file.c 40.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
35
#include <asm/spu_info.h>
36 37 38 39
#include <asm/uaccess.h>

#include "spufs.h"

40 41
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

42

43 44 45 46
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
47 48 49 50
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->local_store = inode->i_mapping;
51 52 53 54 55 56 57
	return 0;
}

static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
58 59
	struct spu_context *ctx = file->private_data;
	char *local_store;
60 61
	int ret;

62
	spu_acquire(ctx);
63

64 65
	local_store = ctx->ops->get_ls(ctx);
	ret = simple_read_from_buffer(buffer, size, pos, local_store, LS_SIZE);
66

67
	spu_release(ctx);
68 69 70 71 72 73 74 75
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
					size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
76 77
	char *local_store;
	int ret;
78 79 80 81 82

	size = min_t(ssize_t, LS_SIZE - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;
83 84 85 86 87 88 89 90 91

	spu_acquire(ctx);

	local_store = ctx->ops->get_ls(ctx);
	ret = copy_from_user(local_store + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
92 93
}

94 95 96 97 98 99 100 101 102 103 104 105
static struct page *
spufs_mem_mmap_nopage(struct vm_area_struct *vma,
		      unsigned long address, int *type)
{
	struct page *page = NOPAGE_SIGBUS;

	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	offset += vma->vm_pgoff << PAGE_SHIFT;

	spu_acquire(ctx);

106 107
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
108
							& ~_PAGE_NO_CACHE);
109
		page = vmalloc_to_page(ctx->csa.lscsa->ls + offset);
110 111
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
112
							| _PAGE_NO_CACHE);
113 114
		page = pfn_to_page((ctx->spu->local_store_phys + offset)
				   >> PAGE_SHIFT);
115
	}
116 117 118 119 120
	spu_release(ctx);

	if (type)
		*type = VM_FAULT_MINOR;

121
	page_cache_get(page);
122 123 124 125 126 127 128
	return page;
}

static struct vm_operations_struct spufs_mem_mmap_vmops = {
	.nopage = spufs_mem_mmap_nopage,
};

129 130 131
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
132 133
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
134

135
	vma->vm_flags |= VM_IO;
136 137 138 139
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
140 141 142 143 144 145 146
	return 0;
}

static struct file_operations spufs_mem_fops = {
	.open	 = spufs_mem_open,
	.read    = spufs_mem_read,
	.write   = spufs_mem_write,
147
	.llseek  = generic_file_llseek,
148
	.mmap    = spufs_mem_mmap,
149 150
};

151 152
static struct page *spufs_ps_nopage(struct vm_area_struct *vma,
				    unsigned long address,
153 154
				    int *type, unsigned long ps_offs,
				    unsigned long ps_size)
155 156 157 158 159 160 161 162 163
{
	struct page *page = NOPAGE_SIGBUS;
	int fault_type = VM_FAULT_SIGBUS;
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	unsigned long area;
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
164
	if (offset >= ps_size)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
		goto out;

	ret = spu_acquire_runnable(ctx);
	if (ret)
		goto out;

	area = ctx->spu->problem_phys + ps_offs;
	page = pfn_to_page((area + offset) >> PAGE_SHIFT);
	fault_type = VM_FAULT_MINOR;
	page_cache_get(page);

	spu_release(ctx);

      out:
	if (type)
		*type = fault_type;

	return page;
}

185
#if SPUFS_MMAP_4K
186 187 188
static struct page *spufs_cntl_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
189
	return spufs_ps_nopage(vma, address, type, 0x4000, 0x1000);
190 191 192 193 194 195 196 197 198 199 200 201 202 203
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
	.nopage = spufs_cntl_mmap_nopage,
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

204
	vma->vm_flags |= VM_IO;
205
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
206
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
207 208 209 210

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
211 212 213
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
214

215
static u64 spufs_cntl_get(void *data)
216
{
217 218
	struct spu_context *ctx = data;
	u64 val;
219

220 221 222 223 224
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
225 226
}

227
static void spufs_cntl_set(void *data, u64 val)
228
{
229 230 231 232 233
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
234 235
}

236
static int spufs_cntl_open(struct inode *inode, struct file *file)
237
{
238 239 240 241 242 243 244 245
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->cntl = inode->i_mapping;
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
246 247 248 249
}

static struct file_operations spufs_cntl_fops = {
	.open = spufs_cntl_open,
250
	.release = simple_attr_close,
251 252
	.read = simple_attr_read,
	.write = simple_attr_write,
253 254 255
	.mmap = spufs_cntl_mmap,
};

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	spu_acquire_saved(ctx);

	ret = simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);

	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

static struct file_operations spufs_regs_fops = {
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
307 308 309
	.llseek  = generic_file_llseek,
};

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	spu_acquire_saved(ctx);

	ret = simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));

	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

static struct file_operations spufs_fpcr_fops = {
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

356 357 358 359 360 361 362 363 364
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

365 366 367 368 369 370 371 372
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
373 374 375
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
376
	struct spu_context *ctx = file->private_data;
377 378
	u32 mbox_data, __user *udata;
	ssize_t count;
379 380 381 382

	if (len < 4)
		return -EINVAL;

383 384 385 386 387
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

388
	spu_acquire(ctx);
389
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
407
	spu_release(ctx);
408

409 410
	if (!count)
		count = -EAGAIN;
411

412
	return count;
413 414 415 416 417 418 419 420 421 422
}

static struct file_operations spufs_mbox_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
423
	struct spu_context *ctx = file->private_data;
424 425 426 427 428
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

429 430 431 432 433
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
434 435 436 437 438 439 440 441 442 443 444 445 446

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_mbox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
447
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
448
{
449 450
	return ctx->ops->ibox_read(ctx, data);
}
451

452 453 454
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
455

456
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
457 458
}

459 460
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
461
{
462 463 464 465
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
480 481 482
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
483
	struct spu_context *ctx = file->private_data;
484 485
	u32 ibox_data, __user *udata;
	ssize_t count;
486 487 488 489

	if (len < 4)
		return -EINVAL;

490 491 492 493 494
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

495
	spu_acquire(ctx);
496

497 498
	/* wait only for the first element */
	count = 0;
499
	if (file->f_flags & O_NONBLOCK) {
500
		if (!spu_ibox_read(ctx, &ibox_data))
501
			count = -EAGAIN;
502
	} else {
503
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
504
	}
505 506
	if (count)
		goto out;
507

508 509 510 511
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
527

528 529
out:
	spu_release(ctx);
530

531
	return count;
532 533 534 535
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
536
	struct spu_context *ctx = file->private_data;
537 538
	unsigned int mask;

539
	poll_wait(file, &ctx->ibox_wq, wait);
540

541 542 543
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
544 545 546 547 548 549 550 551 552 553 554 555 556 557

	return mask;
}

static struct file_operations spufs_ibox_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
558
	struct spu_context *ctx = file->private_data;
559 560 561 562 563
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

564 565 566
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
567 568 569 570 571 572 573 574 575 576 577 578 579

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_ibox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
580
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
581
{
582 583
	return ctx->ops->wbox_write(ctx, data);
}
584

585 586 587 588
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
589

590
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
591 592 593 594

	return ret;
}

595 596
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
597
{
598 599 600 601
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
602 603
}

604 605 606 607 608 609 610 611 612 613 614 615
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
616 617 618
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
619
	struct spu_context *ctx = file->private_data;
620 621
	u32 wbox_data, __user *udata;
	ssize_t count;
622 623 624 625

	if (len < 4)
		return -EINVAL;

626 627 628 629 630
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
631 632
		return -EFAULT;

633 634
	spu_acquire(ctx);

635 636 637 638 639
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
640
	if (file->f_flags & O_NONBLOCK) {
641
		if (!spu_wbox_write(ctx, wbox_data))
642
			count = -EAGAIN;
643
	} else {
644
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
645 646
	}

647 648
	if (count)
		goto out;
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
665 666 667 668
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
669
	struct spu_context *ctx = file->private_data;
670 671
	unsigned int mask;

672
	poll_wait(file, &ctx->wbox_wq, wait);
673

674 675 676
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
677 678 679 680 681 682 683 684 685 686 687 688 689 690

	return mask;
}

static struct file_operations spufs_wbox_fops = {
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
691
	struct spu_context *ctx = file->private_data;
692 693 694 695 696
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

697 698 699
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
700 701 702 703 704 705 706 707 708 709 710 711

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_wbox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

712 713 714 715 716 717 718 719 720 721
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->signal1 = inode->i_mapping;
	return nonseekable_open(inode, file);
}

722 723 724
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
725
	struct spu_context *ctx = file->private_data;
726
	int ret = 0;
727 728 729 730 731
	u32 data;

	if (len < 4)
		return -EINVAL;

732 733 734 735 736
	spu_acquire_saved(ctx);
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
737 738
	spu_release(ctx);

739 740 741
	if (!ret)
		goto out;

742 743 744
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

745 746
out:
	return ret;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
}

static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

763 764 765
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
766 767 768 769

	return 4;
}

770 771 772
static struct page *spufs_signal1_mmap_nopage(struct vm_area_struct *vma,
					      unsigned long address, int *type)
{
773 774 775 776 777 778 779 780 781 782
#if PAGE_SIZE == 0x1000
	return spufs_ps_nopage(vma, address, type, 0x14000, 0x1000);
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
	return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
783 784 785 786 787 788 789 790 791 792 793
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
	.nopage = spufs_signal1_mmap_nopage,
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

794
	vma->vm_flags |= VM_IO;
795
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
796
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
797 798 799 800 801

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

802
static struct file_operations spufs_signal1_fops = {
803
	.open = spufs_signal1_open,
804 805
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
806
	.mmap = spufs_signal1_mmap,
807 808
};

809 810 811 812 813 814 815 816 817 818
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->signal2 = inode->i_mapping;
	return nonseekable_open(inode, file);
}

819 820 821
static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
822 823
	struct spu_context *ctx = file->private_data;
	int ret = 0;
824 825 826 827 828
	u32 data;

	if (len < 4)
		return -EINVAL;

829 830 831 832 833
	spu_acquire_saved(ctx);
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
834 835
	spu_release(ctx);

836 837 838
	if (!ret)
		goto out;

839 840 841
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

842
out:
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return 4;
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

860 861 862
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
863 864 865 866

	return 4;
}

867
#if SPUFS_MMAP_4K
868 869 870
static struct page *spufs_signal2_mmap_nopage(struct vm_area_struct *vma,
					      unsigned long address, int *type)
{
871 872 873 874 875 876 877 878 879 880
#if PAGE_SIZE == 0x1000
	return spufs_ps_nopage(vma, address, type, 0x1c000, 0x1000);
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
	return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
881 882 883 884 885 886 887 888 889 890 891
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
	.nopage = spufs_signal2_mmap_nopage,
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

892
	vma->vm_flags |= VM_IO;
893
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
894
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
895 896 897 898

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
899 900 901
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
902

903
static struct file_operations spufs_signal2_fops = {
904
	.open = spufs_signal2_open,
905 906
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
907
	.mmap = spufs_signal2_mmap,
908 909 910 911 912 913
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

914 915 916
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
917 918 919 920 921
}

static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
922 923 924 925 926 927 928
	u64 ret;

	spu_acquire(ctx);
	ret = ctx->ops->signal1_type_get(ctx);
	spu_release(ctx);

	return ret;
929 930 931 932 933 934 935 936
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

937 938 939
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
940 941 942 943 944
}

static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
945 946 947 948 949 950 951
	u64 ret;

	spu_acquire(ctx);
	ret = ctx->ops->signal2_type_get(ctx);
	spu_release(ctx);

	return ret;
952 953 954 955
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

956
#if SPUFS_MMAP_4K
957 958 959
static struct page *spufs_mss_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
960
	return spufs_ps_nopage(vma, address, type, 0x0000, 0x1000);
961 962 963 964 965 966 967 968 969 970 971 972 973 974
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
	.nopage = spufs_mss_mmap_nopage,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

975
	vma->vm_flags |= VM_IO;
976
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
977
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
978 979 980 981

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
982 983 984
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
985 986 987 988 989 990 991 992 993 994 995 996

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);

	file->private_data = i->i_ctx;
	return nonseekable_open(inode, file);
}

static struct file_operations spufs_mss_fops = {
	.open	 = spufs_mss_open,
	.mmap	 = spufs_mss_mmap,
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
};

static struct page *spufs_psmap_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
	return spufs_ps_nopage(vma, address, type, 0x0000, 0x20000);
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
	.nopage = spufs_psmap_mmap_nopage,
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1017
	vma->vm_flags |= VM_IO;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);

	file->private_data = i->i_ctx;
	return nonseekable_open(inode, file);
}

static struct file_operations spufs_psmap_fops = {
	.open	 = spufs_psmap_open,
	.mmap	 = spufs_psmap_mmap,
1036 1037 1038
};


1039
#if SPUFS_MMAP_4K
1040 1041 1042
static struct page *spufs_mfc_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
1043
	return spufs_ps_nopage(vma, address, type, 0x3000, 0x1000);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
	.nopage = spufs_mfc_mmap_nopage,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1058
	vma->vm_flags |= VM_IO;
1059
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1060
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1061 1062 1063 1064

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1065 1066 1067
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

	file->private_data = ctx;
	return nonseekable_open(inode, file);
}

/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

	spu_acquire_runnable(ctx);
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;
1282
	ret = size;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1314
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1340
	return spufs_mfc_flush(file, NULL);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

static struct file_operations spufs_mfc_fops = {
	.open	 = spufs_mfc_open,
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1358
	.mmap	 = spufs_mfc_mmap,
1359 1360
};

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

static int spufs_recycle_open(struct inode *inode, struct file *file)
{
	file->private_data = SPUFS_I(inode)->i_ctx;
	return nonseekable_open(inode, file);
}

static ssize_t spufs_recycle_write(struct file *file,
		const char __user *buffer, size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		return -EINVAL;

	if (size < 1)
		return -EINVAL;

	ret = spu_recycle_isolated(ctx);

	if (ret)
		return ret;
	return size;
}

static struct file_operations spufs_recycle_fops = {
	.open	 = spufs_recycle_open,
	.write	 = spufs_recycle_write,
};

1392 1393 1394
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1395 1396 1397
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1398 1399 1400 1401 1402 1403
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1404 1405 1406
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1407 1408
	return ret;
}
1409 1410
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->decr.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1432
			"0x%llx\n")
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->decr_status.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1454
			spufs_decr_status_set, "0x%llx\n")
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->event_mask.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1476
			spufs_event_mask_set, "0x%llx\n")
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static u64 spufs_event_status_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_state *state = &ctx->csa;
	u64 ret = 0;
	u64 stat;

	spu_acquire_saved(ctx);
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
		ret = state->spu_chnldata_RW[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
			NULL, "0x%llx\n")

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1515
			"0x%llx\n")
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
A
Al Viro 已提交
1531
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static u64 spufs_object_id_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static u64 spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;

	spu_acquire_saved(ctx);
	ret = ctx->csa.priv2.spu_lslr_RW;
	spu_release(ctx);

	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	u32 mbox_stat;
	u32 data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

static struct file_operations spufs_mbox_info_fops = {
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	u32 ibox_stat;
	u32 data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

static struct file_operations spufs_ibox_info_fops = {
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = (wbox_stat & 0x00ff00) >> 8;
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static struct file_operations spufs_wbox_info_fops = {
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static struct file_operations spufs_dma_info_fops = {
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_proxydma_info info;
	int ret = sizeof info;
	struct mfc_cq_sr *qp, *puqp;
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	if (copy_to_user(buf, &info, sizeof info))
		ret = -EFAULT;

	return ret;
}

static struct file_operations spufs_proxydma_info_fops = {
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

1738 1739
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
1740
	{ "regs", &spufs_regs_fops,  0666, },
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
1751
	{ "cntl", &spufs_cntl_fops,  0666, },
1752
	{ "fpcr", &spufs_fpcr_fops, 0666, },
1753 1754 1755 1756 1757
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
1758 1759 1760
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
1761
	{ "event_status", &spufs_event_status_ops, 0444, },
1762
	{ "psmap", &spufs_psmap_fops, 0666, },
1763 1764
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1765 1766 1767
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
1768 1769
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
1770 1771
	{},
};
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1792
	{ "recycle", &spufs_recycle_fops, 0222, },
1793 1794
	{},
};