_DEVICE_NOT_FOUND;

	/* Access the emulated PCI-to-PCI bridge */
	if (bus->number == 0)
		return mvebu_sw_pci_bridge_write(port, where, size, val);

666
	if (!mvebu_pcie_link_up(port))
667 668 669 670 671 672 673 674 675 676 677
		return PCIBIOS_DEVICE_NOT_FOUND;

	/*
	 * On the secondary bus, we don't want to expose any other
	 * device than the device physically connected in the PCIe
	 * slot, visible in slot 0. In slot 1, there's a special
	 * Marvell device that only makes sense when the Armada is
	 * used as a PCIe endpoint.
	 */
	if (bus->number == port->bridge.secondary_bus &&
	    PCI_SLOT(devfn) != 0)
678 679 680
		return PCIBIOS_DEVICE_NOT_FOUND;

	/* Access the real PCIe interface */
681
	ret = mvebu_pcie_hw_wr_conf(port, bus, devfn,
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
				    where, size, val);

	return ret;
}

/* PCI configuration space read function */
static int mvebu_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where,
			      int size, u32 *val)
{
	struct mvebu_pcie *pcie = sys_to_pcie(bus->sysdata);
	struct mvebu_pcie_port *port;
	int ret;

	port = mvebu_pcie_find_port(pcie, bus, devfn);
	if (!port) {
		*val = 0xffffffff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	/* Access the emulated PCI-to-PCI bridge */
	if (bus->number == 0)
		return mvebu_sw_pci_bridge_read(port, where, size, val);

705
	if (!mvebu_pcie_link_up(port)) {
706 707 708 709 710 711 712 713 714 715 716 717 718
		*val = 0xffffffff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	/*
	 * On the secondary bus, we don't want to expose any other
	 * device than the device physically connected in the PCIe
	 * slot, visible in slot 0. In slot 1, there's a special
	 * Marvell device that only makes sense when the Armada is
	 * used as a PCIe endpoint.
	 */
	if (bus->number == port->bridge.secondary_bus &&
	    PCI_SLOT(devfn) != 0) {
719 720 721 722 723
		*val = 0xffffffff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	/* Access the real PCIe interface */
724
	ret = mvebu_pcie_hw_rd_conf(port, bus, devfn,
725 726 727 728 729 730 731 732 733 734
				    where, size, val);

	return ret;
}

static struct pci_ops mvebu_pcie_ops = {
	.read = mvebu_pcie_rd_conf,
	.write = mvebu_pcie_wr_conf,
};

735
static int mvebu_pcie_setup(int nr, struct pci_sys_data *sys)
736 737 738 739
{
	struct mvebu_pcie *pcie = sys_to_pcie(sys);
	int i;

740 741
	pcie->mem.name = "PCI MEM";
	pcie->realio.name = "PCI I/O";
742 743 744 745 746 747 748 749 750

	if (request_resource(&iomem_resource, &pcie->mem))
		return 0;

	if (resource_size(&pcie->realio) != 0) {
		if (request_resource(&ioport_resource, &pcie->realio)) {
			release_resource(&pcie->mem);
			return 0;
		}
751 752
		pci_add_resource_offset(&sys->resources, &pcie->realio,
					sys->io_offset);
753
	}
754 755 756 757 758
	pci_add_resource_offset(&sys->resources, &pcie->mem, sys->mem_offset);
	pci_add_resource(&sys->resources, &pcie->busn);

	for (i = 0; i < pcie->nports; i++) {
		struct mvebu_pcie_port *port = &pcie->ports[i];
759

760 761
		if (!port->base)
			continue;
762 763 764 765 766 767
		mvebu_pcie_setup_hw(port);
	}

	return 1;
}

768
static resource_size_t mvebu_pcie_align_resource(struct pci_dev *dev,
R
Ryan Desfosses 已提交
769 770 771 772
						 const struct resource *res,
						 resource_size_t start,
						 resource_size_t size,
						 resource_size_t align)
773 774 775 776 777 778
{
	if (dev->bus->number != 0)
		return start;

	/*
	 * On the PCI-to-PCI bridge side, the I/O windows must have at
779 780 781 782 783 784 785 786
	 * least a 64 KB size and the memory windows must have at
	 * least a 1 MB size. Moreover, MBus windows need to have a
	 * base address aligned on their size, and their size must be
	 * a power of two. This means that if the BAR doesn't have a
	 * power of two size, several MBus windows will actually be
	 * created. We need to ensure that the biggest MBus window
	 * (which will be the first one) is aligned on its size, which
	 * explains the rounddown_pow_of_two() being done here.
787 788
	 */
	if (res->flags & IORESOURCE_IO)
789 790
		return round_up(start, max_t(resource_size_t, SZ_64K,
					     rounddown_pow_of_two(size)));
791
	else if (res->flags & IORESOURCE_MEM)
792 793
		return round_up(start, max_t(resource_size_t, SZ_1M,
					     rounddown_pow_of_two(size)));
794 795 796 797
	else
		return start;
}

798
static void mvebu_pcie_enable(struct mvebu_pcie *pcie)
799 800 801 802 803
{
	struct hw_pci hw;

	memset(&hw, 0, sizeof(hw));

804 805 806 807
#ifdef CONFIG_PCI_MSI
	hw.msi_ctrl = pcie->msi;
#endif

808 809 810
	hw.nr_controllers = 1;
	hw.private_data   = (void **)&pcie;
	hw.setup          = mvebu_pcie_setup;
811
	hw.map_irq        = of_irq_parse_and_map_pci;
812 813 814
	hw.ops            = &mvebu_pcie_ops;
	hw.align_resource = mvebu_pcie_align_resource;

815
	pci_common_init_dev(&pcie->pdev->dev, &hw);
816 817 818 819 820 821 822
}

/*
 * Looks up the list of register addresses encoded into the reg =
 * <...> property for one that matches the given port/lane. Once
 * found, maps it.
 */
823
static void __iomem *mvebu_pcie_map_registers(struct platform_device *pdev,
R
Ryan Desfosses 已提交
824 825
					      struct device_node *np,
					      struct mvebu_pcie_port *port)
826 827 828 829 830 831
{
	struct resource regs;
	int ret = 0;

	ret = of_address_to_resource(np, 0, &regs);
	if (ret)
832
		return ERR_PTR(ret);
833

834
	return devm_ioremap_resource(&pdev->dev, &regs);
835 836
}

837 838 839 840 841 842 843
#define DT_FLAGS_TO_TYPE(flags)       (((flags) >> 24) & 0x03)
#define    DT_TYPE_IO                 0x1
#define    DT_TYPE_MEM32              0x2
#define DT_CPUADDR_TO_TARGET(cpuaddr) (((cpuaddr) >> 56) & 0xFF)
#define DT_CPUADDR_TO_ATTR(cpuaddr)   (((cpuaddr) >> 48) & 0xFF)

static int mvebu_get_tgt_attr(struct device_node *np, int devfn,
844 845 846
			      unsigned long type,
			      unsigned int *tgt,
			      unsigned int *attr)
847 848 849 850 851
{
	const int na = 3, ns = 2;
	const __be32 *range;
	int rlen, nranges, rangesz, pna, i;

852 853 854
	*tgt = -1;
	*attr = -1;

855 856 857 858 859 860 861 862
	range = of_get_property(np, "ranges", &rlen);
	if (!range)
		return -EINVAL;

	pna = of_n_addr_cells(np);
	rangesz = pna + na + ns;
	nranges = rlen / sizeof(__be32) / rangesz;

863
	for (i = 0; i < nranges; i++, range += rangesz) {
864
		u32 flags = of_read_number(range, 1);
865
		u32 slot = of_read_number(range + 1, 1);
866 867 868 869 870 871 872
		u64 cpuaddr = of_read_number(range + na, pna);
		unsigned long rtype;

		if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_IO)
			rtype = IORESOURCE_IO;
		else if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_MEM32)
			rtype = IORESOURCE_MEM;
873 874
		else
			continue;
875 876 877 878 879 880 881 882 883 884 885

		if (slot == PCI_SLOT(devfn) && type == rtype) {
			*tgt = DT_CPUADDR_TO_TARGET(cpuaddr);
			*attr = DT_CPUADDR_TO_ATTR(cpuaddr);
			return 0;
		}
	}

	return -ENOENT;
}

886
static void mvebu_pcie_msi_enable(struct mvebu_pcie *pcie)
887 888 889 890 891 892 893 894 895
{
	struct device_node *msi_node;

	msi_node = of_parse_phandle(pcie->pdev->dev.of_node,
				    "msi-parent", 0);
	if (!msi_node)
		return;

	pcie->msi = of_pci_find_msi_chip_by_node(msi_node);
896
	of_node_put(msi_node);
897 898 899 900 901

	if (pcie->msi)
		pcie->msi->dev = &pcie->pdev->dev;
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static int mvebu_pcie_suspend(struct device *dev)
{
	struct mvebu_pcie *pcie;
	int i;

	pcie = dev_get_drvdata(dev);
	for (i = 0; i < pcie->nports; i++) {
		struct mvebu_pcie_port *port = pcie->ports + i;
		port->saved_pcie_stat = mvebu_readl(port, PCIE_STAT_OFF);
	}

	return 0;
}

static int mvebu_pcie_resume(struct device *dev)
{
	struct mvebu_pcie *pcie;
	int i;

	pcie = dev_get_drvdata(dev);
	for (i = 0; i < pcie->nports; i++) {
		struct mvebu_pcie_port *port = pcie->ports + i;
		mvebu_writel(port, port->saved_pcie_stat, PCIE_STAT_OFF);
		mvebu_pcie_setup_hw(port);
	}

	return 0;
}

931 932 933 934 935 936 937
static void mvebu_pcie_port_clk_put(void *data)
{
	struct mvebu_pcie_port *port = data;

	clk_put(port->clk);
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static int mvebu_pcie_parse_port(struct mvebu_pcie *pcie,
	struct mvebu_pcie_port *port, struct device_node *child)
{
	struct device *dev = &pcie->pdev->dev;
	enum of_gpio_flags flags;
	int ret;

	port->pcie = pcie;

	if (of_property_read_u32(child, "marvell,pcie-port", &port->port)) {
		dev_warn(dev, "ignoring %s, missing pcie-port property\n",
			 of_node_full_name(child));
		goto skip;
	}

	if (of_property_read_u32(child, "marvell,pcie-lane", &port->lane))
		port->lane = 0;

956 957 958 959 960 961
	port->name = devm_kasprintf(dev, GFP_KERNEL, "pcie%d.%d", port->port,
				    port->lane);
	if (!port->name) {
		ret = -ENOMEM;
		goto err;
	}
962 963 964 965 966 967 968 969 970 971 972 973 974

	port->devfn = of_pci_get_devfn(child);
	if (port->devfn < 0)
		goto skip;

	ret = mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_MEM,
				 &port->mem_target, &port->mem_attr);
	if (ret < 0) {
		dev_err(dev, "%s: cannot get tgt/attr for mem window\n",
			port->name);
		goto skip;
	}

975
	if (resource_size(&pcie->io) != 0) {
976 977
		mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_IO,
				   &port->io_target, &port->io_attr);
978
	} else {
979 980 981 982 983 984
		port->io_target = -1;
		port->io_attr = -1;
	}

	port->reset_gpio = of_get_named_gpio_flags(child, "reset-gpios", 0,
						   &flags);
985 986 987 988 989
	if (port->reset_gpio == -EPROBE_DEFER) {
		ret = port->reset_gpio;
		goto err;
	}

990 991
	if (gpio_is_valid(port->reset_gpio)) {
		port->reset_active_low = flags & OF_GPIO_ACTIVE_LOW;
992 993 994 995 996 997
		port->reset_name = devm_kasprintf(dev, GFP_KERNEL, "%s-reset",
						  port->name);
		if (!port->reset_name) {
			ret = -ENOMEM;
			goto err;
		}
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

		ret = devm_gpio_request_one(dev, port->reset_gpio,
					    GPIOF_DIR_OUT, port->reset_name);
		if (ret) {
			if (ret == -EPROBE_DEFER)
				goto err;
			goto skip;
		}
	}

	port->clk = of_clk_get_by_name(child, NULL);
	if (IS_ERR(port->clk)) {
		dev_err(dev, "%s: cannot get clock\n", port->name);
		goto skip;
	}

1014 1015 1016 1017 1018 1019
	ret = devm_add_action(dev, mvebu_pcie_port_clk_put, port);
	if (ret < 0) {
		clk_put(port->clk);
		goto err;
	}

1020 1021 1022 1023
	return 1;

skip:
	ret = 0;
1024 1025 1026 1027 1028 1029 1030

	/* In the case of skipping, we need to free these */
	devm_kfree(dev, port->reset_name);
	port->reset_name = NULL;
	devm_kfree(dev, port->name);
	port->name = NULL;

1031 1032 1033 1034
err:
	return ret;
}

1035
static int mvebu_pcie_probe(struct platform_device *pdev)
1036 1037 1038 1039
{
	struct mvebu_pcie *pcie;
	struct device_node *np = pdev->dev.of_node;
	struct device_node *child;
1040
	int num, i, ret;
1041 1042 1043 1044 1045 1046 1047

	pcie = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_pcie),
			    GFP_KERNEL);
	if (!pcie)
		return -ENOMEM;

	pcie->pdev = pdev;
1048
	platform_set_drvdata(pdev, pcie);
1049

1050 1051 1052 1053
	/* Get the PCIe memory and I/O aperture */
	mvebu_mbus_get_pcie_mem_aperture(&pcie->mem);
	if (resource_size(&pcie->mem) == 0) {
		dev_err(&pdev->dev, "invalid memory aperture size\n");
1054
		return -EINVAL;
1055
	}
1056

1057
	mvebu_mbus_get_pcie_io_aperture(&pcie->io);
1058

1059 1060 1061 1062 1063 1064 1065 1066
	if (resource_size(&pcie->io) != 0) {
		pcie->realio.flags = pcie->io.flags;
		pcie->realio.start = PCIBIOS_MIN_IO;
		pcie->realio.end = min_t(resource_size_t,
					 IO_SPACE_LIMIT,
					 resource_size(&pcie->io));
	} else
		pcie->realio = pcie->io;
1067

1068 1069 1070 1071 1072 1073 1074 1075
	/* Get the bus range */
	ret = of_pci_parse_bus_range(np, &pcie->busn);
	if (ret) {
		dev_err(&pdev->dev, "failed to parse bus-range property: %d\n",
			ret);
		return ret;
	}

1076
	num = of_get_available_child_count(pdev->dev.of_node);
1077

1078
	pcie->ports = devm_kzalloc(&pdev->dev, num *
1079 1080 1081 1082 1083 1084
				   sizeof(struct mvebu_pcie_port),
				   GFP_KERNEL);
	if (!pcie->ports)
		return -ENOMEM;

	i = 0;
1085
	for_each_available_child_of_node(pdev->dev.of_node, child) {
1086 1087
		struct mvebu_pcie_port *port = &pcie->ports[i];

1088
		ret = mvebu_pcie_parse_port(pcie, port, child);
1089 1090
		if (ret < 0) {
			of_node_put(child);
1091
			return ret;
1092
		} else if (ret == 0) {
1093
			continue;
1094
		}
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		if (gpio_is_valid(port->reset_gpio)) {
			u32 reset_udelay = 20000;

			of_property_read_u32(child, "reset-delay-us",
					     &reset_udelay);

			gpio_set_value(port->reset_gpio,
				       (port->reset_active_low) ? 1 : 0);
			msleep(reset_udelay/1000);
		}

1107 1108 1109 1110
		ret = clk_prepare_enable(port->clk);
		if (ret)
			continue;

1111
		port->base = mvebu_pcie_map_registers(pdev, child, port);
1112
		if (IS_ERR(port->base)) {
1113 1114
			dev_err(&pdev->dev, "%s: cannot map registers\n",
				port->name);
1115
			port->base = NULL;
1116
			clk_disable_unprepare(port->clk);
1117 1118 1119
			continue;
		}

1120 1121
		mvebu_pcie_set_local_dev_nr(port, 1);

1122 1123 1124 1125 1126
		port->dn = child;
		mvebu_sw_pci_bridge_init(port);
		i++;
	}

1127
	pcie->nports = i;
1128 1129 1130 1131

	for (i = 0; i < (IO_SPACE_LIMIT - SZ_64K); i += SZ_64K)
		pci_ioremap_io(i, pcie->io.start + i);

1132
	mvebu_pcie_msi_enable(pcie);
1133 1134
	mvebu_pcie_enable(pcie);

1135 1136
	platform_set_drvdata(pdev, pcie);

1137 1138 1139 1140 1141 1142
	return 0;
}

static const struct of_device_id mvebu_pcie_of_match_table[] = {
	{ .compatible = "marvell,armada-xp-pcie", },
	{ .compatible = "marvell,armada-370-pcie", },
1143
	{ .compatible = "marvell,dove-pcie", },
1144
	{ .compatible = "marvell,kirkwood-pcie", },
1145 1146 1147 1148
	{},
};
MODULE_DEVICE_TABLE(of, mvebu_pcie_of_match_table);

1149 1150 1151 1152 1153
static struct dev_pm_ops mvebu_pcie_pm_ops = {
	.suspend_noirq = mvebu_pcie_suspend,
	.resume_noirq = mvebu_pcie_resume,
};

1154 1155 1156
static struct platform_driver mvebu_pcie_driver = {
	.driver = {
		.name = "mvebu-pcie",
1157
		.of_match_table = mvebu_pcie_of_match_table,
1158 1159
		/* driver unloading/unbinding currently not supported */
		.suppress_bind_attrs = true,
1160
		.pm = &mvebu_pcie_pm_ops,
1161
	},
1162
	.probe = mvebu_pcie_probe,
1163
};
1164
module_platform_driver(mvebu_pcie_driver);
1165 1166 1167

MODULE_AUTHOR("Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_DESCRIPTION("Marvell EBU PCIe driver");
1168
MODULE_LICENSE("GPL v2");