memory.c 18.7 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/uaccess.h>

28 29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32 33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34 35 36 37 38 39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41 42 43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47 48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49 50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79 80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82 83 84 85

	kfree(mem);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106 107 108 109 110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115 116 117 118 119 120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121 122 123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124 125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127 128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131
	for (i = 0; i < sections_per_block; i++) {
132 133
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
134
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 136 137
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

138 139 140
	return sprintf(buf, "%d\n", ret);
}

141 142 143
/*
 * online, offline, going offline, etc.
 */
144 145
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
146
{
147
	struct memory_block *mem = to_memory_block(dev);
148 149 150 151 152 153 154
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
155 156 157 158 159 160 161 162 163 164 165 166 167 168
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
169 170 171 172 173
	}

	return len;
}

174
int memory_notify(unsigned long val, void *v)
175
{
176
	return blocking_notifier_call_chain(&memory_chain, val, v);
177 178
}

179 180 181 182 183
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

184 185 186 187
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
188
static bool pages_correctly_reserved(unsigned long start_pfn)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

219 220 221
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
222
 * Must already be protected by mem_hotplug_begin().
223 224
 */
static int
225
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226
{
227
	unsigned long start_pfn;
228
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229
	struct page *first_page;
230 231
	int ret;

232
	start_pfn = section_nr_to_pfn(phys_index);
233
	first_page = pfn_to_page(start_pfn);
234

235
	switch (action) {
236 237 238 239 240 241 242 243 244 245 246 247 248
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
249 250 251 252 253
	}

	return ret;
}

254 255
static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
256
{
257
	int ret = 0;
258

259 260
	if (mem->state != from_state_req)
		return -EINVAL;
261

262 263 264
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

265 266 267
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

268
	mem->state = ret ? from_state_req : to_state;
269

270 271
	return ret;
}
272

273
/* The device lock serializes operations on memory_subsys_[online|offline] */
274 275
static int memory_subsys_online(struct device *dev)
{
276
	struct memory_block *mem = to_memory_block(dev);
277
	int ret;
278

279 280
	if (mem->state == MEM_ONLINE)
		return 0;
281

282 283 284 285 286 287
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
288
		mem->online_type = MMOP_ONLINE_KEEP;
289

290
	/* Already under protection of mem_hotplug_begin() */
291
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
292

293 294
	/* clear online_type */
	mem->online_type = -1;
295 296 297 298 299

	return ret;
}

static int memory_subsys_offline(struct device *dev)
300
{
301
	struct memory_block *mem = to_memory_block(dev);
302

303 304
	if (mem->state == MEM_OFFLINE)
		return 0;
305

306 307 308 309
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

310
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
311
}
312

313
static ssize_t
314 315
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
316
{
317
	struct memory_block *mem = to_memory_block(dev);
318
	int ret, online_type;
319

320 321 322
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
323

324
	if (sysfs_streq(buf, "online_kernel"))
325
		online_type = MMOP_ONLINE_KERNEL;
326
	else if (sysfs_streq(buf, "online_movable"))
327
		online_type = MMOP_ONLINE_MOVABLE;
328
	else if (sysfs_streq(buf, "online"))
329
		online_type = MMOP_ONLINE_KEEP;
330
	else if (sysfs_streq(buf, "offline"))
331
		online_type = MMOP_OFFLINE;
332 333 334 335
	else {
		ret = -EINVAL;
		goto err;
	}
336

337 338 339 340 341 342 343 344 345
	/*
	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
	 * the correct memory block to online before doing device_online(dev),
	 * which will take dev->mutex.  Take the lock early to prevent an
	 * inversion, memory_subsys_online() callbacks will be implemented by
	 * assuming it's already protected.
	 */
	mem_hotplug_begin();

346
	switch (online_type) {
347 348 349
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
350 351 352
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
353
	case MMOP_OFFLINE:
354 355 356 357
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
358 359
	}

360
	mem_hotplug_done();
361
err:
362
	unlock_device_hotplug();
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
378 379
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
380
{
381
	struct memory_block *mem = to_memory_block(dev);
382 383 384
	return sprintf(buf, "%d\n", mem->phys_device);
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

	if (zone_idx(zone) == ZONE_MOVABLE - 1) {
		/*The mem block is the last memoryblock of this zone.*/
		if (end_pfn == zone_end_pfn(zone))
			return sprintf(buf, "%s %s\n",
					zone->name, (zone + 1)->name);
	}

	if (zone_idx(zone) == ZONE_MOVABLE) {
		/*The mem block is the first memoryblock of ZONE_MOVABLE.*/
		if (start_pfn == zone->zone_start_pfn)
			return sprintf(buf, "%s %s\n",
					zone->name, (zone - 1)->name);
	}

	return sprintf(buf, "%s\n", zone->name);
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

424 425 426 427
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
428 429 430 431 432

/*
 * Block size attribute stuff
 */
static ssize_t
433
print_block_size(struct device *dev, struct device_attribute *attr,
434
		 char *buf)
435
{
436
	return sprintf(buf, "%lx\n", get_memory_block_size());
437 438
}

439
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
440 441 442 443 444 445 446 447 448

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
449
memory_probe_store(struct device *dev, struct device_attribute *attr,
450
		   const char *buf, size_t count)
451 452
{
	u64 phys_addr;
453
	int nid, ret;
454
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
455

456 457 458
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
459

460 461 462
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

463 464 465
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr,
			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
466

467 468
	if (ret)
		goto out;
469

470 471 472
	ret = count;
out:
	return ret;
473 474
}

475
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
476 477
#endif

478 479 480 481 482 483 484
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
485 486
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
487
			const char *buf, size_t count)
488 489 490 491 492
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
493
	if (kstrtoull(buf, 0, &pfn) < 0)
494 495 496 497 498 499 500 501 502 503
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
504 505
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
506
			const char *buf, size_t count)
507 508 509 510 511
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
512
	if (kstrtoull(buf, 0, &pfn) < 0)
513 514
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
515
	ret = memory_failure(pfn, 0, 0);
516 517 518
	return ret ? ret : count;
}

519 520
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
521 522
#endif

523 524 525 526 527
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
528 529 530 531
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
532

533 534 535 536
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
537 538
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
539
{
540
	int block_id = base_memory_block_id(__section_nr(section));
541 542
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
543

544 545 546 547
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
548
		return NULL;
549
	return to_memory_block(dev);
550 551
}

552 553 554 555 556 557
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
558
 * This could be made generic for all device subsystems.
559 560 561 562 563 564
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

565 566 567 568 569
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
570 571 572
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
595
	memory->dev.offline = memory->state == MEM_OFFLINE;
596

597
	return device_register(&memory->dev);
598 599
}

600 601
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
602
{
603
	struct memory_block *mem;
604
	unsigned long start_pfn;
605
	int scn_nr;
606 607
	int ret = 0;

608
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
609 610 611
	if (!mem)
		return -ENOMEM;

612
	scn_nr = __section_nr(section);
613 614 615
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
616
	mem->state = state;
617
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
618 619
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

620 621 622 623 624 625
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

626
static int add_memory_block(int base_section_nr)
627
{
628 629
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
630

631 632 633 634 635 636 637 638
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
639 640
	}

641 642 643 644 645 646 647
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
648 649
}

650

651 652 653 654 655 656
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
657 658
	int ret = 0;
	struct memory_block *mem;
659 660 661

	mutex_lock(&mem_sysfs_mutex);

662 663 664 665 666 667 668 669
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
670
		mem->section_count++;
671 672 673 674 675 676
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
677
	return ret;
678 679 680 681 682 683 684 685 686
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
687
	put_device(&memory->dev);
688 689 690
	device_unregister(&memory->dev);
}

691
static int remove_memory_section(unsigned long node_id,
692
			       struct mem_section *section, int phys_device)
693 694 695
{
	struct memory_block *mem;

696
	mutex_lock(&mem_sysfs_mutex);
697
	mem = find_memory_block(section);
698
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
699 700

	mem->section_count--;
701
	if (mem->section_count == 0)
702
		unregister_memory(mem);
703
	else
704
		put_device(&mem->dev);
705

706
	mutex_unlock(&mem_sysfs_mutex);
707 708 709 710 711
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
712
	if (!present_section(section))
713 714
		return -EINVAL;

715
	return remove_memory_section(0, section, 0);
716
}
717
#endif /* CONFIG_MEMORY_HOTREMOVE */
718

719 720 721 722 723 724
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

748 749 750 751 752 753 754
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
755
	int err;
756
	unsigned long block_sz;
757

758
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
759 760
	if (ret)
		goto out;
761

762 763 764
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

765 766 767 768
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
769
	mutex_lock(&mem_sysfs_mutex);
770 771
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
		err = add_memory_block(i);
772 773
		if (!ret)
			ret = err;
774
	}
775
	mutex_unlock(&mem_sysfs_mutex);
776

777 778
out:
	if (ret)
779
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
780 781
	return ret;
}