kfd_crat.c 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2015-2017 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
22 23

#include <linux/pci.h>
24 25
#include <linux/acpi.h>
#include "kfd_crat.h"
26
#include "kfd_priv.h"
27
#include "kfd_topology.h"
28
#include "kfd_iommu.h"
A
Amber Lin 已提交
29
#include "amdgpu_amdkfd.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
 * GPU processor ID are expressed with Bit[31]=1.
 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
 * used in the CRAT.
 */
static uint32_t gpu_processor_id_low = 0x80001000;

/* Return the next available gpu_processor_id and increment it for next GPU
 *	@total_cu_count - Total CUs present in the GPU including ones
 *			  masked off
 */
static inline unsigned int get_and_inc_gpu_processor_id(
				unsigned int total_cu_count)
{
	int current_id = gpu_processor_id_low;

	gpu_processor_id_low += total_cu_count;
	return current_id;
}

/* Static table to describe GPU Cache information */
struct kfd_gpu_cache_info {
	uint32_t	cache_size;
	uint32_t	cache_level;
	uint32_t	flags;
	/* Indicates how many Compute Units share this cache
	 * Value = 1 indicates the cache is not shared
	 */
	uint32_t	num_cu_shared;
};

static struct kfd_gpu_cache_info kaveri_cache_info[] = {
	{
		/* TCP L1 Cache per CU */
		.cache_size = 16,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 1,

	},
	{
		/* Scalar L1 Instruction Cache (in SQC module) per bank */
		.cache_size = 16,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_INST_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 2,
	},
	{
		/* Scalar L1 Data Cache (in SQC module) per bank */
		.cache_size = 8,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 2,
	},

	/* TODO: Add L2 Cache information */
};


static struct kfd_gpu_cache_info carrizo_cache_info[] = {
	{
		/* TCP L1 Cache per CU */
		.cache_size = 16,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 1,
	},
	{
		/* Scalar L1 Instruction Cache (in SQC module) per bank */
		.cache_size = 8,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_INST_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 4,
	},
	{
		/* Scalar L1 Data Cache (in SQC module) per bank. */
		.cache_size = 4,
		.cache_level = 1,
		.flags = (CRAT_CACHE_FLAGS_ENABLED |
				CRAT_CACHE_FLAGS_DATA_CACHE |
				CRAT_CACHE_FLAGS_SIMD_CACHE),
		.num_cu_shared = 4,
	},

	/* TODO: Add L2 Cache information */
};

/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
 * the following ASICs may need a separate table.
 */
#define hawaii_cache_info kaveri_cache_info
#define tonga_cache_info carrizo_cache_info
#define fiji_cache_info  carrizo_cache_info
#define polaris10_cache_info carrizo_cache_info
#define polaris11_cache_info carrizo_cache_info
136
#define polaris12_cache_info carrizo_cache_info
137 138 139
/* TODO - check & update Vega10 cache details */
#define vega10_cache_info carrizo_cache_info
#define raven_cache_info carrizo_cache_info
140

141 142 143 144 145 146 147 148
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
		struct crat_subtype_computeunit *cu)
{
	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
	dev->node_props.cpu_core_id_base = cu->processor_id_low;
	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;

149
	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
150 151 152 153 154 155 156 157 158 159 160
			cu->processor_id_low);
}

static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
		struct crat_subtype_computeunit *cu)
{
	dev->node_props.simd_id_base = cu->processor_id_low;
	dev->node_props.simd_count = cu->num_simd_cores;
	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
	dev->node_props.wave_front_size = cu->wave_front_size;
161
	dev->node_props.array_count = cu->array_count;
162 163 164 165 166
	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
167
	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
168 169
}

170 171 172 173 174
/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
 * topology device present in the device_list
 */
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
				struct list_head *device_list)
175 176 177
{
	struct kfd_topology_device *dev;

178
	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
179
			cu->proximity_domain, cu->hsa_capability);
180 181
	list_for_each_entry(dev, device_list, list) {
		if (cu->proximity_domain == dev->proximity_domain) {
182 183 184 185 186 187 188 189 190 191 192 193
			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
				kfd_populated_cu_info_cpu(dev, cu);

			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
				kfd_populated_cu_info_gpu(dev, cu);
			break;
		}
	}

	return 0;
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
		struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *props;

	list_for_each_entry(props, &dev->mem_props, list) {
		if (props->heap_type == heap_type
				&& props->flags == flags
				&& props->width == width)
			return props;
	}

	return NULL;
}
209 210
/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
 * topology device present in the device_list
211
 */
212 213
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
				struct list_head *device_list)
214 215 216
{
	struct kfd_mem_properties *props;
	struct kfd_topology_device *dev;
217 218 219 220
	uint32_t heap_type;
	uint64_t size_in_bytes;
	uint32_t flags = 0;
	uint32_t width;
221

222
	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
223
			mem->proximity_domain);
224 225
	list_for_each_entry(dev, device_list, list) {
		if (mem->proximity_domain == dev->proximity_domain) {
226 227 228 229
			/* We're on GPU node */
			if (dev->node_props.cpu_cores_count == 0) {
				/* APU */
				if (mem->visibility_type == 0)
230
					heap_type =
231 232 233
						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
				/* dGPU */
				else
234
					heap_type = mem->visibility_type;
235
			} else
236
				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
237 238

			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
239
				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
240
			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
241
				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
242

243
			size_in_bytes =
244 245
				((uint64_t)mem->length_high << 32) +
							mem->length_low;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
			width = mem->width;

			/* Multiple banks of the same type are aggregated into
			 * one. User mode doesn't care about multiple physical
			 * memory segments. It's managed as a single virtual
			 * heap for user mode.
			 */
			props = find_subtype_mem(heap_type, flags, width, dev);
			if (props) {
				props->size_in_bytes += size_in_bytes;
				break;
			}

			props = kfd_alloc_struct(props);
			if (!props)
				return -ENOMEM;

			props->heap_type = heap_type;
			props->flags = flags;
			props->size_in_bytes = size_in_bytes;
			props->width = width;
267

268
			dev->node_props.mem_banks_count++;
269 270 271 272 273 274 275 276 277
			list_add_tail(&props->list, &dev->mem_props);

			break;
		}
	}

	return 0;
}

278 279
/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
 * topology device present in the device_list
280
 */
281 282
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
			struct list_head *device_list)
283 284 285 286
{
	struct kfd_cache_properties *props;
	struct kfd_topology_device *dev;
	uint32_t id;
287
	uint32_t total_num_of_cu;
288 289 290

	id = cache->processor_id_low;

291
	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	list_for_each_entry(dev, device_list, list) {
		total_num_of_cu = (dev->node_props.array_count *
					dev->node_props.cu_per_simd_array);

		/* Cache infomration in CRAT doesn't have proximity_domain
		 * information as it is associated with a CPU core or GPU
		 * Compute Unit. So map the cache using CPU core Id or SIMD
		 * (GPU) ID.
		 * TODO: This works because currently we can safely assume that
		 *  Compute Units are parsed before caches are parsed. In
		 *  future, remove this dependency
		 */
		if ((id >= dev->node_props.cpu_core_id_base &&
			id <= dev->node_props.cpu_core_id_base +
				dev->node_props.cpu_cores_count) ||
			(id >= dev->node_props.simd_id_base &&
			id < dev->node_props.simd_id_base +
				total_num_of_cu)) {
310 311 312 313 314 315 316 317 318 319 320
			props = kfd_alloc_struct(props);
			if (!props)
				return -ENOMEM;

			props->processor_id_low = id;
			props->cache_level = cache->cache_level;
			props->cache_size = cache->cache_size;
			props->cacheline_size = cache->cache_line_size;
			props->cachelines_per_tag = cache->lines_per_tag;
			props->cache_assoc = cache->associativity;
			props->cache_latency = cache->cache_latency;
321 322
			memcpy(props->sibling_map, cache->sibling_map,
					sizeof(props->sibling_map));
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_DATA;
			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_CPU;
			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
				props->cache_type |= HSA_CACHE_TYPE_HSACU;

			dev->cache_count++;
			dev->node_props.caches_count++;
			list_add_tail(&props->list, &dev->cache_props);

			break;
		}
339
	}
340 341 342 343

	return 0;
}

344 345
/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
 * topology device present in the device_list
346
 */
347 348
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
					struct list_head *device_list)
349
{
350
	struct kfd_iolink_properties *props = NULL, *props2;
351
	struct kfd_topology_device *dev, *to_dev;
352 353 354 355 356 357
	uint32_t id_from;
	uint32_t id_to;

	id_from = iolink->proximity_domain_from;
	id_to = iolink->proximity_domain_to;

358 359
	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
			id_from, id_to);
360 361
	list_for_each_entry(dev, device_list, list) {
		if (id_from == dev->proximity_domain) {
362 363 364 365 366 367 368 369
			props = kfd_alloc_struct(props);
			if (!props)
				return -ENOMEM;

			props->node_from = id_from;
			props->node_to = id_to;
			props->ver_maj = iolink->version_major;
			props->ver_min = iolink->version_minor;
370
			props->iolink_type = iolink->io_interface_type;
371

372 373
			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
				props->weight = 20;
374
			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
375
				props->weight = 15 * iolink->num_hops_xgmi;
376 377
			else
				props->weight = node_distance(id_from, id_to);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

			props->min_latency = iolink->minimum_latency;
			props->max_latency = iolink->maximum_latency;
			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
			props->rec_transfer_size =
					iolink->recommended_transfer_size;

			dev->io_link_count++;
			dev->node_props.io_links_count++;
			list_add_tail(&props->list, &dev->io_link_props);
			break;
		}
	}

393 394 395
	/* CPU topology is created before GPUs are detected, so CPU->GPU
	 * links are not built at that time. If a PCIe type is discovered, it
	 * means a GPU is detected and we are adding GPU->CPU to the topology.
396 397
	 * At this time, also add the corresponded CPU->GPU link if GPU
	 * is large bar.
398 399
	 * For xGMI, we only added the link with one direction in the crat
	 * table, add corresponded reversed direction link now.
400
	 */
401
	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
402 403
		to_dev = kfd_topology_device_by_proximity_domain(id_to);
		if (!to_dev)
404 405 406 407 408 409
			return -ENODEV;
		/* same everything but the other direction */
		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
		props2->node_from = id_to;
		props2->node_to = id_from;
		props2->kobj = NULL;
410 411 412
		to_dev->io_link_count++;
		to_dev->node_props.io_links_count++;
		list_add_tail(&props2->list, &to_dev->io_link_props);
413 414
	}

415 416 417
	return 0;
}

418 419 420 421 422 423 424
/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
 * present in the device_list
 *	@sub_type_hdr - subtype section of crat_image
 *	@device_list - list of topology devices present in this crat_image
 */
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
				struct list_head *device_list)
425 426 427 428 429 430 431 432 433 434
{
	struct crat_subtype_computeunit *cu;
	struct crat_subtype_memory *mem;
	struct crat_subtype_cache *cache;
	struct crat_subtype_iolink *iolink;
	int ret = 0;

	switch (sub_type_hdr->type) {
	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
435
		ret = kfd_parse_subtype_cu(cu, device_list);
436 437 438
		break;
	case CRAT_SUBTYPE_MEMORY_AFFINITY:
		mem = (struct crat_subtype_memory *)sub_type_hdr;
439
		ret = kfd_parse_subtype_mem(mem, device_list);
440 441 442
		break;
	case CRAT_SUBTYPE_CACHE_AFFINITY:
		cache = (struct crat_subtype_cache *)sub_type_hdr;
443
		ret = kfd_parse_subtype_cache(cache, device_list);
444 445 446 447 448
		break;
	case CRAT_SUBTYPE_TLB_AFFINITY:
		/*
		 * For now, nothing to do here
		 */
449
		pr_debug("Found TLB entry in CRAT table (not processing)\n");
450 451 452 453 454
		break;
	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
		/*
		 * For now, nothing to do here
		 */
455
		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
456 457 458
		break;
	case CRAT_SUBTYPE_IOLINK_AFFINITY:
		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
459
		ret = kfd_parse_subtype_iolink(iolink, device_list);
460 461 462 463 464 465 466 467 468
		break;
	default:
		pr_warn("Unknown subtype %d in CRAT\n",
				sub_type_hdr->type);
	}

	return ret;
}

469 470 471 472 473 474 475 476 477 478 479 480
/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
 * create a kfd_topology_device and add in to device_list. Also parse
 * CRAT subtypes and attach it to appropriate kfd_topology_device
 *	@crat_image - input image containing CRAT
 *	@device_list - [OUT] list of kfd_topology_device generated after
 *		       parsing crat_image
 *	@proximity_domain - Proximity domain of the first device in the table
 *
 *	Return - 0 if successful else -ve value
 */
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
			 uint32_t proximity_domain)
481
{
482
	struct kfd_topology_device *top_dev = NULL;
483 484
	struct crat_subtype_generic *sub_type_hdr;
	uint16_t node_id;
485
	int ret = 0;
486 487 488 489 490 491 492
	struct crat_header *crat_table = (struct crat_header *)crat_image;
	uint16_t num_nodes;
	uint32_t image_len;

	if (!crat_image)
		return -EINVAL;

493 494 495 496 497
	if (!list_empty(device_list)) {
		pr_warn("Error device list should be empty\n");
		return -EINVAL;
	}

498 499 500 501 502 503
	num_nodes = crat_table->num_domains;
	image_len = crat_table->length;

	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);

	for (node_id = 0; node_id < num_nodes; node_id++) {
504 505 506 507 508 509 510 511 512
		top_dev = kfd_create_topology_device(device_list);
		if (!top_dev)
			break;
		top_dev->proximity_domain = proximity_domain++;
	}

	if (!top_dev) {
		ret = -ENOMEM;
		goto err;
513 514
	}

515 516 517 518
	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
			CRAT_OEMTABLEID_LENGTH);
	top_dev->oem_revision = crat_table->oem_revision;
519 520 521 522 523

	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
			((char *)crat_image) + image_len) {
		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
524 525 526
			ret = kfd_parse_subtype(sub_type_hdr, device_list);
			if (ret)
				break;
527 528 529 530 531 532
		}

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
				sub_type_hdr->length);
	}

533 534 535
err:
	if (ret)
		kfd_release_topology_device_list(device_list);
536

537
	return ret;
538 539
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
static int fill_in_pcache(struct crat_subtype_cache *pcache,
				struct kfd_gpu_cache_info *pcache_info,
				struct kfd_cu_info *cu_info,
				int mem_available,
				int cu_bitmask,
				int cache_type, unsigned int cu_processor_id,
				int cu_block)
{
	unsigned int cu_sibling_map_mask;
	int first_active_cu;

	/* First check if enough memory is available */
	if (sizeof(struct crat_subtype_cache) > mem_available)
		return -ENOMEM;

	cu_sibling_map_mask = cu_bitmask;
	cu_sibling_map_mask >>= cu_block;
	cu_sibling_map_mask &=
		((1 << pcache_info[cache_type].num_cu_shared) - 1);
	first_active_cu = ffs(cu_sibling_map_mask);

	/* CU could be inactive. In case of shared cache find the first active
	 * CU. and incase of non-shared cache check if the CU is inactive. If
	 * inactive active skip it
	 */
	if (first_active_cu) {
		memset(pcache, 0, sizeof(struct crat_subtype_cache));
		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
		pcache->length = sizeof(struct crat_subtype_cache);
		pcache->flags = pcache_info[cache_type].flags;
		pcache->processor_id_low = cu_processor_id
					 + (first_active_cu - 1);
		pcache->cache_level = pcache_info[cache_type].cache_level;
		pcache->cache_size = pcache_info[cache_type].cache_size;

		/* Sibling map is w.r.t processor_id_low, so shift out
		 * inactive CU
		 */
		cu_sibling_map_mask =
			cu_sibling_map_mask >> (first_active_cu - 1);

		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
		pcache->sibling_map[1] =
				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
		pcache->sibling_map[2] =
				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
		pcache->sibling_map[3] =
				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
		return 0;
	}
	return 1;
}

/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
 * tables
 *
 *	@kdev - [IN] GPU device
 *	@gpu_processor_id - [IN] GPU processor ID to which these caches
 *			    associate
 *	@available_size - [IN] Amount of memory available in pcache
 *	@cu_info - [IN] Compute Unit info obtained from KGD
 *	@pcache - [OUT] memory into which cache data is to be filled in.
 *	@size_filled - [OUT] amount of data used up in pcache.
 *	@num_of_entries - [OUT] number of caches added
 */
static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
			int gpu_processor_id,
			int available_size,
			struct kfd_cu_info *cu_info,
			struct crat_subtype_cache *pcache,
			int *size_filled,
			int *num_of_entries)
{
	struct kfd_gpu_cache_info *pcache_info;
	int num_of_cache_types = 0;
	int i, j, k;
	int ct = 0;
	int mem_available = available_size;
	unsigned int cu_processor_id;
	int ret;

	switch (kdev->device_info->asic_family) {
	case CHIP_KAVERI:
		pcache_info = kaveri_cache_info;
		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
		break;
	case CHIP_HAWAII:
		pcache_info = hawaii_cache_info;
		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
		break;
	case CHIP_CARRIZO:
		pcache_info = carrizo_cache_info;
		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
		break;
	case CHIP_TONGA:
		pcache_info = tonga_cache_info;
		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
		break;
	case CHIP_FIJI:
		pcache_info = fiji_cache_info;
		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
		break;
	case CHIP_POLARIS10:
		pcache_info = polaris10_cache_info;
		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
		break;
	case CHIP_POLARIS11:
		pcache_info = polaris11_cache_info;
		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
		break;
651 652 653 654
	case CHIP_POLARIS12:
		pcache_info = polaris12_cache_info;
		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
		break;
655
	case CHIP_VEGA10:
656
	case CHIP_VEGA12:
657
	case CHIP_VEGA20:
658 659 660 661 662 663 664
		pcache_info = vega10_cache_info;
		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
		break;
	case CHIP_RAVEN:
		pcache_info = raven_cache_info;
		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
		break;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	default:
		return -EINVAL;
	}

	*size_filled = 0;
	*num_of_entries = 0;

	/* For each type of cache listed in the kfd_gpu_cache_info table,
	 * go through all available Compute Units.
	 * The [i,j,k] loop will
	 *		if kfd_gpu_cache_info.num_cu_shared = 1
	 *			will parse through all available CU
	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
	 *			then it will consider only one CU from
	 *			the shared unit
	 */

	for (ct = 0; ct < num_of_cache_types; ct++) {
		cu_processor_id = gpu_processor_id;
		for (i = 0; i < cu_info->num_shader_engines; i++) {
			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
				j++) {
				for (k = 0; k < cu_info->num_cu_per_sh;
					k += pcache_info[ct].num_cu_shared) {

					ret = fill_in_pcache(pcache,
						pcache_info,
						cu_info,
						mem_available,
						cu_info->cu_bitmap[i][j],
						ct,
						cu_processor_id,
						k);

					if (ret < 0)
						break;

					if (!ret) {
						pcache++;
						(*num_of_entries)++;
						mem_available -=
							sizeof(*pcache);
						(*size_filled) +=
							sizeof(*pcache);
					}

					/* Move to next CU block */
					cu_processor_id +=
						pcache_info[ct].num_cu_shared;
				}
			}
		}
	}

	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);

	return 0;
}

724 725 726 727 728 729 730 731 732 733 734 735
/*
 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
 * copies CRAT from ACPI (if available).
 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
 *
 *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
 *		     crat_image will be NULL
 *	@size: [OUT] size of crat_image
 *
 *	Return 0 if successful else return error code
 */
int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
736 737 738
{
	struct acpi_table_header *crat_table;
	acpi_status status;
739
	void *pcrat_image;
740

741
	if (!crat_image)
742 743
		return -EINVAL;

744 745 746
	*crat_image = NULL;

	/* Fetch the CRAT table from ACPI */
747 748 749 750 751 752 753 754 755 756 757
	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
	if (status == AE_NOT_FOUND) {
		pr_warn("CRAT table not found\n");
		return -ENODATA;
	} else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);

		pr_err("CRAT table error: %s\n", err);
		return -EINVAL;
	}

758 759 760 761 762
	if (ignore_crat) {
		pr_info("CRAT table disabled by module option\n");
		return -ENODATA;
	}

763
	pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL);
764 765 766 767
	if (!pcrat_image)
		return -ENOMEM;

	*crat_image = pcrat_image;
768 769 770 771
	*size = crat_table->length;

	return 0;
}
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/* Memory required to create Virtual CRAT.
 * Since there is no easy way to predict the amount of memory required, the
 * following amount are allocated for CPU and GPU Virtual CRAT. This is
 * expected to cover all known conditions. But to be safe additional check
 * is put in the code to ensure we don't overwrite.
 */
#define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
#define VCRAT_SIZE_FOR_GPU	(3 * PAGE_SIZE)

/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
 *
 *	@numa_node_id: CPU NUMA node id
 *	@avail_size: Available size in the memory
 *	@sub_type_hdr: Memory into which compute info will be filled in
 *
 *	Return 0 if successful else return -ve value
 */
static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
				int proximity_domain,
				struct crat_subtype_computeunit *sub_type_hdr)
{
	const struct cpumask *cpumask;

	*avail_size -= sizeof(struct crat_subtype_computeunit);
	if (*avail_size < 0)
		return -ENOMEM;

	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));

	/* Fill in subtype header data */
	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

	cpumask = cpumask_of_node(numa_node_id);

	/* Fill in CU data */
	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
	sub_type_hdr->proximity_domain = proximity_domain;
	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
	if (sub_type_hdr->processor_id_low == -1)
		return -EINVAL;

	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);

	return 0;
}

/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
 *
 *	@numa_node_id: CPU NUMA node id
 *	@avail_size: Available size in the memory
 *	@sub_type_hdr: Memory into which compute info will be filled in
 *
 *	Return 0 if successful else return -ve value
 */
static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
			int proximity_domain,
			struct crat_subtype_memory *sub_type_hdr)
{
	uint64_t mem_in_bytes = 0;
	pg_data_t *pgdat;
	int zone_type;

	*avail_size -= sizeof(struct crat_subtype_memory);
	if (*avail_size < 0)
		return -ENOMEM;

	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));

	/* Fill in subtype header data */
	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

	/* Fill in Memory Subunit data */

	/* Unlike si_meminfo, si_meminfo_node is not exported. So
	 * the following lines are duplicated from si_meminfo_node
	 * function
	 */
	pgdat = NODE_DATA(numa_node_id);
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
856
		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
857 858 859 860 861 862 863 864 865
	mem_in_bytes <<= PAGE_SHIFT;

	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
	sub_type_hdr->proximity_domain = proximity_domain;

	return 0;
}

866
#ifdef CONFIG_X86_64
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
				uint32_t *num_entries,
				struct crat_subtype_iolink *sub_type_hdr)
{
	int nid;
	struct cpuinfo_x86 *c = &cpu_data(0);
	uint8_t link_type;

	if (c->x86_vendor == X86_VENDOR_AMD)
		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
	else
		link_type = CRAT_IOLINK_TYPE_QPI_1_1;

	*num_entries = 0;

	/* Create IO links from this node to other CPU nodes */
	for_each_online_node(nid) {
		if (nid == numa_node_id) /* node itself */
			continue;

		*avail_size -= sizeof(struct crat_subtype_iolink);
		if (*avail_size < 0)
			return -ENOMEM;

		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));

		/* Fill in subtype header data */
		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

		/* Fill in IO link data */
		sub_type_hdr->proximity_domain_from = numa_node_id;
		sub_type_hdr->proximity_domain_to = nid;
		sub_type_hdr->io_interface_type = link_type;

		(*num_entries)++;
		sub_type_hdr++;
	}

	return 0;
}
909
#endif
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
 *
 *	@pcrat_image: Fill in VCRAT for CPU
 *	@size:	[IN] allocated size of crat_image.
 *		[OUT] actual size of data filled in crat_image
 */
static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
{
	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
	struct acpi_table_header *acpi_table;
	acpi_status status;
	struct crat_subtype_generic *sub_type_hdr;
	int avail_size = *size;
	int numa_node_id;
925
#ifdef CONFIG_X86_64
926
	uint32_t entries = 0;
927
#endif
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	int ret = 0;

	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
		return -EINVAL;

	/* Fill in CRAT Header.
	 * Modify length and total_entries as subunits are added.
	 */
	avail_size -= sizeof(struct crat_header);
	if (avail_size < 0)
		return -ENOMEM;

	memset(crat_table, 0, sizeof(struct crat_header));
	memcpy(&crat_table->signature, CRAT_SIGNATURE,
			sizeof(crat_table->signature));
	crat_table->length = sizeof(struct crat_header);

	status = acpi_get_table("DSDT", 0, &acpi_table);
946
	if (status != AE_OK)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
		pr_warn("DSDT table not found for OEM information\n");
	else {
		crat_table->oem_revision = acpi_table->revision;
		memcpy(crat_table->oem_id, acpi_table->oem_id,
				CRAT_OEMID_LENGTH);
		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
				CRAT_OEMTABLEID_LENGTH);
	}
	crat_table->total_entries = 0;
	crat_table->num_domains = 0;

	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);

	for_each_online_node(numa_node_id) {
		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
			continue;

		/* Fill in Subtype: Compute Unit */
		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
			crat_table->num_domains,
			(struct crat_subtype_computeunit *)sub_type_hdr);
		if (ret < 0)
			return ret;
		crat_table->length += sub_type_hdr->length;
		crat_table->total_entries++;

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
			sub_type_hdr->length);

		/* Fill in Subtype: Memory */
		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
			crat_table->num_domains,
			(struct crat_subtype_memory *)sub_type_hdr);
		if (ret < 0)
			return ret;
		crat_table->length += sub_type_hdr->length;
		crat_table->total_entries++;

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
			sub_type_hdr->length);

		/* Fill in Subtype: IO Link */
989
#ifdef CONFIG_X86_64
990 991 992 993 994 995 996 997 998 999
		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
				&entries,
				(struct crat_subtype_iolink *)sub_type_hdr);
		if (ret < 0)
			return ret;
		crat_table->length += (sub_type_hdr->length * entries);
		crat_table->total_entries += entries;

		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
				sub_type_hdr->length * entries);
1000 1001 1002
#else
		pr_info("IO link not available for non x86 platforms\n");
#endif
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

		crat_table->num_domains++;
	}

	/* TODO: Add cache Subtype for CPU.
	 * Currently, CPU cache information is available in function
	 * detect_cache_attributes(cpu) defined in the file
	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
	 * exported and to get the same information the code needs to be
	 * duplicated.
	 */

	*size = crat_table->length;
	pr_info("Virtual CRAT table created for CPU\n");

	return 0;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static int kfd_fill_gpu_memory_affinity(int *avail_size,
		struct kfd_dev *kdev, uint8_t type, uint64_t size,
		struct crat_subtype_memory *sub_type_hdr,
		uint32_t proximity_domain,
		const struct kfd_local_mem_info *local_mem_info)
{
	*avail_size -= sizeof(struct crat_subtype_memory);
	if (*avail_size < 0)
		return -ENOMEM;

	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;

	sub_type_hdr->proximity_domain = proximity_domain;

	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
			type, size);

	sub_type_hdr->length_low = lower_32_bits(size);
	sub_type_hdr->length_high = upper_32_bits(size);

	sub_type_hdr->width = local_mem_info->vram_width;
	sub_type_hdr->visibility_type = type;

	return 0;
}

/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
 * to its NUMA node
 *	@avail_size: Available size in the memory
 *	@kdev - [IN] GPU device
 *	@sub_type_hdr: Memory into which io link info will be filled in
 *	@proximity_domain - proximity domain of the GPU node
 *
 *	Return 0 if successful else return -ve value
 */
1059
static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
			struct kfd_dev *kdev,
			struct crat_subtype_iolink *sub_type_hdr,
			uint32_t proximity_domain)
{
	*avail_size -= sizeof(struct crat_subtype_iolink);
	if (*avail_size < 0)
		return -ENOMEM;

	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));

	/* Fill in subtype header data */
	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1074 1075
	if (kfd_dev_is_large_bar(kdev))
		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/* Fill in IOLINK subtype.
	 * TODO: Fill-in other fields of iolink subtype
	 */
	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
	sub_type_hdr->proximity_domain_from = proximity_domain;
#ifdef CONFIG_NUMA
	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
		sub_type_hdr->proximity_domain_to = 0;
	else
		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
#else
	sub_type_hdr->proximity_domain_to = 0;
#endif
	return 0;
}

1093 1094
static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
			struct kfd_dev *kdev,
1095
			struct kfd_dev *peer_kdev,
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
			struct crat_subtype_iolink *sub_type_hdr,
			uint32_t proximity_domain_from,
			uint32_t proximity_domain_to)
{
	*avail_size -= sizeof(struct crat_subtype_iolink);
	if (*avail_size < 0)
		return -ENOMEM;

	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));

	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1108 1109
	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1110 1111 1112 1113

	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
	sub_type_hdr->proximity_domain_from = proximity_domain_from;
	sub_type_hdr->proximity_domain_to = proximity_domain_to;
1114 1115
	sub_type_hdr->num_hops_xgmi =
		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
1116 1117 1118
	return 0;
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
 *
 *	@pcrat_image: Fill in VCRAT for GPU
 *	@size:	[IN] allocated size of crat_image.
 *		[OUT] actual size of data filled in crat_image
 */
static int kfd_create_vcrat_image_gpu(void *pcrat_image,
				      size_t *size, struct kfd_dev *kdev,
				      uint32_t proximity_domain)
{
	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
	struct crat_subtype_generic *sub_type_hdr;
1131 1132
	struct kfd_local_mem_info local_mem_info;
	struct kfd_topology_device *peer_dev;
1133 1134 1135 1136 1137 1138
	struct crat_subtype_computeunit *cu;
	struct kfd_cu_info cu_info;
	int avail_size = *size;
	uint32_t total_num_of_cu;
	int num_of_cache_entries = 0;
	int cache_mem_filled = 0;
1139
	uint32_t nid = 0;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	int ret = 0;

	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
		return -EINVAL;

	/* Fill the CRAT Header.
	 * Modify length and total_entries as subunits are added.
	 */
	avail_size -= sizeof(struct crat_header);
	if (avail_size < 0)
		return -ENOMEM;

	memset(crat_table, 0, sizeof(struct crat_header));

	memcpy(&crat_table->signature, CRAT_SIGNATURE,
			sizeof(crat_table->signature));
	/* Change length as we add more subtypes*/
	crat_table->length = sizeof(struct crat_header);
	crat_table->num_domains = 1;
	crat_table->total_entries = 0;

	/* Fill in Subtype: Compute Unit
	 * First fill in the sub type header and then sub type data
	 */
	avail_size -= sizeof(struct crat_subtype_computeunit);
	if (avail_size < 0)
		return -ENOMEM;

	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));

	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;

	/* Fill CU subtype data */
	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
	cu->proximity_domain = proximity_domain;

1180
	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	cu->num_simd_per_cu = cu_info.simd_per_cu;
	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
	cu->max_waves_simd = cu_info.max_waves_per_simd;

	cu->wave_front_size = cu_info.wave_front_size;
	cu->array_count = cu_info.num_shader_arrays_per_engine *
		cu_info.num_shader_engines;
	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
	cu->num_cu_per_array = cu_info.num_cu_per_sh;
	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
	cu->num_banks = cu_info.num_shader_engines;
	cu->lds_size_in_kb = cu_info.lds_size;

	cu->hsa_capability = 0;

	/* Check if this node supports IOMMU. During parsing this flag will
	 * translate to HSA_CAP_ATS_PRESENT
	 */
1200 1201
	if (!kfd_iommu_check_device(kdev))
		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1202 1203 1204 1205 1206 1207 1208 1209 1210

	crat_table->length += sub_type_hdr->length;
	crat_table->total_entries++;

	/* Fill in Subtype: Memory. Only on systems with large BAR (no
	 * private FB), report memory as public. On other systems
	 * report the total FB size (public+private) as a single
	 * private heap.
	 */
1211
	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1212 1213 1214
	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
			sub_type_hdr->length);

1215 1216 1217
	if (debug_largebar)
		local_mem_info.local_mem_size_private = 0;

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	if (local_mem_info.local_mem_size_private == 0)
		ret = kfd_fill_gpu_memory_affinity(&avail_size,
				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
				local_mem_info.local_mem_size_public,
				(struct crat_subtype_memory *)sub_type_hdr,
				proximity_domain,
				&local_mem_info);
	else
		ret = kfd_fill_gpu_memory_affinity(&avail_size,
				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
				local_mem_info.local_mem_size_public +
				local_mem_info.local_mem_size_private,
				(struct crat_subtype_memory *)sub_type_hdr,
				proximity_domain,
				&local_mem_info);
	if (ret < 0)
		return ret;

	crat_table->length += sizeof(struct crat_subtype_memory);
	crat_table->total_entries++;

	/* TODO: Fill in cache information. This information is NOT readily
	 * available in KGD
	 */
	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
		sub_type_hdr->length);
	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
				avail_size,
				&cu_info,
				(struct crat_subtype_cache *)sub_type_hdr,
				&cache_mem_filled,
				&num_of_cache_entries);

	if (ret < 0)
		return ret;

	crat_table->length += cache_mem_filled;
	crat_table->total_entries += num_of_cache_entries;
	avail_size -= cache_mem_filled;

	/* Fill in Subtype: IO_LINKS
	 *  Only direct links are added here which is Link from GPU to
	 *  to its NUMA node. Indirect links are added by userspace.
	 */
	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
		cache_mem_filled);
1264
	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1265 1266 1267 1268 1269 1270 1271 1272
		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);

	if (ret < 0)
		return ret;

	crat_table->length += sub_type_hdr->length;
	crat_table->total_entries++;

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	/* Fill in Subtype: IO_LINKS
	 * Direct links from GPU to other GPUs through xGMI.
	 * We will loop GPUs that already be processed (with lower value
	 * of proximity_domain), add the link for the GPUs with same
	 * hive id (from this GPU to other GPU) . The reversed iolink
	 * (from other GPU to this GPU) will be added
	 * in kfd_parse_subtype_iolink.
	 */
	if (kdev->hive_id) {
		for (nid = 0; nid < proximity_domain; ++nid) {
			peer_dev = kfd_topology_device_by_proximity_domain(nid);
			if (!peer_dev->gpu)
				continue;
			if (peer_dev->gpu->hive_id != kdev->hive_id)
				continue;
			sub_type_hdr = (typeof(sub_type_hdr))(
				(char *)sub_type_hdr +
				sizeof(struct crat_subtype_iolink));
			ret = kfd_fill_gpu_xgmi_link_to_gpu(
1293
				&avail_size, kdev, peer_dev->gpu,
1294 1295 1296 1297 1298 1299 1300 1301
				(struct crat_subtype_iolink *)sub_type_hdr,
				proximity_domain, nid);
			if (ret < 0)
				return ret;
			crat_table->length += sub_type_hdr->length;
			crat_table->total_entries++;
		}
	}
1302 1303 1304 1305 1306 1307
	*size = crat_table->length;
	pr_info("Virtual CRAT table created for GPU\n");

	return ret;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
 *		creates a Virtual CRAT (VCRAT) image
 *
 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
 *
 *	@crat_image: VCRAT image created because ACPI does not have a
 *		     CRAT for this device
 *	@size: [OUT] size of virtual crat_image
 *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
 *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
 *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
 *			-- this option is not currently implemented.
 *			The assumption is that all AMD APUs will have CRAT
 *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
 *
 *	Return 0 if successful else return -ve value
 */
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
				  int flags, struct kfd_dev *kdev,
				  uint32_t proximity_domain)
{
	void *pcrat_image = NULL;
	int ret = 0;

	if (!crat_image)
		return -EINVAL;

	*crat_image = NULL;

	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
	 * all the current conditions. A check is put not to overwrite beyond
	 * allocated size
	 */
	switch (flags) {
	case COMPUTE_UNIT_CPU:
		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
		if (!pcrat_image)
			return -ENOMEM;
		*size = VCRAT_SIZE_FOR_CPU;
		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
		break;
	case COMPUTE_UNIT_GPU:
1351 1352 1353 1354 1355 1356 1357 1358
		if (!kdev)
			return -EINVAL;
		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
		if (!pcrat_image)
			return -ENOMEM;
		*size = VCRAT_SIZE_FOR_GPU;
		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
						 proximity_domain);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
		break;
	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
		/* TODO: */
		ret = -EINVAL;
		pr_err("VCRAT not implemented for APU\n");
		break;
	default:
		ret = -EINVAL;
	}

	if (!ret)
		*crat_image = pcrat_image;
	else
		kfree(pcrat_image);

	return ret;
}


/* kfd_destroy_crat_image
1379 1380 1381 1382 1383 1384 1385 1386
 *
 *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
 *
 */
void kfd_destroy_crat_image(void *crat_image)
{
	kfree(crat_image);
}