file.c 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32 33 34 35

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
36
#include <asm/spu_info.h>
37 38 39 40
#include <asm/uaccess.h>

#include "spufs.h"

41 42
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

43

44 45 46 47
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
48
	struct spu_context *ctx = i->i_ctx;
49

50
	mutex_lock(&ctx->mapping_lock);
51
	file->private_data = ctx;
52 53
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
54
	mutex_unlock(&ctx->mapping_lock);
55 56 57 58 59 60 61 62 63
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

64
	mutex_lock(&ctx->mapping_lock);
65 66
	if (!--i->i_openers)
		ctx->local_store = NULL;
67
	mutex_unlock(&ctx->mapping_lock);
68 69 70
	return 0;
}

71 72 73 74 75 76 77 78 79
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

80 81 82 83
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
84
	struct spu_context *ctx = file->private_data;
85
	ssize_t ret;
86

87
	spu_acquire(ctx);
88
	ret = __spufs_mem_read(ctx, buffer, size, pos);
89
	spu_release(ctx);
90 91 92 93 94
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
95
					size_t size, loff_t *ppos)
96 97
{
	struct spu_context *ctx = file->private_data;
98
	char *local_store;
99
	loff_t pos = *ppos;
100
	int ret;
101

102 103 104
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
105
		return -EFBIG;
106 107
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
108 109 110

	spu_acquire(ctx);
	local_store = ctx->ops->get_ls(ctx);
111
	ret = copy_from_user(local_store + pos, buffer, size);
112
	spu_release(ctx);
113 114 115 116 117

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
118 119
}

120 121
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
122
{
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
141

142
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
143 144 145
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

146 147 148
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

149 150
	spu_acquire(ctx);

151 152
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
153
							& ~_PAGE_NO_CACHE);
154
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
155 156
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
157 158
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
159
	}
160
	vm_insert_pfn(vma, address, pfn);
161

162
	spu_release(ctx);
163

164
	return NOPFN_REFAULT;
165 166
}

167

168
static struct vm_operations_struct spufs_mem_mmap_vmops = {
169
	.nopfn = spufs_mem_mmap_nopfn,
170 171
};

172
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
173
{
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

190 191
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
192

193
	vma->vm_flags |= VM_IO | VM_PFNMAP;
194 195 196 197
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
198 199 200
	return 0;
}

201
#ifdef CONFIG_SPU_FS_64K_LS
202 203 204
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

220
static const struct file_operations spufs_mem_fops = {
221 222 223 224 225 226
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
227 228 229
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
230 231
};

232
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
233
				    unsigned long address,
234
				    unsigned long ps_offs,
235
				    unsigned long ps_size)
236 237
{
	struct spu_context *ctx = vma->vm_file->private_data;
238
	unsigned long area, offset = address - vma->vm_start;
239 240

	offset += vma->vm_pgoff << PAGE_SHIFT;
241
	if (offset >= ps_size)
242
		return NOPFN_SIGBUS;
243

244 245 246 247 248 249 250
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
	 * to return NOPFN_REFAULT because the mappings may have
	 * hanged.
251
	 */
252 253 254 255 256 257 258
	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
		spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
		down_read(&current->mm->mmap_sem);
		goto out;
	}
259 260

	area = ctx->spu->problem_phys + ps_offs;
261
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
262 263

out:
264 265
	spu_release(ctx);

266
	return NOPFN_REFAULT;
267 268
}

269
#if SPUFS_MMAP_4K
270 271
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
272
{
273
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
274 275 276
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
277
	.nopfn = spufs_cntl_mmap_nopfn,
278 279 280 281 282 283 284 285 286 287
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

288
	vma->vm_flags |= VM_IO | VM_PFNMAP;
289
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
290
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
291 292 293 294

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
295 296 297
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
298

299
static u64 spufs_cntl_get(void *data)
300
{
301 302
	struct spu_context *ctx = data;
	u64 val;
303

304 305 306 307 308
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
309 310
}

311
static void spufs_cntl_set(void *data, u64 val)
312
{
313 314 315 316 317
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
318 319
}

320
static int spufs_cntl_open(struct inode *inode, struct file *file)
321
{
322 323 324
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

325
	mutex_lock(&ctx->mapping_lock);
326
	file->private_data = ctx;
327 328
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
329
	mutex_unlock(&ctx->mapping_lock);
330 331
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
332 333
}

334 335 336 337 338 339 340 341
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	simple_attr_close(inode, file);

342
	mutex_lock(&ctx->mapping_lock);
343 344
	if (!--i->i_openers)
		ctx->cntl = NULL;
345
	mutex_unlock(&ctx->mapping_lock);
346 347 348
	return 0;
}

349
static const struct file_operations spufs_cntl_fops = {
350
	.open = spufs_cntl_open,
351
	.release = spufs_cntl_release,
352 353
	.read = simple_attr_read,
	.write = simple_attr_write,
354 355 356
	.mmap = spufs_cntl_mmap,
};

357 358 359 360 361 362 363 364
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

365 366 367 368 369 370 371 372 373
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

374 375 376 377 378
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
379
	struct spu_context *ctx = file->private_data;
380 381

	spu_acquire_saved(ctx);
382
	ret = __spufs_regs_read(ctx, buffer, size, pos);
383
	spu_release_saved(ctx);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

405
	spu_release_saved(ctx);
406 407 408
	return ret;
}

409
static const struct file_operations spufs_regs_fops = {
410 411 412
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
413 414 415
	.llseek  = generic_file_llseek,
};

416 417 418 419 420 421 422 423 424
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

425 426 427 428 429
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
430
	struct spu_context *ctx = file->private_data;
431 432

	spu_acquire_saved(ctx);
433
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
434
	spu_release_saved(ctx);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

456
	spu_release_saved(ctx);
457 458 459
	return ret;
}

460
static const struct file_operations spufs_fpcr_fops = {
461 462 463 464 465 466
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

467 468 469 470 471 472 473 474 475
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

476 477 478 479 480 481 482 483
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
484 485 486
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
487
	struct spu_context *ctx = file->private_data;
488 489
	u32 mbox_data, __user *udata;
	ssize_t count;
490 491 492 493

	if (len < 4)
		return -EINVAL;

494 495 496 497 498
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

499
	spu_acquire(ctx);
500
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
518
	spu_release(ctx);
519

520 521
	if (!count)
		count = -EAGAIN;
522

523
	return count;
524 525
}

526
static const struct file_operations spufs_mbox_fops = {
527 528 529 530 531 532 533
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
534
	struct spu_context *ctx = file->private_data;
535 536 537 538 539
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

540 541 542 543 544
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
545 546 547 548 549 550 551

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

552
static const struct file_operations spufs_mbox_stat_fops = {
553 554 555 556 557
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
558
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
559
{
560 561
	return ctx->ops->ibox_read(ctx, data);
}
562

563 564 565
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
566

567
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
568 569
}

570 571
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
572
{
573 574 575 576
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
591 592 593
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
594
	struct spu_context *ctx = file->private_data;
595 596
	u32 ibox_data, __user *udata;
	ssize_t count;
597 598 599 600

	if (len < 4)
		return -EINVAL;

601 602 603 604 605
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

606
	spu_acquire(ctx);
607

608 609
	/* wait only for the first element */
	count = 0;
610
	if (file->f_flags & O_NONBLOCK) {
611
		if (!spu_ibox_read(ctx, &ibox_data))
612
			count = -EAGAIN;
613
	} else {
614
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
615
	}
616 617
	if (count)
		goto out;
618

619 620 621 622
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
638

639 640
out:
	spu_release(ctx);
641

642
	return count;
643 644 645 646
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
647
	struct spu_context *ctx = file->private_data;
648 649
	unsigned int mask;

650
	poll_wait(file, &ctx->ibox_wq, wait);
651

652 653 654
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
655 656 657 658

	return mask;
}

659
static const struct file_operations spufs_ibox_fops = {
660 661 662 663 664 665 666 667 668
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
669
	struct spu_context *ctx = file->private_data;
670 671 672 673 674
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

675 676 677
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
678 679 680 681 682 683 684

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

685
static const struct file_operations spufs_ibox_stat_fops = {
686 687 688 689 690
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
691
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
692
{
693 694
	return ctx->ops->wbox_write(ctx, data);
}
695

696 697 698 699
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
700

701
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
702 703 704 705

	return ret;
}

706 707
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
708
{
709 710 711 712
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
713 714
}

715 716 717 718 719 720 721 722 723 724 725 726
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
727 728 729
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
730
	struct spu_context *ctx = file->private_data;
731 732
	u32 wbox_data, __user *udata;
	ssize_t count;
733 734 735 736

	if (len < 4)
		return -EINVAL;

737 738 739 740 741
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
742 743
		return -EFAULT;

744 745
	spu_acquire(ctx);

746 747 748 749 750
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
751
	if (file->f_flags & O_NONBLOCK) {
752
		if (!spu_wbox_write(ctx, wbox_data))
753
			count = -EAGAIN;
754
	} else {
755
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
756 757
	}

758 759
	if (count)
		goto out;
760

761
	/* write as much as possible */
762 763 764 765 766 767 768 769 770 771 772 773 774 775
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
776 777 778 779
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
780
	struct spu_context *ctx = file->private_data;
781 782
	unsigned int mask;

783
	poll_wait(file, &ctx->wbox_wq, wait);
784

785 786 787
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
788 789 790 791

	return mask;
}

792
static const struct file_operations spufs_wbox_fops = {
793 794 795 796 797 798 799 800 801
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
802
	struct spu_context *ctx = file->private_data;
803 804 805 806 807
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

808 809 810
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
811 812 813 814 815 816 817

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

818
static const struct file_operations spufs_wbox_stat_fops = {
819 820 821 822
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

823 824 825 826
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
827

828
	mutex_lock(&ctx->mapping_lock);
829
	file->private_data = ctx;
830 831
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
832
	mutex_unlock(&ctx->mapping_lock);
833 834 835
	return nonseekable_open(inode, file);
}

836 837 838 839 840 841
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

842
	mutex_lock(&ctx->mapping_lock);
843 844
	if (!--i->i_openers)
		ctx->signal1 = NULL;
845
	mutex_unlock(&ctx->mapping_lock);
846 847 848
	return 0;
}

849
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
850 851
			size_t len, loff_t *pos)
{
852
	int ret = 0;
853 854 855 856 857
	u32 data;

	if (len < 4)
		return -EINVAL;

858 859 860 861
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
862

863 864 865
	if (!ret)
		goto out;

866 867 868
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

869 870
out:
	return ret;
871 872
}

873 874 875 876 877 878 879 880
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
881
	spu_release_saved(ctx);
882 883 884 885

	return ret;
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

900 901 902
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
903 904 905 906

	return 4;
}

907 908
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
909
{
910
#if PAGE_SIZE == 0x1000
911
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
912 913 914 915
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
916
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
917 918 919
#else
#error unsupported page size
#endif
920 921 922
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
923
	.nopfn = spufs_signal1_mmap_nopfn,
924 925 926 927 928 929 930
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

931
	vma->vm_flags |= VM_IO | VM_PFNMAP;
932
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
933
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
934 935 936 937 938

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

939
static const struct file_operations spufs_signal1_fops = {
940
	.open = spufs_signal1_open,
941
	.release = spufs_signal1_release,
942 943
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
944
	.mmap = spufs_signal1_mmap,
945 946
};

947 948 949 950 951 952 953
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

954 955 956 957
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
958

959
	mutex_lock(&ctx->mapping_lock);
960
	file->private_data = ctx;
961 962
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
963
	mutex_unlock(&ctx->mapping_lock);
964 965 966
	return nonseekable_open(inode, file);
}

967 968 969 970 971 972
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

973
	mutex_lock(&ctx->mapping_lock);
974 975
	if (!--i->i_openers)
		ctx->signal2 = NULL;
976
	mutex_unlock(&ctx->mapping_lock);
977 978 979
	return 0;
}

980
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
981 982
			size_t len, loff_t *pos)
{
983
	int ret = 0;
984 985 986 987 988
	u32 data;

	if (len < 4)
		return -EINVAL;

989 990 991 992
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
993

994 995 996
	if (!ret)
		goto out;

997 998 999
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1000
out:
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1012
	spu_release_saved(ctx);
1013 1014

	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1031 1032 1033
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1034 1035 1036 1037

	return 4;
}

1038
#if SPUFS_MMAP_4K
1039 1040
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1041
{
1042
#if PAGE_SIZE == 0x1000
1043
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1044 1045 1046 1047
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1048
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1049 1050 1051
#else
#error unsupported page size
#endif
1052 1053 1054
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1055
	.nopfn = spufs_signal2_mmap_nopfn,
1056 1057 1058 1059 1060 1061 1062
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1063
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1064
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1065
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1066 1067 1068 1069

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1070 1071 1072
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1073

1074
static const struct file_operations spufs_signal2_fops = {
1075
	.open = spufs_signal2_open,
1076
	.release = spufs_signal2_release,
1077 1078
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1079
	.mmap = spufs_signal2_mmap,
1080 1081
};

1082 1083 1084 1085 1086 1087 1088
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
static u64 __##__get(void *data)					\
{									\
	struct spu_context *ctx = data;					\
	u64 ret;							\
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
		spu_acquire(ctx);					\
		ret = __get(ctx);					\
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
		spu_acquire_saved(ctx);					\
		ret = __get(ctx);					\
		spu_release_saved(ctx);					\
	} else								\
		ret = __get(ctx);					\
									\
	return ret;							\
}									\
DEFINE_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);

1119 1120 1121 1122
static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1123 1124 1125
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1126 1127
}

1128
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1129 1130 1131
{
	return ctx->ops->signal1_type_get(ctx);
}
1132 1133
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
		       spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1134

1135 1136 1137 1138 1139

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1140 1141 1142
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1143 1144
}

1145
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1146 1147 1148
{
	return ctx->ops->signal2_type_get(ctx);
}
1149 1150
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
		       spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1151

1152
#if SPUFS_MMAP_4K
1153 1154
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1155
{
1156
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1157 1158 1159
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1160
	.nopfn = spufs_mss_mmap_nopfn,
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1171
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1172
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1173
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1174 1175 1176 1177

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1178 1179 1180
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1181 1182 1183 1184

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1185
	struct spu_context *ctx = i->i_ctx;
1186 1187

	file->private_data = i->i_ctx;
1188

1189
	mutex_lock(&ctx->mapping_lock);
1190 1191
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1192
	mutex_unlock(&ctx->mapping_lock);
1193 1194 1195
	return nonseekable_open(inode, file);
}

1196 1197 1198 1199 1200 1201
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1202
	mutex_lock(&ctx->mapping_lock);
1203 1204
	if (!--i->i_openers)
		ctx->mss = NULL;
1205
	mutex_unlock(&ctx->mapping_lock);
1206 1207 1208
	return 0;
}

1209
static const struct file_operations spufs_mss_fops = {
1210
	.open	 = spufs_mss_open,
1211
	.release = spufs_mss_release,
1212
	.mmap	 = spufs_mss_mmap,
1213 1214
};

1215 1216
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1217
{
1218
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1219 1220 1221
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1222
	.nopfn = spufs_psmap_mmap_nopfn,
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1233
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1244
	struct spu_context *ctx = i->i_ctx;
1245

1246
	mutex_lock(&ctx->mapping_lock);
1247
	file->private_data = i->i_ctx;
1248 1249
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1250
	mutex_unlock(&ctx->mapping_lock);
1251 1252 1253
	return nonseekable_open(inode, file);
}

1254 1255 1256 1257 1258 1259
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1260
	mutex_lock(&ctx->mapping_lock);
1261 1262
	if (!--i->i_openers)
		ctx->psmap = NULL;
1263
	mutex_unlock(&ctx->mapping_lock);
1264 1265 1266
	return 0;
}

1267
static const struct file_operations spufs_psmap_fops = {
1268
	.open	 = spufs_psmap_open,
1269
	.release = spufs_psmap_release,
1270
	.mmap	 = spufs_psmap_mmap,
1271 1272 1273
};


1274
#if SPUFS_MMAP_4K
1275 1276
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1277
{
1278
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1279 1280 1281
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1282
	.nopfn = spufs_mfc_mmap_nopfn,
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1293
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1294
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1295
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1296 1297 1298 1299

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1300 1301 1302
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1316
	mutex_lock(&ctx->mapping_lock);
1317
	file->private_data = ctx;
1318 1319
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1320
	mutex_unlock(&ctx->mapping_lock);
1321 1322 1323
	return nonseekable_open(inode, file);
}

1324 1325 1326 1327 1328 1329
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1330
	mutex_lock(&ctx->mapping_lock);
1331 1332
	if (!--i->i_openers)
		ctx->mfc = NULL;
1333
	mutex_unlock(&ctx->mapping_lock);
1334 1335 1336
	return 0;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1518 1519
	spu_acquire(ctx);
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1520 1521 1522
	if (ret)
		goto out;

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}

	if (ret)
1534
		goto out_unlock;
1535 1536

	ctx->tagwait |= 1 << cmd.tag;
1537
	ret = size;
1538

1539 1540
out_unlock:
	spu_release(ctx);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1551 1552
	poll_wait(file, &ctx->mfc_wq, wait);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1571
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1597
	return spufs_mfc_flush(file, NULL);
1598 1599 1600 1601 1602 1603 1604 1605 1606
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1607
static const struct file_operations spufs_mfc_fops = {
1608
	.open	 = spufs_mfc_open,
1609
	.release = spufs_mfc_release,
1610 1611 1612 1613 1614 1615
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1616
	.mmap	 = spufs_mfc_mmap,
1617 1618
};

1619 1620 1621
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1622 1623 1624
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1625 1626
}

1627
static u64 spufs_npc_get(struct spu_context *ctx)
1628 1629 1630
{
	return ctx->ops->npc_read(ctx);
}
1631 1632
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1633

1634 1635 1636 1637 1638 1639
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
1640
	spu_release_saved(ctx);
1641 1642
}

1643
static u64 spufs_decr_get(struct spu_context *ctx)
1644 1645
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1646 1647
	return lscsa->decr.slot[0];
}
1648 1649
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1650 1651 1652 1653 1654

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	spu_acquire_saved(ctx);
1655 1656 1657 1658
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1659
	spu_release_saved(ctx);
1660 1661
}

1662
static u64 spufs_decr_status_get(struct spu_context *ctx)
1663
{
1664 1665 1666 1667
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1668
}
1669 1670 1671
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1672 1673 1674 1675 1676 1677 1678

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
1679
	spu_release_saved(ctx);
1680 1681
}

1682
static u64 spufs_event_mask_get(struct spu_context *ctx)
1683 1684
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1685 1686 1687
	return lscsa->event_mask.slot[0];
}

1688 1689 1690
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1691

1692
static u64 spufs_event_status_get(struct spu_context *ctx)
1693 1694 1695 1696 1697
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1698 1699 1700
		return state->spu_chnldata_RW[0];
	return 0;
}
1701 1702
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1703

1704 1705 1706 1707 1708 1709
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
1710
	spu_release_saved(ctx);
1711 1712
}

1713
static u64 spufs_srr0_get(struct spu_context *ctx)
1714 1715
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1716
	return lscsa->srr0.slot[0];
1717
}
1718 1719
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1720

1721
static u64 spufs_id_get(struct spu_context *ctx)
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1732 1733
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1734

1735
static u64 spufs_object_id_get(struct spu_context *ctx)
1736 1737
{
	/* FIXME: Should there really be no locking here? */
1738
	return ctx->object_id;
1739 1740
}

1741 1742 1743 1744 1745 1746
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

1747 1748
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1749

1750
static u64 spufs_lslr_get(struct spu_context *ctx)
1751 1752 1753
{
	return ctx->csa.priv2.spu_lslr_RW;
}
1754 1755
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1756 1757 1758 1759 1760 1761 1762 1763 1764

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1802 1803 1804
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1805
	int ret;
1806 1807 1808 1809 1810 1811 1812
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1813
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1814
	spin_unlock(&ctx->csa.register_lock);
1815
	spu_release_saved(ctx);
1816

1817
	return ret;
1818 1819
}

1820
static const struct file_operations spufs_mbox_info_fops = {
1821 1822 1823 1824 1825
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1840 1841 1842 1843
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1844
	int ret;
1845 1846 1847 1848 1849 1850

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1851
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1852
	spin_unlock(&ctx->csa.register_lock);
1853
	spu_release_saved(ctx);
1854

1855
	return ret;
1856 1857
}

1858
static const struct file_operations spufs_ibox_info_fops = {
1859 1860 1861 1862 1863
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1864 1865
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1866 1867 1868 1869 1870
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1887 1888 1889 1890 1891
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1892
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1893
	spin_unlock(&ctx->csa.register_lock);
1894
	spu_release_saved(ctx);
1895

1896
	return ret;
1897 1898
}

1899
static const struct file_operations spufs_wbox_info_fops = {
1900 1901 1902 1903 1904
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1905 1906
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
1944
	spu_release_saved(ctx);
1945 1946 1947 1948

	return ret;
}

1949
static const struct file_operations spufs_dma_info_fops = {
1950 1951 1952 1953
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1954 1955
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1956 1957 1958
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1959
	int ret = sizeof info;
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1994
	spin_unlock(&ctx->csa.register_lock);
1995
	spu_release_saved(ctx);
1996 1997 1998 1999

	return ret;
}

2000
static const struct file_operations spufs_proxydma_info_fops = {
2001 2002 2003 2004
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2025 2026 2027 2028 2029
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2030
		enum spu_utilization_state state)
2031
{
2032 2033
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2048

2049
	return time / NSEC_PER_MSEC;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	spu_acquire(ctx);
	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2084 2085 2086 2087 2088
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


2114
struct tree_descr spufs_dir_contents[] = {
2115
	{ "capabilities", &spufs_caps_fops, 0444, },
2116
	{ "mem",  &spufs_mem_fops,  0666, },
2117
	{ "regs", &spufs_regs_fops,  0666, },
2118 2119 2120 2121 2122 2123
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2124 2125
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2126 2127
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2128
	{ "cntl", &spufs_cntl_fops,  0666, },
2129
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2130 2131 2132 2133 2134
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2135 2136 2137
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2138
	{ "event_status", &spufs_event_status_ops, 0444, },
2139
	{ "psmap", &spufs_psmap_fops, 0666, },
2140 2141
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2142 2143 2144
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2145 2146
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2147
	{ "tid", &spufs_tid_fops, 0444, },
2148
	{ "stat", &spufs_stat_fops, 0444, },
2149 2150
	{},
};
2151 2152

struct tree_descr spufs_dir_nosched_contents[] = {
2153
	{ "capabilities", &spufs_caps_fops, 0444, },
2154 2155 2156 2157 2158 2159 2160
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2161 2162
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2163 2164 2165 2166 2167 2168 2169 2170 2171
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2172
	{ "tid", &spufs_tid_fops, 0444, },
2173
	{ "stat", &spufs_stat_fops, 0444, },
2174 2175
	{},
};
2176 2177

struct spufs_coredump_reader spufs_coredump_read[] = {
2178 2179
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2180 2181 2182
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2183 2184
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2185
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2186
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2187 2188 2189
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2190 2191 2192 2193 2194 2195
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2196 2197
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2198
	{ NULL },
2199
};