kvm_mips.c 27.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
*/

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>

#include <linux/kvm_host.h>

#include "kvm_mips_int.h"
#include "kvm_mips_comm.h"

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "wait", VCPU_STAT(wait_exits) },
	{ "cache", VCPU_STAT(cache_exits) },
	{ "signal", VCPU_STAT(signal_exits) },
	{ "interrupt", VCPU_STAT(int_exits) },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits) },
	{ "tlbmod", VCPU_STAT(tlbmod_exits) },
	{ "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits) },
	{ "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits) },
	{ "addrerr_st", VCPU_STAT(addrerr_st_exits) },
	{ "addrerr_ld", VCPU_STAT(addrerr_ld_exits) },
	{ "syscall", VCPU_STAT(syscall_exits) },
	{ "resvd_inst", VCPU_STAT(resvd_inst_exits) },
	{ "break_inst", VCPU_STAT(break_inst_exits) },
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
	{NULL}
};

static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
	int i;
	for_each_possible_cpu(i) {
		vcpu->arch.guest_kernel_asid[i] = 0;
		vcpu->arch.guest_user_asid[i] = 0;
	}
	return 0;
}

/* XXXKYMA: We are simulatoring a processor that has the WII bit set in Config7, so we
 * are "runnable" if interrupts are pending
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

int kvm_arch_hardware_enable(void *garbage)
{
	return 0;
}

void kvm_arch_hardware_disable(void *garbage)
{
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
}

void kvm_arch_check_processor_compat(void *rtn)
{
	int *r = (int *)rtn;
	*r = 0;
	return;
}

static void kvm_mips_init_tlbs(struct kvm *kvm)
{
	unsigned long wired;

	/* Add a wired entry to the TLB, it is used to map the commpage to the Guest kernel */
	wired = read_c0_wired();
	write_c0_wired(wired + 1);
	mtc0_tlbw_hazard();
	kvm->arch.commpage_tlb = wired;

	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
		  kvm->arch.commpage_tlb);
}

static void kvm_mips_init_vm_percpu(void *arg)
{
	struct kvm *kvm = (struct kvm *)arg;

	kvm_mips_init_tlbs(kvm);
	kvm_mips_callbacks->vm_init(kvm);

}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
	if (atomic_inc_return(&kvm_mips_instance) == 1) {
		kvm_info("%s: 1st KVM instance, setup host TLB parameters\n",
			 __func__);
		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
	}


	return 0;
}

void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	/* Put the pages we reserved for the guest pmap */
	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
	}

	if (kvm->arch.guest_pmap)
		kfree(kvm->arch.guest_pmap);

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

void kvm_arch_sync_events(struct kvm *kvm)
{
}

static void kvm_mips_uninit_tlbs(void *arg)
{
	/* Restore wired count */
	write_c0_wired(0);
	mtc0_tlbw_hazard();
	/* Clear out all the TLBs */
	kvm_local_flush_tlb_all();
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);

	/* If this is the last instance, restore wired count */
	if (atomic_dec_return(&kvm_mips_instance) == 0) {
		kvm_info("%s: last KVM instance, restoring TLB parameters\n",
			 __func__);
		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
	}
}

long
kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
193
	return -ENOIOCTLCMD;
194 195
}

196
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
197 198 199 200
			   struct kvm_memory_slot *dont)
{
}

201 202
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
203 204 205 206
{
	return 0;
}

207 208 209 210
void kvm_arch_memslots_updated(struct kvm *kvm)
{
}

211
int kvm_arch_prepare_memory_region(struct kvm *kvm,
212 213 214
                                struct kvm_memory_slot *memslot,
                                struct kvm_userspace_memory_region *mem,
                                enum kvm_mr_change change)
215 216 217 218 219
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
220 221 222
                                struct kvm_userspace_memory_region *mem,
                                const struct kvm_memory_slot *old,
                                enum kvm_mr_change change)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	unsigned long npages = 0;
	int i, err = 0;

	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);

	/* Setup Guest PMAP table */
	if (!kvm->arch.guest_pmap) {
		if (mem->slot == 0)
			npages = mem->memory_size >> PAGE_SHIFT;

		if (npages) {
			kvm->arch.guest_pmap_npages = npages;
			kvm->arch.guest_pmap =
			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);

			if (!kvm->arch.guest_pmap) {
				kvm_err("Failed to allocate guest PMAP");
				err = -ENOMEM;
				goto out;
			}

			kvm_info
			    ("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
			     npages, kvm->arch.guest_pmap);

			/* Now setup the page table */
			for (i = 0; i < npages; i++) {
				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
			}
		}
	}
out:
	return;
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
}

void kvm_arch_flush_shadow(struct kvm *kvm)
{
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	extern char mips32_exception[], mips32_exceptionEnd[];
	extern char mips32_GuestException[], mips32_GuestExceptionEnd[];
	int err, size, offset;
	void *gebase;
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

	kvm_info("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);

	/* Allocate space for host mode exception handlers that handle
	 * guest mode exits
	 */
	if (cpu_has_veic || cpu_has_vint) {
		size = 0x200 + VECTORSPACING * 64;
	} else {
		size = 0x200;
	}

	/* Save Linux EBASE */
	vcpu->arch.host_ebase = (void *)read_c0_ebase();

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
		goto out_free_cpu;
	}
	kvm_info("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		 ALIGN(size, PAGE_SIZE), gebase);

	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

	/* Copy L1 Guest Exception handler to correct offset */

	/* TLB Refill, EXL = 0 */
	memcpy(gebase, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* General Exception Entry point */
	memcpy(gebase + 0x180, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
		       mips32_exceptionEnd - mips32_exception);
	}

	/* General handler, relocate to unmapped space for sanity's sake */
	offset = 0x2000;
	kvm_info("Installing KVM Exception handlers @ %p, %#x bytes\n",
		 gebase + offset,
		 mips32_GuestExceptionEnd - mips32_GuestException);

	memcpy(gebase + offset, mips32_GuestException,
	       mips32_GuestExceptionEnd - mips32_GuestException);

	/* Invalidate the icache for these ranges */
	mips32_SyncICache((unsigned long) gebase, ALIGN(size, PAGE_SIZE));

	/* Allocate comm page for guest kernel, a TLB will be reserved for mapping GVA @ 0xFFFF8000 to this page */
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

	kvm_info("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	/* Start off the timer */
	kvm_mips_emulate_count(vcpu);

	return vcpu;

out_free_gebase:
	kfree(gebase);

out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

	if (vcpu->arch.guest_ebase)
		kfree(vcpu->arch.guest_ebase);

	if (vcpu->arch.kseg0_commpage)
		kfree(vcpu->arch.kseg0_commpage);

}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
				    struct kvm_guest_debug *dbg)
{
404
	return -ENOIOCTLCMD;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = 0;
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

	local_irq_disable();
	kvm_guest_enter();

	r = __kvm_mips_vcpu_run(run, vcpu);

	kvm_guest_exit();
	local_irq_enable();

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

int
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq)
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

	if (waitqueue_active(&dvcpu->wq)) {
		wake_up_interruptible(&dvcpu->wq);
	}

	return 0;
}

int
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				struct kvm_mp_state *mp_state)
{
478
	return -ENOIOCTLCMD;
479 480 481 482 483 484
}

int
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				struct kvm_mp_state *mp_state)
{
485
	return -ENOIOCTLCMD;
486 487
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
#define MIPS_CP0_32(_R, _S)					\
	(KVM_REG_MIPS | KVM_REG_SIZE_U32 | 0x10000 | (8 * (_R) + (_S)))

#define MIPS_CP0_64(_R, _S)					\
	(KVM_REG_MIPS | KVM_REG_SIZE_U64 | 0x10000 | (8 * (_R) + (_S)))

#define KVM_REG_MIPS_CP0_INDEX		MIPS_CP0_32(0, 0)
#define KVM_REG_MIPS_CP0_ENTRYLO0	MIPS_CP0_64(2, 0)
#define KVM_REG_MIPS_CP0_ENTRYLO1	MIPS_CP0_64(3, 0)
#define KVM_REG_MIPS_CP0_CONTEXT	MIPS_CP0_64(4, 0)
#define KVM_REG_MIPS_CP0_USERLOCAL	MIPS_CP0_64(4, 2)
#define KVM_REG_MIPS_CP0_PAGEMASK	MIPS_CP0_32(5, 0)
#define KVM_REG_MIPS_CP0_PAGEGRAIN	MIPS_CP0_32(5, 1)
#define KVM_REG_MIPS_CP0_WIRED		MIPS_CP0_32(6, 0)
#define KVM_REG_MIPS_CP0_HWRENA		MIPS_CP0_32(7, 0)
#define KVM_REG_MIPS_CP0_BADVADDR	MIPS_CP0_64(8, 0)
#define KVM_REG_MIPS_CP0_COUNT		MIPS_CP0_32(9, 0)
#define KVM_REG_MIPS_CP0_ENTRYHI	MIPS_CP0_64(10, 0)
#define KVM_REG_MIPS_CP0_COMPARE	MIPS_CP0_32(11, 0)
#define KVM_REG_MIPS_CP0_STATUS		MIPS_CP0_32(12, 0)
#define KVM_REG_MIPS_CP0_CAUSE		MIPS_CP0_32(13, 0)
#define KVM_REG_MIPS_CP0_EBASE		MIPS_CP0_64(15, 1)
#define KVM_REG_MIPS_CP0_CONFIG		MIPS_CP0_32(16, 0)
#define KVM_REG_MIPS_CP0_CONFIG1	MIPS_CP0_32(16, 1)
#define KVM_REG_MIPS_CP0_CONFIG2	MIPS_CP0_32(16, 2)
#define KVM_REG_MIPS_CP0_CONFIG3	MIPS_CP0_32(16, 3)
#define KVM_REG_MIPS_CP0_CONFIG7	MIPS_CP0_32(16, 7)
#define KVM_REG_MIPS_CP0_XCONTEXT	MIPS_CP0_64(20, 0)
#define KVM_REG_MIPS_CP0_ERROREPC	MIPS_CP0_64(30, 0)
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
	KVM_REG_MIPS_PC,

	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
	KVM_REG_MIPS_CP0_BADVADDR,
	KVM_REG_MIPS_CP0_ENTRYHI,
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
	/* EPC set via kvm_regs, et al. */
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
	KVM_REG_MIPS_CP0_CONFIG7,
	KVM_REG_MIPS_CP0_ERROREPC
};

static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	s64 v;

	switch (reg->id) {
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		v = (long)kvm_read_c0_guest_context(cop0);
		break;
	case KVM_REG_MIPS_CP0_PAGEMASK:
		v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		v = (long)kvm_read_c0_guest_wired(cop0);
		break;
	case KVM_REG_MIPS_CP0_BADVADDR:
		v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		v = (long)kvm_read_c0_guest_cause(cop0);
		break;
	case KVM_REG_MIPS_CP0_ERROREPC:
		v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG:
		v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		v = (long)kvm_read_c0_guest_config3(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG7:
		v = (long)kvm_read_c0_guest_config7(cop0);
		break;
	default:
		return -EINVAL;
	}
638 639 640 641 642 643 644 645 646 647
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
		return put_user(v32, uaddr32);
	} else {
		return -EINVAL;
	}
648 649 650 651 652 653 654 655
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	u64 v;

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
	} else {
		return -EINVAL;
	}
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	switch (reg->id) {
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		kvm_write_c0_guest_cause(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

722 723 724 725 726 727 728 729
long
kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		u64 __user *reg_dest;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		reg_dest = user_list->reg;
		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
				 sizeof(kvm_mips_get_one_regs)))
			return -EFAULT;
		return 0;
	}
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	case KVM_NMI:
		/* Treat the NMI as a CPU reset */
		r = kvm_mips_reset_vcpu(vcpu);
		break;
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
			r = -EFAULT;
			if (copy_from_user(&irq, argp, sizeof(irq)))
				goto out;

			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
	default:
778
		r = -ENOIOCTLCMD;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	}

out:
	return r;
}

/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	unsigned long ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = &kvm->memslots->memslots[log->slot];

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		printk("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
		       ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;

}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
829
		r = -ENOIOCTLCMD;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	int ret;

	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

	ret = kvm_mips_emulation_init(&kvm_mips_callbacks);

	return ret;
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

int
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
857
	return -ENOIOCTLCMD;
858 859 860 861 862
}

int
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
863
	return -ENOIOCTLCMD;
864 865 866 867 868 869 870 871 872
}

int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
873
	return -ENOIOCTLCMD;
874 875 876 877
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
878
	return -ENOIOCTLCMD;
879 880 881 882 883 884 885 886 887 888 889 890
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
891 892 893
	case KVM_CAP_ONE_REG:
		r = 1;
		break;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

	printk("VCPU Register Dump:\n");
	printk("\tpc = 0x%08lx\n", vcpu->arch.pc);;
	printk("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);

	for (i = 0; i < 32; i += 4) {
		printk("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
	printk("\thi: 0x%08lx\n", vcpu->arch.hi);
	printk("\tlo: 0x%08lx\n", vcpu->arch.lo);

	cop0 = vcpu->arch.cop0;
	printk("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
	       kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0));

	printk("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

943
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
944
		vcpu->arch.gprs[i] = regs->gpr[i];
945
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
946 947 948 949
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

950
	return 0;
951 952 953 954 955 956
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

957
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
958
		regs->gpr[i] = vcpu->arch.gprs[i];
959 960 961 962 963

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

964
	return 0;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
}

void kvm_mips_comparecount_func(unsigned long data)
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
	}
}

/*
 * low level hrtimer wake routine.
 */
enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
	hrtimer_forward_now(&vcpu->arch.comparecount_timer,
			    ktime_set(0, MS_TO_NS(10)));
	return HRTIMER_RESTART;
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_init(vcpu);
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	return;
}

int
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

static
void kvm_mips_set_c0_status(void)
{
	uint32_t status = read_c0_status();

	if (cpu_has_fpu)
		status |= (ST0_CU1);

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	uint32_t cause = vcpu->arch.host_cp0_cause;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

	/* Set the appropriate status bits based on host CPU features, before we hit the scheduler */
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);

	/* Do a privilege check, if in UM most of these exit conditions end up
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
	case T_INT:
		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);

		++vcpu->stat.int_exits;
		trace_kvm_exit(vcpu, INT_EXITS);

		if (need_resched()) {
			cond_resched();
		}

		ret = RESUME_GUEST;
		break;

	case T_COP_UNUSABLE:
		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);

		++vcpu->stat.cop_unusable_exits;
		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) {
			ret = RESUME_HOST;
		}
		break;

	case T_TLB_MOD:
		++vcpu->stat.tlbmod_exits;
		trace_kvm_exit(vcpu, TLBMOD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

	case T_TLB_ST_MISS:
		kvm_debug
		    ("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
		     cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
		     badvaddr);

		++vcpu->stat.tlbmiss_st_exits;
		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

	case T_TLB_LD_MISS:
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

	case T_ADDR_ERR_ST:
		++vcpu->stat.addrerr_st_exits;
		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

	case T_ADDR_ERR_LD:
		++vcpu->stat.addrerr_ld_exits;
		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

	case T_SYSCALL:
		++vcpu->stat.syscall_exits;
		trace_kvm_exit(vcpu, SYSCALL_EXITS);
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

	case T_RES_INST:
		++vcpu->stat.resvd_inst_exits;
		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

	case T_BREAK:
		++vcpu->stat.break_inst_exits;
		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

	default:
		kvm_err
		    ("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
		     exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
		     kvm_read_c0_guest_status(vcpu->arch.cop0));
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
		/* Only check for signals if not already exiting to userspace  */
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
			trace_kvm_exit(vcpu, SIGNAL_EXITS);
		}
	}

	return ret;
}

int __init kvm_mips_init(void)
{
	int ret;

	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

	/* On MIPS, kernel modules are executed from "mapped space", which requires TLBs.
	 * The TLB handling code is statically linked with the rest of the kernel (kvm_tlb.c)
	 * to avoid the possibility of double faulting. The issue is that the TLB code
	 * references routines that are part of the the KVM module,
	 * which are only available once the module is loaded.
	 */
	kvm_mips_gfn_to_pfn = gfn_to_pfn;
	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
	kvm_mips_is_error_pfn = is_error_pfn;

	pr_info("KVM/MIPS Initialized\n");
	return 0;
}

void __exit kvm_mips_exit(void)
{
	kvm_exit();

	kvm_mips_gfn_to_pfn = NULL;
	kvm_mips_release_pfn_clean = NULL;
	kvm_mips_is_error_pfn = NULL;

	pr_info("KVM/MIPS unloaded\n");
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);