caamalg_qi.c 68.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6
/*
 * Freescale FSL CAAM support for crypto API over QI backend.
 * Based on caamalg.c
 *
 * Copyright 2013-2016 Freescale Semiconductor, Inc.
7
 * Copyright 2016-2019 NXP
8 9 10
 */

#include "compat.h"
11
#include "ctrl.h"
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "error.h"
#include "sg_sw_qm.h"
#include "key_gen.h"
#include "qi.h"
#include "jr.h"
#include "caamalg_desc.h"

/*
 * crypto alg
 */
#define CAAM_CRA_PRIORITY		2000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE		(AES_MAX_KEY_SIZE + \
					 SHA512_DIGEST_SIZE * 2)

#define DESC_MAX_USED_BYTES		(DESC_QI_AEAD_GIVENC_LEN + \
					 CAAM_MAX_KEY_SIZE)
#define DESC_MAX_USED_LEN		(DESC_MAX_USED_BYTES / CAAM_CMD_SZ)

struct caam_alg_entry {
	int class1_alg_type;
	int class2_alg_type;
	bool rfc3686;
	bool geniv;
39
	bool nodkp;
40 41 42 43 44 45 46 47
};

struct caam_aead_alg {
	struct aead_alg aead;
	struct caam_alg_entry caam;
	bool registered;
};

48 49 50 51 52 53
struct caam_skcipher_alg {
	struct skcipher_alg skcipher;
	struct caam_alg_entry caam;
	bool registered;
};

54 55 56 57 58 59 60 61 62
/*
 * per-session context
 */
struct caam_ctx {
	struct device *jrdev;
	u32 sh_desc_enc[DESC_MAX_USED_LEN];
	u32 sh_desc_dec[DESC_MAX_USED_LEN];
	u8 key[CAAM_MAX_KEY_SIZE];
	dma_addr_t key_dma;
63
	enum dma_data_direction dir;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
	struct alginfo adata;
	struct alginfo cdata;
	unsigned int authsize;
	struct device *qidev;
	spinlock_t lock;	/* Protects multiple init of driver context */
	struct caam_drv_ctx *drv_ctx[NUM_OP];
};

static int aead_set_sh_desc(struct crypto_aead *aead)
{
	struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
						 typeof(*alg), aead);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	unsigned int ivsize = crypto_aead_ivsize(aead);
	u32 ctx1_iv_off = 0;
	u32 *nonce = NULL;
	unsigned int data_len[2];
	u32 inl_mask;
	const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
			       OP_ALG_AAI_CTR_MOD128);
	const bool is_rfc3686 = alg->caam.rfc3686;
85
	struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

	if (!ctx->cdata.keylen || !ctx->authsize)
		return 0;

	/*
	 * AES-CTR needs to load IV in CONTEXT1 reg
	 * at an offset of 128bits (16bytes)
	 * CONTEXT1[255:128] = IV
	 */
	if (ctr_mode)
		ctx1_iv_off = 16;

	/*
	 * RFC3686 specific:
	 *	CONTEXT1[255:128] = {NONCE, IV, COUNTER}
	 */
	if (is_rfc3686) {
		ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
		nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
				ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
	}

	data_len[0] = ctx->adata.keylen_pad;
	data_len[1] = ctx->cdata.keylen;

	if (alg->caam.geniv)
		goto skip_enc;

	/* aead_encrypt shared descriptor */
	if (desc_inline_query(DESC_QI_AEAD_ENC_LEN +
			      (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
			      DESC_JOB_IO_LEN, data_len, &inl_mask,
			      ARRAY_SIZE(data_len)) < 0)
		return -EINVAL;

	if (inl_mask & 1)
		ctx->adata.key_virt = ctx->key;
	else
		ctx->adata.key_dma = ctx->key_dma;

	if (inl_mask & 2)
		ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
	else
		ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;

	ctx->adata.key_inline = !!(inl_mask & 1);
	ctx->cdata.key_inline = !!(inl_mask & 2);

	cnstr_shdsc_aead_encap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
			       ivsize, ctx->authsize, is_rfc3686, nonce,
136
			       ctx1_iv_off, true, ctrlpriv->era);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

skip_enc:
	/* aead_decrypt shared descriptor */
	if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
			      (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
			      DESC_JOB_IO_LEN, data_len, &inl_mask,
			      ARRAY_SIZE(data_len)) < 0)
		return -EINVAL;

	if (inl_mask & 1)
		ctx->adata.key_virt = ctx->key;
	else
		ctx->adata.key_dma = ctx->key_dma;

	if (inl_mask & 2)
		ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
	else
		ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;

	ctx->adata.key_inline = !!(inl_mask & 1);
	ctx->cdata.key_inline = !!(inl_mask & 2);

	cnstr_shdsc_aead_decap(ctx->sh_desc_dec, &ctx->cdata, &ctx->adata,
			       ivsize, ctx->authsize, alg->caam.geniv,
161 162
			       is_rfc3686, nonce, ctx1_iv_off, true,
			       ctrlpriv->era);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

	if (!alg->caam.geniv)
		goto skip_givenc;

	/* aead_givencrypt shared descriptor */
	if (desc_inline_query(DESC_QI_AEAD_GIVENC_LEN +
			      (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
			      DESC_JOB_IO_LEN, data_len, &inl_mask,
			      ARRAY_SIZE(data_len)) < 0)
		return -EINVAL;

	if (inl_mask & 1)
		ctx->adata.key_virt = ctx->key;
	else
		ctx->adata.key_dma = ctx->key_dma;

	if (inl_mask & 2)
		ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
	else
		ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;

	ctx->adata.key_inline = !!(inl_mask & 1);
	ctx->cdata.key_inline = !!(inl_mask & 2);

	cnstr_shdsc_aead_givencap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
				  ivsize, ctx->authsize, is_rfc3686, nonce,
189
				  ctx1_iv_off, true, ctrlpriv->era);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

skip_givenc:
	return 0;
}

static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
	struct caam_ctx *ctx = crypto_aead_ctx(authenc);

	ctx->authsize = authsize;
	aead_set_sh_desc(authenc);

	return 0;
}

static int aead_setkey(struct crypto_aead *aead, const u8 *key,
		       unsigned int keylen)
{
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
210
	struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
211 212 213 214 215 216
	struct crypto_authenc_keys keys;
	int ret = 0;

	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
		goto badkey;

217
	dev_dbg(jrdev, "keylen %d enckeylen %d authkeylen %d\n",
218 219
		keys.authkeylen + keys.enckeylen, keys.enckeylen,
		keys.authkeylen);
220 221
	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	/*
	 * If DKP is supported, use it in the shared descriptor to generate
	 * the split key.
	 */
	if (ctrlpriv->era >= 6) {
		ctx->adata.keylen = keys.authkeylen;
		ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
						      OP_ALG_ALGSEL_MASK);

		if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
			goto badkey;

		memcpy(ctx->key, keys.authkey, keys.authkeylen);
		memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey,
		       keys.enckeylen);
238
		dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
239 240 241 242 243
					   ctx->adata.keylen_pad +
					   keys.enckeylen, ctx->dir);
		goto skip_split_key;
	}

244 245 246 247 248 249 250 251
	ret = gen_split_key(jrdev, ctx->key, &ctx->adata, keys.authkey,
			    keys.authkeylen, CAAM_MAX_KEY_SIZE -
			    keys.enckeylen);
	if (ret)
		goto badkey;

	/* postpend encryption key to auth split key */
	memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
252 253 254
	dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
				   ctx->adata.keylen_pad + keys.enckeylen,
				   ctx->dir);
255 256 257 258 259 260
#ifdef DEBUG
	print_hex_dump(KERN_ERR, "ctx.key@" __stringify(__LINE__)": ",
		       DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
		       ctx->adata.keylen_pad + keys.enckeylen, 1);
#endif

261
skip_split_key:
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	ctx->cdata.keylen = keys.enckeylen;

	ret = aead_set_sh_desc(aead);
	if (ret)
		goto badkey;

	/* Now update the driver contexts with the new shared descriptor */
	if (ctx->drv_ctx[ENCRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
					  ctx->sh_desc_enc);
		if (ret) {
			dev_err(jrdev, "driver enc context update failed\n");
			goto badkey;
		}
	}

	if (ctx->drv_ctx[DECRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
					  ctx->sh_desc_dec);
		if (ret) {
			dev_err(jrdev, "driver dec context update failed\n");
			goto badkey;
		}
	}

287
	memzero_explicit(&keys, sizeof(keys));
288 289 290
	return ret;
badkey:
	crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
291
	memzero_explicit(&keys, sizeof(keys));
292 293 294
	return -EINVAL;
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
			    unsigned int keylen)
{
	struct crypto_authenc_keys keys;
	u32 flags;
	int err;

	err = crypto_authenc_extractkeys(&keys, key, keylen);
	if (unlikely(err))
		goto badkey;

	err = -EINVAL;
	if (keys.enckeylen != DES3_EDE_KEY_SIZE)
		goto badkey;

	flags = crypto_aead_get_flags(aead);
	err = __des3_verify_key(&flags, keys.enckey);
	if (unlikely(err)) {
		crypto_aead_set_flags(aead, flags);
		goto out;
	}

	err = aead_setkey(aead, key, keylen);

out:
	memzero_explicit(&keys, sizeof(keys));
	return err;

badkey:
	crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
	goto out;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static int gcm_set_sh_desc(struct crypto_aead *aead)
{
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	unsigned int ivsize = crypto_aead_ivsize(aead);
	int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
			ctx->cdata.keylen;

	if (!ctx->cdata.keylen || !ctx->authsize)
		return 0;

	/*
	 * Job Descriptor and Shared Descriptor
	 * must fit into the 64-word Descriptor h/w Buffer
	 */
	if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
		ctx->cdata.key_inline = true;
		ctx->cdata.key_virt = ctx->key;
	} else {
		ctx->cdata.key_inline = false;
		ctx->cdata.key_dma = ctx->key_dma;
	}

	cnstr_shdsc_gcm_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
			      ctx->authsize, true);

	/*
	 * Job Descriptor and Shared Descriptor
	 * must fit into the 64-word Descriptor h/w Buffer
	 */
	if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
		ctx->cdata.key_inline = true;
		ctx->cdata.key_virt = ctx->key;
	} else {
		ctx->cdata.key_inline = false;
		ctx->cdata.key_dma = ctx->key_dma;
	}

	cnstr_shdsc_gcm_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
			      ctx->authsize, true);

	return 0;
}

static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
	struct caam_ctx *ctx = crypto_aead_ctx(authenc);

	ctx->authsize = authsize;
	gcm_set_sh_desc(authenc);

	return 0;
}

static int gcm_setkey(struct crypto_aead *aead,
		      const u8 *key, unsigned int keylen)
{
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	int ret;

388 389
	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
390 391

	memcpy(ctx->key, key, keylen);
392 393
	dma_sync_single_for_device(jrdev->parent, ctx->key_dma, keylen,
				   ctx->dir);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	ctx->cdata.keylen = keylen;

	ret = gcm_set_sh_desc(aead);
	if (ret)
		return ret;

	/* Now update the driver contexts with the new shared descriptor */
	if (ctx->drv_ctx[ENCRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
					  ctx->sh_desc_enc);
		if (ret) {
			dev_err(jrdev, "driver enc context update failed\n");
			return ret;
		}
	}

	if (ctx->drv_ctx[DECRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
					  ctx->sh_desc_dec);
		if (ret) {
			dev_err(jrdev, "driver dec context update failed\n");
			return ret;
		}
	}

	return 0;
}

static int rfc4106_set_sh_desc(struct crypto_aead *aead)
{
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	unsigned int ivsize = crypto_aead_ivsize(aead);
	int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
			ctx->cdata.keylen;

	if (!ctx->cdata.keylen || !ctx->authsize)
		return 0;

	ctx->cdata.key_virt = ctx->key;

	/*
	 * Job Descriptor and Shared Descriptor
	 * must fit into the 64-word Descriptor h/w Buffer
	 */
	if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
		ctx->cdata.key_inline = true;
	} else {
		ctx->cdata.key_inline = false;
		ctx->cdata.key_dma = ctx->key_dma;
	}

	cnstr_shdsc_rfc4106_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
				  ctx->authsize, true);

	/*
	 * Job Descriptor and Shared Descriptor
	 * must fit into the 64-word Descriptor h/w Buffer
	 */
	if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
		ctx->cdata.key_inline = true;
	} else {
		ctx->cdata.key_inline = false;
		ctx->cdata.key_dma = ctx->key_dma;
	}

	cnstr_shdsc_rfc4106_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
				  ctx->authsize, true);

	return 0;
}

static int rfc4106_setauthsize(struct crypto_aead *authenc,
			       unsigned int authsize)
{
	struct caam_ctx *ctx = crypto_aead_ctx(authenc);

	ctx->authsize = authsize;
	rfc4106_set_sh_desc(authenc);

	return 0;
}

static int rfc4106_setkey(struct crypto_aead *aead,
			  const u8 *key, unsigned int keylen)
{
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	int ret;

	if (keylen < 4)
		return -EINVAL;

486 487
	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
488 489 490 491 492 493 494

	memcpy(ctx->key, key, keylen);
	/*
	 * The last four bytes of the key material are used as the salt value
	 * in the nonce. Update the AES key length.
	 */
	ctx->cdata.keylen = keylen - 4;
495 496
	dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
				   ctx->cdata.keylen, ctx->dir);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

	ret = rfc4106_set_sh_desc(aead);
	if (ret)
		return ret;

	/* Now update the driver contexts with the new shared descriptor */
	if (ctx->drv_ctx[ENCRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
					  ctx->sh_desc_enc);
		if (ret) {
			dev_err(jrdev, "driver enc context update failed\n");
			return ret;
		}
	}

	if (ctx->drv_ctx[DECRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
					  ctx->sh_desc_dec);
		if (ret) {
			dev_err(jrdev, "driver dec context update failed\n");
			return ret;
		}
	}

	return 0;
}

static int rfc4543_set_sh_desc(struct crypto_aead *aead)
{
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	unsigned int ivsize = crypto_aead_ivsize(aead);
	int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
			ctx->cdata.keylen;

	if (!ctx->cdata.keylen || !ctx->authsize)
		return 0;

	ctx->cdata.key_virt = ctx->key;

	/*
	 * Job Descriptor and Shared Descriptor
	 * must fit into the 64-word Descriptor h/w Buffer
	 */
	if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
		ctx->cdata.key_inline = true;
	} else {
		ctx->cdata.key_inline = false;
		ctx->cdata.key_dma = ctx->key_dma;
	}

	cnstr_shdsc_rfc4543_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
				  ctx->authsize, true);

	/*
	 * Job Descriptor and Shared Descriptor
	 * must fit into the 64-word Descriptor h/w Buffer
	 */
	if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
		ctx->cdata.key_inline = true;
	} else {
		ctx->cdata.key_inline = false;
		ctx->cdata.key_dma = ctx->key_dma;
	}

	cnstr_shdsc_rfc4543_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
				  ctx->authsize, true);

	return 0;
}

static int rfc4543_setauthsize(struct crypto_aead *authenc,
			       unsigned int authsize)
{
	struct caam_ctx *ctx = crypto_aead_ctx(authenc);

	ctx->authsize = authsize;
	rfc4543_set_sh_desc(authenc);

	return 0;
}

static int rfc4543_setkey(struct crypto_aead *aead,
			  const u8 *key, unsigned int keylen)
{
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct device *jrdev = ctx->jrdev;
	int ret;

	if (keylen < 4)
		return -EINVAL;

588 589
	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
590 591 592 593 594 595 596

	memcpy(ctx->key, key, keylen);
	/*
	 * The last four bytes of the key material are used as the salt value
	 * in the nonce. Update the AES key length.
	 */
	ctx->cdata.keylen = keylen - 4;
597 598
	dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
				   ctx->cdata.keylen, ctx->dir);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

	ret = rfc4543_set_sh_desc(aead);
	if (ret)
		return ret;

	/* Now update the driver contexts with the new shared descriptor */
	if (ctx->drv_ctx[ENCRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
					  ctx->sh_desc_enc);
		if (ret) {
			dev_err(jrdev, "driver enc context update failed\n");
			return ret;
		}
	}

	if (ctx->drv_ctx[DECRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
					  ctx->sh_desc_dec);
		if (ret) {
			dev_err(jrdev, "driver dec context update failed\n");
			return ret;
		}
	}

	return 0;
}

626 627
static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
			   unsigned int keylen)
628
{
629 630 631 632
	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
	struct caam_skcipher_alg *alg =
		container_of(crypto_skcipher_alg(skcipher), typeof(*alg),
			     skcipher);
633
	struct device *jrdev = ctx->jrdev;
634
	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
635 636 637
	u32 ctx1_iv_off = 0;
	const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
			       OP_ALG_AAI_CTR_MOD128);
638
	const bool is_rfc3686 = alg->caam.rfc3686;
639 640
	int ret = 0;

641 642 643
	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	/*
	 * AES-CTR needs to load IV in CONTEXT1 reg
	 * at an offset of 128bits (16bytes)
	 * CONTEXT1[255:128] = IV
	 */
	if (ctr_mode)
		ctx1_iv_off = 16;

	/*
	 * RFC3686 specific:
	 *	| CONTEXT1[255:128] = {NONCE, IV, COUNTER}
	 *	| *key = {KEY, NONCE}
	 */
	if (is_rfc3686) {
		ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
		keylen -= CTR_RFC3686_NONCE_SIZE;
	}

	ctx->cdata.keylen = keylen;
663
	ctx->cdata.key_virt = key;
664 665
	ctx->cdata.key_inline = true;

666 667 668 669 670
	/* skcipher encrypt, decrypt shared descriptors */
	cnstr_shdsc_skcipher_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
				   is_rfc3686, ctx1_iv_off);
	cnstr_shdsc_skcipher_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
				   is_rfc3686, ctx1_iv_off);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

	/* Now update the driver contexts with the new shared descriptor */
	if (ctx->drv_ctx[ENCRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
					  ctx->sh_desc_enc);
		if (ret) {
			dev_err(jrdev, "driver enc context update failed\n");
			goto badkey;
		}
	}

	if (ctx->drv_ctx[DECRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
					  ctx->sh_desc_dec);
		if (ret) {
			dev_err(jrdev, "driver dec context update failed\n");
			goto badkey;
		}
	}

	return ret;
badkey:
693
	crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
694 695 696
	return -EINVAL;
}

697 698 699 700 701 702 703
static int des3_skcipher_setkey(struct crypto_skcipher *skcipher,
				const u8 *key, unsigned int keylen)
{
	return unlikely(des3_verify_key(skcipher, key)) ?:
	       skcipher_setkey(skcipher, key, keylen);
}

704 705
static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
			       unsigned int keylen)
706
{
707
	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
708 709 710 711 712
	struct device *jrdev = ctx->jrdev;
	int ret = 0;

	if (keylen != 2 * AES_MIN_KEY_SIZE  && keylen != 2 * AES_MAX_KEY_SIZE) {
		dev_err(jrdev, "key size mismatch\n");
713
		goto badkey;
714 715 716
	}

	ctx->cdata.keylen = keylen;
717
	ctx->cdata.key_virt = key;
718 719
	ctx->cdata.key_inline = true;

720 721 722
	/* xts skcipher encrypt, decrypt shared descriptors */
	cnstr_shdsc_xts_skcipher_encap(ctx->sh_desc_enc, &ctx->cdata);
	cnstr_shdsc_xts_skcipher_decap(ctx->sh_desc_dec, &ctx->cdata);
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

	/* Now update the driver contexts with the new shared descriptor */
	if (ctx->drv_ctx[ENCRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
					  ctx->sh_desc_enc);
		if (ret) {
			dev_err(jrdev, "driver enc context update failed\n");
			goto badkey;
		}
	}

	if (ctx->drv_ctx[DECRYPT]) {
		ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
					  ctx->sh_desc_dec);
		if (ret) {
			dev_err(jrdev, "driver dec context update failed\n");
			goto badkey;
		}
	}

	return ret;
badkey:
745
	crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
746
	return -EINVAL;
747 748 749 750 751 752 753 754 755
}

/*
 * aead_edesc - s/w-extended aead descriptor
 * @src_nents: number of segments in input scatterlist
 * @dst_nents: number of segments in output scatterlist
 * @iv_dma: dma address of iv for checking continuity and link table
 * @qm_sg_bytes: length of dma mapped h/w link table
 * @qm_sg_dma: bus physical mapped address of h/w link table
756
 * @assoclen: associated data length, in CAAM endianness
757 758
 * @assoclen_dma: bus physical mapped address of req->assoclen
 * @drv_req: driver-specific request structure
759
 * @sgt: the h/w link table, followed by IV
760 761 762 763 764 765 766
 */
struct aead_edesc {
	int src_nents;
	int dst_nents;
	dma_addr_t iv_dma;
	int qm_sg_bytes;
	dma_addr_t qm_sg_dma;
767
	unsigned int assoclen;
768 769 770 771 772 773
	dma_addr_t assoclen_dma;
	struct caam_drv_req drv_req;
	struct qm_sg_entry sgt[0];
};

/*
774
 * skcipher_edesc - s/w-extended skcipher descriptor
775 776 777 778 779 780
 * @src_nents: number of segments in input scatterlist
 * @dst_nents: number of segments in output scatterlist
 * @iv_dma: dma address of iv for checking continuity and link table
 * @qm_sg_bytes: length of dma mapped h/w link table
 * @qm_sg_dma: bus physical mapped address of h/w link table
 * @drv_req: driver-specific request structure
781
 * @sgt: the h/w link table, followed by IV
782
 */
783
struct skcipher_edesc {
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	int src_nents;
	int dst_nents;
	dma_addr_t iv_dma;
	int qm_sg_bytes;
	dma_addr_t qm_sg_dma;
	struct caam_drv_req drv_req;
	struct qm_sg_entry sgt[0];
};

static struct caam_drv_ctx *get_drv_ctx(struct caam_ctx *ctx,
					enum optype type)
{
	/*
	 * This function is called on the fast path with values of 'type'
	 * known at compile time. Invalid arguments are not expected and
	 * thus no checks are made.
	 */
	struct caam_drv_ctx *drv_ctx = ctx->drv_ctx[type];
	u32 *desc;

	if (unlikely(!drv_ctx)) {
		spin_lock(&ctx->lock);

		/* Read again to check if some other core init drv_ctx */
		drv_ctx = ctx->drv_ctx[type];
		if (!drv_ctx) {
			int cpu;

			if (type == ENCRYPT)
				desc = ctx->sh_desc_enc;
814
			else /* (type == DECRYPT) */
815 816 817 818
				desc = ctx->sh_desc_dec;

			cpu = smp_processor_id();
			drv_ctx = caam_drv_ctx_init(ctx->qidev, &cpu, desc);
819
			if (!IS_ERR_OR_NULL(drv_ctx))
820 821 822 823 824 825 826 827 828 829 830 831 832 833
				drv_ctx->op_type = type;

			ctx->drv_ctx[type] = drv_ctx;
		}

		spin_unlock(&ctx->lock);
	}

	return drv_ctx;
}

static void caam_unmap(struct device *dev, struct scatterlist *src,
		       struct scatterlist *dst, int src_nents,
		       int dst_nents, dma_addr_t iv_dma, int ivsize,
834 835
		       enum dma_data_direction iv_dir, dma_addr_t qm_sg_dma,
		       int qm_sg_bytes)
836 837 838 839
{
	if (dst != src) {
		if (src_nents)
			dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
840 841
		if (dst_nents)
			dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
842 843 844 845 846
	} else {
		dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
	}

	if (iv_dma)
847
		dma_unmap_single(dev, iv_dma, ivsize, iv_dir);
848 849 850 851 852 853 854 855 856 857 858 859
	if (qm_sg_bytes)
		dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
}

static void aead_unmap(struct device *dev,
		       struct aead_edesc *edesc,
		       struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	int ivsize = crypto_aead_ivsize(aead);

	caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
860 861
		   edesc->iv_dma, ivsize, DMA_TO_DEVICE, edesc->qm_sg_dma,
		   edesc->qm_sg_bytes);
862 863 864
	dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
}

865 866
static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
			   struct skcipher_request *req)
867
{
868 869
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
	int ivsize = crypto_skcipher_ivsize(skcipher);
870 871

	caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
872 873
		   edesc->iv_dma, ivsize, DMA_BIDIRECTIONAL, edesc->qm_sg_dma,
		   edesc->qm_sg_bytes);
874 875 876 877 878 879 880 881 882 883 884 885 886 887
}

static void aead_done(struct caam_drv_req *drv_req, u32 status)
{
	struct device *qidev;
	struct aead_edesc *edesc;
	struct aead_request *aead_req = drv_req->app_ctx;
	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
	struct caam_ctx *caam_ctx = crypto_aead_ctx(aead);
	int ecode = 0;

	qidev = caam_ctx->qidev;

	if (unlikely(status)) {
888 889 890
		u32 ssrc = status & JRSTA_SSRC_MASK;
		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;

891
		caam_jr_strstatus(qidev, status);
892 893 894 895 896 897 898 899
		/*
		 * verify hw auth check passed else return -EBADMSG
		 */
		if (ssrc == JRSTA_SSRC_CCB_ERROR &&
		    err_id == JRSTA_CCBERR_ERRID_ICVCHK)
			ecode = -EBADMSG;
		else
			ecode = -EIO;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	}

	edesc = container_of(drv_req, typeof(*edesc), drv_req);
	aead_unmap(qidev, edesc, aead_req);

	aead_request_complete(aead_req, ecode);
	qi_cache_free(edesc);
}

/*
 * allocate and map the aead extended descriptor
 */
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
					   bool encrypt)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
						 typeof(*alg), aead);
	struct device *qidev = ctx->qidev;
920 921
	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
		       GFP_KERNEL : GFP_ATOMIC;
922
	int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
923
	int src_len, dst_len = 0;
924 925 926 927 928 929 930 931 932
	struct aead_edesc *edesc;
	dma_addr_t qm_sg_dma, iv_dma = 0;
	int ivsize = 0;
	unsigned int authsize = ctx->authsize;
	int qm_sg_index = 0, qm_sg_ents = 0, qm_sg_bytes;
	int in_len, out_len;
	struct qm_sg_entry *sg_table, *fd_sgt;
	struct caam_drv_ctx *drv_ctx;

933
	drv_ctx = get_drv_ctx(ctx, encrypt ? ENCRYPT : DECRYPT);
934
	if (IS_ERR_OR_NULL(drv_ctx))
935 936 937 938 939 940 941 942 943 944
		return (struct aead_edesc *)drv_ctx;

	/* allocate space for base edesc and hw desc commands, link tables */
	edesc = qi_cache_alloc(GFP_DMA | flags);
	if (unlikely(!edesc)) {
		dev_err(qidev, "could not allocate extended descriptor\n");
		return ERR_PTR(-ENOMEM);
	}

	if (likely(req->src == req->dst)) {
945 946 947 948
		src_len = req->assoclen + req->cryptlen +
			  (encrypt ? authsize : 0);

		src_nents = sg_nents_for_len(req->src, src_len);
949 950
		if (unlikely(src_nents < 0)) {
			dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
951
				src_len);
952 953 954 955 956 957 958 959 960 961 962 963
			qi_cache_free(edesc);
			return ERR_PTR(src_nents);
		}

		mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
					      DMA_BIDIRECTIONAL);
		if (unlikely(!mapped_src_nents)) {
			dev_err(qidev, "unable to map source\n");
			qi_cache_free(edesc);
			return ERR_PTR(-ENOMEM);
		}
	} else {
964 965 966 967
		src_len = req->assoclen + req->cryptlen;
		dst_len = src_len + (encrypt ? authsize : (-authsize));

		src_nents = sg_nents_for_len(req->src, src_len);
968 969
		if (unlikely(src_nents < 0)) {
			dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
970
				src_len);
971 972 973 974
			qi_cache_free(edesc);
			return ERR_PTR(src_nents);
		}

975
		dst_nents = sg_nents_for_len(req->dst, dst_len);
976 977
		if (unlikely(dst_nents < 0)) {
			dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
978
				dst_len);
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
			qi_cache_free(edesc);
			return ERR_PTR(dst_nents);
		}

		if (src_nents) {
			mapped_src_nents = dma_map_sg(qidev, req->src,
						      src_nents, DMA_TO_DEVICE);
			if (unlikely(!mapped_src_nents)) {
				dev_err(qidev, "unable to map source\n");
				qi_cache_free(edesc);
				return ERR_PTR(-ENOMEM);
			}
		} else {
			mapped_src_nents = 0;
		}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		if (dst_nents) {
			mapped_dst_nents = dma_map_sg(qidev, req->dst,
						      dst_nents,
						      DMA_FROM_DEVICE);
			if (unlikely(!mapped_dst_nents)) {
				dev_err(qidev, "unable to map destination\n");
				dma_unmap_sg(qidev, req->src, src_nents,
					     DMA_TO_DEVICE);
				qi_cache_free(edesc);
				return ERR_PTR(-ENOMEM);
			}
		} else {
			mapped_dst_nents = 0;
1008 1009 1010
		}
	}

1011
	if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
1012 1013 1014 1015 1016
		ivsize = crypto_aead_ivsize(aead);

	/*
	 * Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
	 * Input is not contiguous.
1017 1018 1019 1020 1021 1022 1023 1024
	 * HW reads 4 S/G entries at a time; make sure the reads don't go beyond
	 * the end of the table by allocating more S/G entries. Logic:
	 * if (src != dst && output S/G)
	 *      pad output S/G, if needed
	 * else if (src == dst && S/G)
	 *      overlapping S/Gs; pad one of them
	 * else if (input S/G) ...
	 *      pad input S/G, if needed
1025
	 */
1026 1027 1028 1029 1030 1031 1032 1033 1034
	qm_sg_ents = 1 + !!ivsize + mapped_src_nents;
	if (mapped_dst_nents > 1)
		qm_sg_ents += pad_sg_nents(mapped_dst_nents);
	else if ((req->src == req->dst) && (mapped_src_nents > 1))
		qm_sg_ents = max(pad_sg_nents(qm_sg_ents),
				 1 + !!ivsize + pad_sg_nents(mapped_src_nents));
	else
		qm_sg_ents = pad_sg_nents(qm_sg_ents);

1035 1036 1037 1038 1039 1040 1041
	sg_table = &edesc->sgt[0];
	qm_sg_bytes = qm_sg_ents * sizeof(*sg_table);
	if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
		     CAAM_QI_MEMCACHE_SIZE)) {
		dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
			qm_sg_ents, ivsize);
		caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
1042
			   0, DMA_NONE, 0, 0);
1043 1044 1045
		qi_cache_free(edesc);
		return ERR_PTR(-ENOMEM);
	}
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	if (ivsize) {
		u8 *iv = (u8 *)(sg_table + qm_sg_ents);

		/* Make sure IV is located in a DMAable area */
		memcpy(iv, req->iv, ivsize);

		iv_dma = dma_map_single(qidev, iv, ivsize, DMA_TO_DEVICE);
		if (dma_mapping_error(qidev, iv_dma)) {
			dev_err(qidev, "unable to map IV\n");
			caam_unmap(qidev, req->src, req->dst, src_nents,
1057
				   dst_nents, 0, 0, DMA_NONE, 0, 0);
1058 1059 1060 1061
			qi_cache_free(edesc);
			return ERR_PTR(-ENOMEM);
		}
	}
1062 1063 1064 1065 1066 1067 1068 1069

	edesc->src_nents = src_nents;
	edesc->dst_nents = dst_nents;
	edesc->iv_dma = iv_dma;
	edesc->drv_req.app_ctx = req;
	edesc->drv_req.cbk = aead_done;
	edesc->drv_req.drv_ctx = drv_ctx;

1070 1071
	edesc->assoclen = cpu_to_caam32(req->assoclen);
	edesc->assoclen_dma = dma_map_single(qidev, &edesc->assoclen, 4,
1072 1073 1074 1075
					     DMA_TO_DEVICE);
	if (dma_mapping_error(qidev, edesc->assoclen_dma)) {
		dev_err(qidev, "unable to map assoclen\n");
		caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
1076
			   iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		qi_cache_free(edesc);
		return ERR_PTR(-ENOMEM);
	}

	dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
	qm_sg_index++;
	if (ivsize) {
		dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
		qm_sg_index++;
	}
1087
	sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_index, 0);
1088 1089 1090
	qm_sg_index += mapped_src_nents;

	if (mapped_dst_nents > 1)
1091
		sg_to_qm_sg_last(req->dst, dst_len, sg_table + qm_sg_index, 0);
1092 1093 1094 1095 1096 1097

	qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
	if (dma_mapping_error(qidev, qm_sg_dma)) {
		dev_err(qidev, "unable to map S/G table\n");
		dma_unmap_single(qidev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
		caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
1098
			   iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		qi_cache_free(edesc);
		return ERR_PTR(-ENOMEM);
	}

	edesc->qm_sg_dma = qm_sg_dma;
	edesc->qm_sg_bytes = qm_sg_bytes;

	out_len = req->assoclen + req->cryptlen +
		  (encrypt ? ctx->authsize : (-ctx->authsize));
	in_len = 4 + ivsize + req->assoclen + req->cryptlen;

	fd_sgt = &edesc->drv_req.fd_sgt[0];
	dma_to_qm_sg_one_last_ext(&fd_sgt[1], qm_sg_dma, in_len, 0);

	if (req->dst == req->src) {
		if (mapped_src_nents == 1)
			dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->src),
					 out_len, 0);
		else
			dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma +
					     (1 + !!ivsize) * sizeof(*sg_table),
					     out_len, 0);
1121
	} else if (mapped_dst_nents <= 1) {
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst), out_len,
				 0);
	} else {
		dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma + sizeof(*sg_table) *
				     qm_sg_index, out_len, 0);
	}

	return edesc;
}

static inline int aead_crypt(struct aead_request *req, bool encrypt)
{
	struct aead_edesc *edesc;
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct caam_ctx *ctx = crypto_aead_ctx(aead);
	int ret;

	if (unlikely(caam_congested))
		return -EAGAIN;

	/* allocate extended descriptor */
	edesc = aead_edesc_alloc(req, encrypt);
	if (IS_ERR_OR_NULL(edesc))
		return PTR_ERR(edesc);

	/* Create and submit job descriptor */
	ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
	if (!ret) {
		ret = -EINPROGRESS;
	} else {
		aead_unmap(ctx->qidev, edesc, req);
		qi_cache_free(edesc);
	}

	return ret;
}

static int aead_encrypt(struct aead_request *req)
{
	return aead_crypt(req, true);
}

static int aead_decrypt(struct aead_request *req)
{
	return aead_crypt(req, false);
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int ipsec_gcm_encrypt(struct aead_request *req)
{
	if (req->assoclen < 8)
		return -EINVAL;

	return aead_crypt(req, true);
}

static int ipsec_gcm_decrypt(struct aead_request *req)
{
	if (req->assoclen < 8)
		return -EINVAL;

	return aead_crypt(req, false);
}

1185
static void skcipher_done(struct caam_drv_req *drv_req, u32 status)
1186
{
1187 1188 1189 1190
	struct skcipher_edesc *edesc;
	struct skcipher_request *req = drv_req->app_ctx;
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
	struct caam_ctx *caam_ctx = crypto_skcipher_ctx(skcipher);
1191
	struct device *qidev = caam_ctx->qidev;
1192
	int ivsize = crypto_skcipher_ivsize(skcipher);
1193

1194
	dev_dbg(qidev, "%s %d: status 0x%x\n", __func__, __LINE__, status);
1195 1196 1197 1198 1199 1200

	edesc = container_of(drv_req, typeof(*edesc), drv_req);

	if (status)
		caam_jr_strstatus(qidev, status);

1201 1202 1203
	print_hex_dump_debug("dstiv  @" __stringify(__LINE__)": ",
			     DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
			     edesc->src_nents > 1 ? 100 : ivsize, 1);
1204
	caam_dump_sg("dst    @" __stringify(__LINE__)": ",
1205
		     DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
1206
		     edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
1207

1208
	skcipher_unmap(qidev, edesc, req);
1209

1210
	/*
1211
	 * The crypto API expects us to set the IV (req->iv) to the last
1212 1213
	 * ciphertext block (CBC mode) or last counter (CTR mode).
	 * This is used e.g. by the CTS mode.
1214
	 */
1215
	memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes, ivsize);
1216

1217
	qi_cache_free(edesc);
1218
	skcipher_request_complete(req, status);
1219 1220
}

1221 1222
static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req,
						   bool encrypt)
1223
{
1224 1225
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1226
	struct device *qidev = ctx->qidev;
1227
	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
1228 1229
		       GFP_KERNEL : GFP_ATOMIC;
	int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
1230
	struct skcipher_edesc *edesc;
1231
	dma_addr_t iv_dma;
1232
	u8 *iv;
1233
	int ivsize = crypto_skcipher_ivsize(skcipher);
1234
	int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
1235 1236 1237
	struct qm_sg_entry *sg_table, *fd_sgt;
	struct caam_drv_ctx *drv_ctx;

1238
	drv_ctx = get_drv_ctx(ctx, encrypt ? ENCRYPT : DECRYPT);
1239
	if (IS_ERR_OR_NULL(drv_ctx))
1240
		return (struct skcipher_edesc *)drv_ctx;
1241

1242
	src_nents = sg_nents_for_len(req->src, req->cryptlen);
1243 1244
	if (unlikely(src_nents < 0)) {
		dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
1245
			req->cryptlen);
1246 1247 1248 1249
		return ERR_PTR(src_nents);
	}

	if (unlikely(req->src != req->dst)) {
1250
		dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
1251 1252
		if (unlikely(dst_nents < 0)) {
			dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
1253
				req->cryptlen);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
			return ERR_PTR(dst_nents);
		}

		mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
					      DMA_TO_DEVICE);
		if (unlikely(!mapped_src_nents)) {
			dev_err(qidev, "unable to map source\n");
			return ERR_PTR(-ENOMEM);
		}

		mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents,
					      DMA_FROM_DEVICE);
		if (unlikely(!mapped_dst_nents)) {
			dev_err(qidev, "unable to map destination\n");
			dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE);
			return ERR_PTR(-ENOMEM);
		}
	} else {
		mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
					      DMA_BIDIRECTIONAL);
		if (unlikely(!mapped_src_nents)) {
			dev_err(qidev, "unable to map source\n");
			return ERR_PTR(-ENOMEM);
		}
	}

1280
	qm_sg_ents = 1 + mapped_src_nents;
1281 1282
	dst_sg_idx = qm_sg_ents;

1283
	/*
1284 1285 1286 1287
	 * Input, output HW S/G tables: [IV, src][dst, IV]
	 * IV entries point to the same buffer
	 * If src == dst, S/G entries are reused (S/G tables overlap)
	 *
1288
	 * HW reads 4 S/G entries at a time; make sure the reads don't go beyond
1289
	 * the end of the table by allocating more S/G entries.
1290
	 */
1291 1292
	if (req->src != req->dst)
		qm_sg_ents += pad_sg_nents(mapped_dst_nents + 1);
1293
	else
1294
		qm_sg_ents = 1 + pad_sg_nents(qm_sg_ents);
1295

1296
	qm_sg_bytes = qm_sg_ents * sizeof(struct qm_sg_entry);
1297
	if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
1298 1299 1300 1301
		     ivsize > CAAM_QI_MEMCACHE_SIZE)) {
		dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
			qm_sg_ents, ivsize);
		caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
1302
			   0, DMA_NONE, 0, 0);
1303 1304 1305
		return ERR_PTR(-ENOMEM);
	}

1306
	/* allocate space for base edesc, link tables and IV */
1307 1308 1309
	edesc = qi_cache_alloc(GFP_DMA | flags);
	if (unlikely(!edesc)) {
		dev_err(qidev, "could not allocate extended descriptor\n");
1310
		caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
1311
			   0, DMA_NONE, 0, 0);
1312 1313 1314 1315 1316 1317
		return ERR_PTR(-ENOMEM);
	}

	/* Make sure IV is located in a DMAable area */
	sg_table = &edesc->sgt[0];
	iv = (u8 *)(sg_table + qm_sg_ents);
1318
	memcpy(iv, req->iv, ivsize);
1319

1320
	iv_dma = dma_map_single(qidev, iv, ivsize, DMA_BIDIRECTIONAL);
1321 1322 1323
	if (dma_mapping_error(qidev, iv_dma)) {
		dev_err(qidev, "unable to map IV\n");
		caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
1324
			   0, DMA_NONE, 0, 0);
1325
		qi_cache_free(edesc);
1326 1327 1328 1329 1330 1331
		return ERR_PTR(-ENOMEM);
	}

	edesc->src_nents = src_nents;
	edesc->dst_nents = dst_nents;
	edesc->iv_dma = iv_dma;
1332
	edesc->qm_sg_bytes = qm_sg_bytes;
1333
	edesc->drv_req.app_ctx = req;
1334
	edesc->drv_req.cbk = skcipher_done;
1335 1336
	edesc->drv_req.drv_ctx = drv_ctx;

1337
	dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
1338
	sg_to_qm_sg(req->src, req->cryptlen, sg_table + 1, 0);
1339

1340 1341 1342 1343 1344
	if (req->src != req->dst)
		sg_to_qm_sg(req->dst, req->cryptlen, sg_table + dst_sg_idx, 0);

	dma_to_qm_sg_one(sg_table + dst_sg_idx + mapped_dst_nents, iv_dma,
			 ivsize, 0);
1345 1346 1347 1348 1349 1350

	edesc->qm_sg_dma = dma_map_single(qidev, sg_table, edesc->qm_sg_bytes,
					  DMA_TO_DEVICE);
	if (dma_mapping_error(qidev, edesc->qm_sg_dma)) {
		dev_err(qidev, "unable to map S/G table\n");
		caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
1351
			   iv_dma, ivsize, DMA_BIDIRECTIONAL, 0, 0);
1352 1353 1354 1355 1356 1357
		qi_cache_free(edesc);
		return ERR_PTR(-ENOMEM);
	}

	fd_sgt = &edesc->drv_req.fd_sgt[0];

1358
	dma_to_qm_sg_one_last_ext(&fd_sgt[1], edesc->qm_sg_dma,
1359
				  ivsize + req->cryptlen, 0);
1360

1361
	if (req->src == req->dst)
1362
		dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma +
1363 1364 1365
				     sizeof(*sg_table), req->cryptlen + ivsize,
				     0);
	else
1366
		dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + dst_sg_idx *
1367 1368
				     sizeof(*sg_table), req->cryptlen + ivsize,
				     0);
1369 1370 1371 1372

	return edesc;
}

1373
static inline int skcipher_crypt(struct skcipher_request *req, bool encrypt)
1374
{
1375 1376 1377
	struct skcipher_edesc *edesc;
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1378 1379 1380 1381 1382 1383
	int ret;

	if (unlikely(caam_congested))
		return -EAGAIN;

	/* allocate extended descriptor */
1384
	edesc = skcipher_edesc_alloc(req, encrypt);
1385 1386 1387 1388 1389 1390 1391
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
	if (!ret) {
		ret = -EINPROGRESS;
	} else {
1392
		skcipher_unmap(ctx->qidev, edesc, req);
1393 1394 1395 1396 1397 1398
		qi_cache_free(edesc);
	}

	return ret;
}

1399
static int skcipher_encrypt(struct skcipher_request *req)
1400
{
1401
	return skcipher_crypt(req, true);
1402 1403
}

1404
static int skcipher_decrypt(struct skcipher_request *req)
1405
{
1406
	return skcipher_crypt(req, false);
1407 1408
}

1409
static struct caam_skcipher_alg driver_algs[] = {
1410
	{
1411 1412 1413 1414 1415 1416 1417 1418 1419
		.skcipher = {
			.base = {
				.cra_name = "cbc(aes)",
				.cra_driver_name = "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = skcipher_setkey,
			.encrypt = skcipher_encrypt,
			.decrypt = skcipher_decrypt,
1420 1421 1422 1423
			.min_keysize = AES_MIN_KEY_SIZE,
			.max_keysize = AES_MAX_KEY_SIZE,
			.ivsize = AES_BLOCK_SIZE,
		},
1424
		.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1425 1426
	},
	{
1427 1428 1429 1430 1431 1432
		.skcipher = {
			.base = {
				.cra_name = "cbc(des3_ede)",
				.cra_driver_name = "cbc-3des-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1433
			.setkey = des3_skcipher_setkey,
1434 1435
			.encrypt = skcipher_encrypt,
			.decrypt = skcipher_decrypt,
1436 1437 1438 1439
			.min_keysize = DES3_EDE_KEY_SIZE,
			.max_keysize = DES3_EDE_KEY_SIZE,
			.ivsize = DES3_EDE_BLOCK_SIZE,
		},
1440
		.caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
1441 1442
	},
	{
1443 1444 1445 1446 1447 1448 1449 1450 1451
		.skcipher = {
			.base = {
				.cra_name = "cbc(des)",
				.cra_driver_name = "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = skcipher_setkey,
			.encrypt = skcipher_encrypt,
			.decrypt = skcipher_decrypt,
1452 1453 1454 1455
			.min_keysize = DES_KEY_SIZE,
			.max_keysize = DES_KEY_SIZE,
			.ivsize = DES_BLOCK_SIZE,
		},
1456
		.caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
1457 1458
	},
	{
1459 1460 1461 1462 1463 1464 1465 1466 1467
		.skcipher = {
			.base = {
				.cra_name = "ctr(aes)",
				.cra_driver_name = "ctr-aes-caam-qi",
				.cra_blocksize = 1,
			},
			.setkey = skcipher_setkey,
			.encrypt = skcipher_encrypt,
			.decrypt = skcipher_decrypt,
1468 1469 1470
			.min_keysize = AES_MIN_KEY_SIZE,
			.max_keysize = AES_MAX_KEY_SIZE,
			.ivsize = AES_BLOCK_SIZE,
1471
			.chunksize = AES_BLOCK_SIZE,
1472
		},
1473 1474
		.caam.class1_alg_type = OP_ALG_ALGSEL_AES |
					OP_ALG_AAI_CTR_MOD128,
1475 1476
	},
	{
1477 1478 1479 1480 1481 1482 1483 1484 1485
		.skcipher = {
			.base = {
				.cra_name = "rfc3686(ctr(aes))",
				.cra_driver_name = "rfc3686-ctr-aes-caam-qi",
				.cra_blocksize = 1,
			},
			.setkey = skcipher_setkey,
			.encrypt = skcipher_encrypt,
			.decrypt = skcipher_decrypt,
1486 1487 1488 1489 1490
			.min_keysize = AES_MIN_KEY_SIZE +
				       CTR_RFC3686_NONCE_SIZE,
			.max_keysize = AES_MAX_KEY_SIZE +
				       CTR_RFC3686_NONCE_SIZE,
			.ivsize = CTR_RFC3686_IV_SIZE,
1491 1492 1493 1494 1495 1496
			.chunksize = AES_BLOCK_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES |
					   OP_ALG_AAI_CTR_MOD128,
			.rfc3686 = true,
1497 1498 1499
		},
	},
	{
1500 1501 1502 1503 1504 1505 1506 1507 1508
		.skcipher = {
			.base = {
				.cra_name = "xts(aes)",
				.cra_driver_name = "xts-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = xts_skcipher_setkey,
			.encrypt = skcipher_encrypt,
			.decrypt = skcipher_decrypt,
1509 1510 1511 1512
			.min_keysize = 2 * AES_MIN_KEY_SIZE,
			.max_keysize = 2 * AES_MAX_KEY_SIZE,
			.ivsize = AES_BLOCK_SIZE,
		},
1513
		.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
1514 1515 1516 1517
	},
};

static struct caam_aead_alg driver_aeads[] = {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	{
		.aead = {
			.base = {
				.cra_name = "rfc4106(gcm(aes))",
				.cra_driver_name = "rfc4106-gcm-aes-caam-qi",
				.cra_blocksize = 1,
			},
			.setkey = rfc4106_setkey,
			.setauthsize = rfc4106_setauthsize,
			.encrypt = ipsec_gcm_encrypt,
			.decrypt = ipsec_gcm_decrypt,
			.ivsize = 8,
			.maxauthsize = AES_BLOCK_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
1534
			.nodkp = true,
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "rfc4543(gcm(aes))",
				.cra_driver_name = "rfc4543-gcm-aes-caam-qi",
				.cra_blocksize = 1,
			},
			.setkey = rfc4543_setkey,
			.setauthsize = rfc4543_setauthsize,
			.encrypt = ipsec_gcm_encrypt,
			.decrypt = ipsec_gcm_decrypt,
			.ivsize = 8,
			.maxauthsize = AES_BLOCK_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
1553
			.nodkp = true,
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		},
	},
	/* Galois Counter Mode */
	{
		.aead = {
			.base = {
				.cra_name = "gcm(aes)",
				.cra_driver_name = "gcm-aes-caam-qi",
				.cra_blocksize = 1,
			},
			.setkey = gcm_setkey,
			.setauthsize = gcm_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = 12,
			.maxauthsize = AES_BLOCK_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
1573
			.nodkp = true,
1574 1575
		}
	},
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	/* single-pass ipsec_esp descriptor */
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(md5),cbc(aes))",
				.cra_driver_name = "authenc-hmac-md5-"
						   "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = MD5_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(md5),"
					    "cbc(aes)))",
				.cra_driver_name = "echainiv-authenc-hmac-md5-"
						   "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = MD5_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha1),cbc(aes))",
				.cra_driver_name = "authenc-hmac-sha1-"
						   "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha1),"
					    "cbc(aes)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha1-cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha224),cbc(aes))",
				.cra_driver_name = "authenc-hmac-sha224-"
						   "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA224_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha224),"
					    "cbc(aes)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha224-cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA224_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha256),cbc(aes))",
				.cra_driver_name = "authenc-hmac-sha256-"
						   "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha256),"
					    "cbc(aes)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha256-cbc-aes-"
						   "caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha384),cbc(aes))",
				.cra_driver_name = "authenc-hmac-sha384-"
						   "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA384_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha384),"
					    "cbc(aes)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha384-cbc-aes-"
						   "caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA384_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha512),cbc(aes))",
				.cra_driver_name = "authenc-hmac-sha512-"
						   "cbc-aes-caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha512),"
					    "cbc(aes)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha512-cbc-aes-"
						   "caam-qi",
				.cra_blocksize = AES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
				.cra_driver_name = "authenc-hmac-md5-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1852
			.setkey = des3_aead_setkey,
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = MD5_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(md5),"
					    "cbc(des3_ede)))",
				.cra_driver_name = "echainiv-authenc-hmac-md5-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1874
			.setkey = des3_aead_setkey,
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = MD5_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha1),"
					    "cbc(des3_ede))",
				.cra_driver_name = "authenc-hmac-sha1-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1897
			.setkey = des3_aead_setkey,
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha1),"
					    "cbc(des3_ede)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha1-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1920
			.setkey = des3_aead_setkey,
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha224),"
					    "cbc(des3_ede))",
				.cra_driver_name = "authenc-hmac-sha224-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1943
			.setkey = des3_aead_setkey,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA224_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha224),"
					    "cbc(des3_ede)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha224-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1966
			.setkey = des3_aead_setkey,
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA224_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha256),"
					    "cbc(des3_ede))",
				.cra_driver_name = "authenc-hmac-sha256-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
1989
			.setkey = des3_aead_setkey,
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha256),"
					    "cbc(des3_ede)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha256-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
2012
			.setkey = des3_aead_setkey,
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha384),"
					    "cbc(des3_ede))",
				.cra_driver_name = "authenc-hmac-sha384-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
2035
			.setkey = des3_aead_setkey,
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA384_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha384),"
					    "cbc(des3_ede)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha384-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
2058
			.setkey = des3_aead_setkey,
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA384_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha512),"
					    "cbc(des3_ede))",
				.cra_driver_name = "authenc-hmac-sha512-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
2081
			.setkey = des3_aead_setkey,
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha512),"
					    "cbc(des3_ede)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha512-"
						   "cbc-des3_ede-caam-qi",
				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			},
2104
			.setkey = des3_aead_setkey,
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES3_EDE_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(md5),cbc(des))",
				.cra_driver_name = "authenc-hmac-md5-"
						   "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = MD5_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(md5),"
					    "cbc(des)))",
				.cra_driver_name = "echainiv-authenc-hmac-md5-"
						   "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = MD5_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha1),cbc(des))",
				.cra_driver_name = "authenc-hmac-sha1-"
						   "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha1),"
					    "cbc(des)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha1-cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha224),cbc(des))",
				.cra_driver_name = "authenc-hmac-sha224-"
						   "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA224_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha224),"
					    "cbc(des)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha224-cbc-des-"
						   "caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA224_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha256),cbc(des))",
				.cra_driver_name = "authenc-hmac-sha256-"
						   "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha256),"
					    "cbc(des)))",
				.cra_driver_name = "echainiv-authenc-"
2278
						   "hmac-sha256-cbc-des-"
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
						   "caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha384),cbc(des))",
				.cra_driver_name = "authenc-hmac-sha384-"
						   "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA384_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		},
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha384),"
					    "cbc(des)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha384-cbc-des-"
						   "caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA384_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha512),cbc(des))",
				.cra_driver_name = "authenc-hmac-sha512-"
						   "cbc-des-caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
					   OP_ALG_AAI_HMAC_PRECOMP,
		}
	},
	{
		.aead = {
			.base = {
				.cra_name = "echainiv(authenc(hmac(sha512),"
					    "cbc(des)))",
				.cra_driver_name = "echainiv-authenc-"
						   "hmac-sha512-cbc-des-"
						   "caam-qi",
				.cra_blocksize = DES_BLOCK_SIZE,
			},
			.setkey = aead_setkey,
			.setauthsize = aead_setauthsize,
			.encrypt = aead_encrypt,
			.decrypt = aead_decrypt,
			.ivsize = DES_BLOCK_SIZE,
			.maxauthsize = SHA512_DIGEST_SIZE,
		},
		.caam = {
			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
					   OP_ALG_AAI_HMAC_PRECOMP,
			.geniv = true,
		}
	},
};

2388 2389
static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam,
			    bool uses_dkp)
2390 2391
{
	struct caam_drv_private *priv;
2392
	struct device *dev;
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403

	/*
	 * distribute tfms across job rings to ensure in-order
	 * crypto request processing per tfm
	 */
	ctx->jrdev = caam_jr_alloc();
	if (IS_ERR(ctx->jrdev)) {
		pr_err("Job Ring Device allocation for transform failed\n");
		return PTR_ERR(ctx->jrdev);
	}

2404 2405
	dev = ctx->jrdev->parent;
	priv = dev_get_drvdata(dev);
2406 2407 2408 2409 2410
	if (priv->era >= 6 && uses_dkp)
		ctx->dir = DMA_BIDIRECTIONAL;
	else
		ctx->dir = DMA_TO_DEVICE;

2411
	ctx->key_dma = dma_map_single(dev, ctx->key, sizeof(ctx->key),
2412
				      ctx->dir);
2413 2414
	if (dma_mapping_error(dev, ctx->key_dma)) {
		dev_err(dev, "unable to map key\n");
2415 2416 2417 2418 2419 2420 2421 2422
		caam_jr_free(ctx->jrdev);
		return -ENOMEM;
	}

	/* copy descriptor header template value */
	ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
	ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;

2423
	ctx->qidev = dev;
2424 2425 2426 2427 2428 2429 2430 2431

	spin_lock_init(&ctx->lock);
	ctx->drv_ctx[ENCRYPT] = NULL;
	ctx->drv_ctx[DECRYPT] = NULL;

	return 0;
}

2432
static int caam_cra_init(struct crypto_skcipher *tfm)
2433
{
2434 2435 2436
	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
	struct caam_skcipher_alg *caam_alg =
		container_of(alg, typeof(*caam_alg), skcipher);
2437

2438 2439
	return caam_init_common(crypto_skcipher_ctx(tfm), &caam_alg->caam,
				false);
2440 2441 2442 2443 2444 2445 2446 2447 2448
}

static int caam_aead_init(struct crypto_aead *tfm)
{
	struct aead_alg *alg = crypto_aead_alg(tfm);
	struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
						      aead);
	struct caam_ctx *ctx = crypto_aead_ctx(tfm);

2449
	return caam_init_common(ctx, &caam_alg->caam, !caam_alg->caam.nodkp);
2450 2451 2452 2453 2454 2455 2456
}

static void caam_exit_common(struct caam_ctx *ctx)
{
	caam_drv_ctx_rel(ctx->drv_ctx[ENCRYPT]);
	caam_drv_ctx_rel(ctx->drv_ctx[DECRYPT]);

2457 2458
	dma_unmap_single(ctx->jrdev->parent, ctx->key_dma, sizeof(ctx->key),
			 ctx->dir);
2459 2460 2461 2462

	caam_jr_free(ctx->jrdev);
}

2463
static void caam_cra_exit(struct crypto_skcipher *tfm)
2464
{
2465
	caam_exit_common(crypto_skcipher_ctx(tfm));
2466 2467 2468 2469 2470 2471 2472
}

static void caam_aead_exit(struct crypto_aead *tfm)
{
	caam_exit_common(crypto_aead_ctx(tfm));
}

2473
void caam_qi_algapi_exit(void)
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
{
	int i;

	for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
		struct caam_aead_alg *t_alg = driver_aeads + i;

		if (t_alg->registered)
			crypto_unregister_aead(&t_alg->aead);
	}

2484 2485
	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
		struct caam_skcipher_alg *t_alg = driver_algs + i;
2486

2487 2488
		if (t_alg->registered)
			crypto_unregister_skcipher(&t_alg->skcipher);
2489 2490 2491
	}
}

2492
static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
2493
{
2494
	struct skcipher_alg *alg = &t_alg->skcipher;
2495

2496 2497 2498 2499
	alg->base.cra_module = THIS_MODULE;
	alg->base.cra_priority = CAAM_CRA_PRIORITY;
	alg->base.cra_ctxsize = sizeof(struct caam_ctx);
	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2500

2501 2502
	alg->init = caam_cra_init;
	alg->exit = caam_cra_exit;
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
}

static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
	struct aead_alg *alg = &t_alg->aead;

	alg->base.cra_module = THIS_MODULE;
	alg->base.cra_priority = CAAM_CRA_PRIORITY;
	alg->base.cra_ctxsize = sizeof(struct caam_ctx);
	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;

	alg->init = caam_aead_init;
	alg->exit = caam_aead_exit;
}

2518
int caam_qi_algapi_init(struct device *ctrldev)
2519
{
2520
	struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
2521
	int i = 0, err = 0;
2522
	u32 aes_vid, aes_inst, des_inst, md_vid, md_inst;
2523 2524 2525
	unsigned int md_limit = SHA512_DIGEST_SIZE;
	bool registered = false;

2526 2527
	if (caam_dpaa2) {
		dev_info(ctrldev, "caam/qi frontend driver not suitable for DPAA 2.x, aborting...\n");
2528
		return -ENODEV;
2529 2530
	}

2531 2532 2533 2534
	/*
	 * Register crypto algorithms the device supports.
	 * First, detect presence and attributes of DES, AES, and MD blocks.
	 */
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (priv->era < 10) {
		u32 cha_vid, cha_inst;

		cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
		aes_vid = cha_vid & CHA_ID_LS_AES_MASK;
		md_vid = (cha_vid & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;

		cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
		des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >>
			   CHA_ID_LS_DES_SHIFT;
		aes_inst = cha_inst & CHA_ID_LS_AES_MASK;
		md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
	} else {
		u32 aesa, mdha;

		aesa = rd_reg32(&priv->ctrl->vreg.aesa);
		mdha = rd_reg32(&priv->ctrl->vreg.mdha);

		aes_vid = (aesa & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT;
		md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT;

		des_inst = rd_reg32(&priv->ctrl->vreg.desa) & CHA_VER_NUM_MASK;
		aes_inst = aesa & CHA_VER_NUM_MASK;
		md_inst = mdha & CHA_VER_NUM_MASK;
	}
2560 2561

	/* If MD is present, limit digest size based on LP256 */
2562
	if (md_inst && md_vid  == CHA_VER_VID_MD_LP256)
2563 2564 2565
		md_limit = SHA256_DIGEST_SIZE;

	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
2566 2567
		struct caam_skcipher_alg *t_alg = driver_algs + i;
		u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

		/* Skip DES algorithms if not supported by device */
		if (!des_inst &&
		    ((alg_sel == OP_ALG_ALGSEL_3DES) ||
		     (alg_sel == OP_ALG_ALGSEL_DES)))
			continue;

		/* Skip AES algorithms if not supported by device */
		if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES))
			continue;

2579
		caam_skcipher_alg_init(t_alg);
2580

2581
		err = crypto_register_skcipher(&t_alg->skcipher);
2582
		if (err) {
2583
			dev_warn(ctrldev, "%s alg registration failed\n",
2584
				 t_alg->skcipher.base.cra_driver_name);
2585 2586 2587
			continue;
		}

2588
		t_alg->registered = true;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		registered = true;
	}

	for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
		struct caam_aead_alg *t_alg = driver_aeads + i;
		u32 c1_alg_sel = t_alg->caam.class1_alg_type &
				 OP_ALG_ALGSEL_MASK;
		u32 c2_alg_sel = t_alg->caam.class2_alg_type &
				 OP_ALG_ALGSEL_MASK;
		u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;

		/* Skip DES algorithms if not supported by device */
		if (!des_inst &&
		    ((c1_alg_sel == OP_ALG_ALGSEL_3DES) ||
		     (c1_alg_sel == OP_ALG_ALGSEL_DES)))
			continue;

		/* Skip AES algorithms if not supported by device */
		if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES))
			continue;

		/*
		 * Check support for AES algorithms not available
		 * on LP devices.
		 */
2614
		if (aes_vid  == CHA_VER_VID_AES_LP && alg_aai == OP_ALG_AAI_GCM)
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
			continue;

		/*
		 * Skip algorithms requiring message digests
		 * if MD or MD size is not supported by device.
		 */
		if (c2_alg_sel &&
		    (!md_inst || (t_alg->aead.maxauthsize > md_limit)))
			continue;

		caam_aead_alg_init(t_alg);

		err = crypto_register_aead(&t_alg->aead);
		if (err) {
			pr_warn("%s alg registration failed\n",
				t_alg->aead.base.cra_driver_name);
			continue;
		}

		t_alg->registered = true;
		registered = true;
	}

	if (registered)
2639
		dev_info(ctrldev, "algorithms registered in /proc/crypto\n");
2640 2641 2642

	return err;
}