emulate.c 70.1 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: Instruction/Exception emulation
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */
11 12 13

#include <linux/errno.h>
#include <linux/err.h>
14
#include <linux/ktime.h>
15 16 17 18 19 20 21 22
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
#include <linux/random.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
23
#include <asm/cacheops.h>
24 25 26 27 28 29 30 31 32
#include <asm/cpu-info.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/inst.h>

#undef CONFIG_MIPS_MT
#include <asm/r4kcache.h>
#define CONFIG_MIPS_MT

33 34
#include "interrupt.h"
#include "commpage.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

#include "trace.h"

/*
 * Compute the return address and do emulate branch simulation, if required.
 * This function should be called only in branch delay slot active.
 */
unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
	unsigned long instpc)
{
	unsigned int dspcontrol;
	union mips_instruction insn;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	long epc = instpc;
	long nextpc = KVM_INVALID_INST;

	if (epc & 3)
		goto unaligned;

54
	/* Read the instruction */
55
	insn.word = kvm_get_inst((u32 *) epc, vcpu);
56 57 58 59 60

	if (insn.word == KVM_INVALID_INST)
		return KVM_INVALID_INST;

	switch (insn.i_format.opcode) {
61
		/* jr and jalr are in r_format format. */
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	case spec_op:
		switch (insn.r_format.func) {
		case jalr_op:
			arch->gprs[insn.r_format.rd] = epc + 8;
			/* Fall through */
		case jr_op:
			nextpc = arch->gprs[insn.r_format.rs];
			break;
		}
		break;

		/*
		 * This group contains:
		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
		 */
	case bcond_op:
		switch (insn.i_format.rt) {
		case bltz_op:
		case bltzl_op:
			if ((long)arch->gprs[insn.i_format.rs] < 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bgez_op:
		case bgezl_op:
			if ((long)arch->gprs[insn.i_format.rs] >= 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bltzal_op:
		case bltzall_op:
			arch->gprs[31] = epc + 8;
			if ((long)arch->gprs[insn.i_format.rs] < 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bgezal_op:
		case bgezall_op:
			arch->gprs[31] = epc + 8;
			if ((long)arch->gprs[insn.i_format.rs] >= 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;
		case bposge32_op:
			if (!cpu_has_dsp)
				goto sigill;

			dspcontrol = rddsp(0x01);

123
			if (dspcontrol >= 32)
124
				epc = epc + 4 + (insn.i_format.simmediate << 2);
125
			else
126 127 128 129 130 131
				epc += 8;
			nextpc = epc;
			break;
		}
		break;

132
		/* These are unconditional and in j_format. */
133 134 135 136 137 138 139 140 141 142
	case jal_op:
		arch->gprs[31] = instpc + 8;
	case j_op:
		epc += 4;
		epc >>= 28;
		epc <<= 28;
		epc |= (insn.j_format.target << 2);
		nextpc = epc;
		break;

143
		/* These are conditional and in i_format. */
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	case beq_op:
	case beql_op:
		if (arch->gprs[insn.i_format.rs] ==
		    arch->gprs[insn.i_format.rt])
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

	case bne_op:
	case bnel_op:
		if (arch->gprs[insn.i_format.rs] !=
		    arch->gprs[insn.i_format.rt])
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

164 165 166 167 168 169
	case blez_op:	/* POP06 */
#ifndef CONFIG_CPU_MIPSR6
	case blezl_op:	/* removed in R6 */
#endif
		if (insn.i_format.rt != 0)
			goto compact_branch;
170 171 172 173 174 175 176
		if ((long)arch->gprs[insn.i_format.rs] <= 0)
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

177 178 179 180 181 182
	case bgtz_op:	/* POP07 */
#ifndef CONFIG_CPU_MIPSR6
	case bgtzl_op:	/* removed in R6 */
#endif
		if (insn.i_format.rt != 0)
			goto compact_branch;
183 184 185 186 187 188 189
		if ((long)arch->gprs[insn.i_format.rs] > 0)
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

190
		/* And now the FPA/cp1 branch instructions. */
191
	case cop1_op:
192
		kvm_err("%s: unsupported cop1_op\n", __func__);
193
		break;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

#ifdef CONFIG_CPU_MIPSR6
	/* R6 added the following compact branches with forbidden slots */
	case blezl_op:	/* POP26 */
	case bgtzl_op:	/* POP27 */
		/* only rt == 0 isn't compact branch */
		if (insn.i_format.rt != 0)
			goto compact_branch;
		break;
	case pop10_op:
	case pop30_op:
		/* only rs == rt == 0 is reserved, rest are compact branches */
		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
			goto compact_branch;
		break;
	case pop66_op:
	case pop76_op:
		/* only rs == 0 isn't compact branch */
		if (insn.i_format.rs != 0)
			goto compact_branch;
		break;
compact_branch:
		/*
		 * If we've hit an exception on the forbidden slot, then
		 * the branch must not have been taken.
		 */
		epc += 8;
		nextpc = epc;
		break;
#else
compact_branch:
		/* Compact branches not supported before R6 */
		break;
#endif
228 229 230 231 232
	}

	return nextpc;

unaligned:
233
	kvm_err("%s: unaligned epc\n", __func__);
234 235 236
	return nextpc;

sigill:
237
	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
238 239 240
	return nextpc;
}

241
enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
242 243 244 245 246 247 248 249 250 251
{
	unsigned long branch_pc;
	enum emulation_result er = EMULATE_DONE;

	if (cause & CAUSEF_BD) {
		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
		if (branch_pc == KVM_INVALID_INST) {
			er = EMULATE_FAIL;
		} else {
			vcpu->arch.pc = branch_pc;
252 253
			kvm_debug("BD update_pc(): New PC: %#lx\n",
				  vcpu->arch.pc);
254 255 256 257 258 259 260 261 262
		}
	} else
		vcpu->arch.pc += 4;

	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);

	return er;
}

263 264 265
/**
 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 * @vcpu:	Virtual CPU.
266
 *
267 268
 * Returns:	1 if the CP0_Count timer is disabled by either the guest
 *		CP0_Cause.DC bit or the count_ctl.DC bit.
269
 *		0 otherwise (in which case CP0_Count timer is running).
270
 */
271
static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
272 273
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
274

275 276
	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
277
}
278

279 280 281 282 283 284 285
/**
 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 *
 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 */
286
static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
287 288 289 290 291 292 293 294 295 296 297 298 299
{
	s64 now_ns, periods;
	u64 delta;

	now_ns = ktime_to_ns(now);
	delta = now_ns + vcpu->arch.count_dyn_bias;

	if (delta >= vcpu->arch.count_period) {
		/* If delta is out of safe range the bias needs adjusting */
		periods = div64_s64(now_ns, vcpu->arch.count_period);
		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
		/* Recalculate delta with new bias */
		delta = now_ns + vcpu->arch.count_dyn_bias;
300 301
	}

302 303 304 305 306 307 308 309 310 311 312 313 314
	/*
	 * We've ensured that:
	 *   delta < count_period
	 *
	 * Therefore the intermediate delta*count_hz will never overflow since
	 * at the boundary condition:
	 *   delta = count_period
	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
	 *   delta * count_hz = NSEC_PER_SEC * 2^32
	 */
	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/**
 * kvm_mips_count_time() - Get effective current time.
 * @vcpu:	Virtual CPU.
 *
 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 * except when the master disable bit is set in count_ctl, in which case it is
 * count_resume, i.e. the time that the count was disabled.
 *
 * Returns:	Effective monotonic ktime for CP0_Count.
 */
static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
{
	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
		return vcpu->arch.count_resume;

	return ktime_get();
}

333 334 335 336 337 338 339 340 341 342
/**
 * kvm_mips_read_count_running() - Read the current count value as if running.
 * @vcpu:	Virtual CPU.
 * @now:	Kernel time to read CP0_Count at.
 *
 * Returns the current guest CP0_Count register at time @now and handles if the
 * timer interrupt is pending and hasn't been handled yet.
 *
 * Returns:	The current value of the guest CP0_Count register.
 */
343
static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
344
{
345 346
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	ktime_t expires, threshold;
347
	u32 count, compare;
348 349
	int running;

350 351 352 353 354 355 356 357
	/* Calculate the biased and scaled guest CP0_Count */
	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
	compare = kvm_read_c0_guest_compare(cop0);

	/*
	 * Find whether CP0_Count has reached the closest timer interrupt. If
	 * not, we shouldn't inject it.
	 */
358
	if ((s32)(count - compare) < 0)
359 360 361 362 363 364 365 366
		return count;

	/*
	 * The CP0_Count we're going to return has already reached the closest
	 * timer interrupt. Quickly check if it really is a new interrupt by
	 * looking at whether the interval until the hrtimer expiry time is
	 * less than 1/4 of the timer period.
	 */
367
	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
368 369
	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
	if (ktime_before(expires, threshold)) {
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
		/*
		 * Cancel it while we handle it so there's no chance of
		 * interference with the timeout handler.
		 */
		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);

		/* Nothing should be waiting on the timeout */
		kvm_mips_callbacks->queue_timer_int(vcpu);

		/*
		 * Restart the timer if it was running based on the expiry time
		 * we read, so that we don't push it back 2 periods.
		 */
		if (running) {
			expires = ktime_add_ns(expires,
					       vcpu->arch.count_period);
			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
				      HRTIMER_MODE_ABS);
		}
	}

391
	return count;
392 393 394 395 396 397 398 399 400 401 402
}

/**
 * kvm_mips_read_count() - Read the current count value.
 * @vcpu:	Virtual CPU.
 *
 * Read the current guest CP0_Count value, taking into account whether the timer
 * is stopped.
 *
 * Returns:	The current guest CP0_Count value.
 */
403
u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	/* If count disabled just read static copy of count */
	if (kvm_mips_count_disabled(vcpu))
		return kvm_read_c0_guest_count(cop0);

	return kvm_mips_read_count_running(vcpu, ktime_get());
}

/**
 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 * @vcpu:	Virtual CPU.
 * @count:	Output pointer for CP0_Count value at point of freeze.
 *
 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 * at the point it was frozen. It is guaranteed that any pending interrupts at
 * the point it was frozen are handled, and none after that point.
 *
 * This is useful where the time/CP0_Count is needed in the calculation of the
 * new parameters.
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 *
 * Returns:	The ktime at the point of freeze.
 */
430
static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	ktime_t now;

	/* stop hrtimer before finding time */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);
	now = ktime_get();

	/* find count at this point and handle pending hrtimer */
	*count = kvm_mips_read_count_running(vcpu, now);

	return now;
}

/**
 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 * @vcpu:	Virtual CPU.
 * @now:	ktime at point of resume.
 * @count:	CP0_Count at point of resume.
 *
 * Resumes the timer and updates the timer expiry based on @now and @count.
 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 * parameters need to be changed.
 *
 * It is guaranteed that a timer interrupt immediately after resume will be
 * handled, but not if CP_Compare is exactly at @count. That case is already
 * handled by kvm_mips_freeze_timer().
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 */
static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
461
				    ktime_t now, u32 count)
462 463
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
464
	u32 compare;
465 466 467 468 469
	u64 delta;
	ktime_t expire;

	/* Calculate timeout (wrap 0 to 2^32) */
	compare = kvm_read_c0_guest_compare(cop0);
470
	delta = (u64)(u32)(compare - count - 1) + 1;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
	expire = ktime_add_ns(now, delta);

	/* Update hrtimer to use new timeout */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);
	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
}

/**
 * kvm_mips_write_count() - Modify the count and update timer.
 * @vcpu:	Virtual CPU.
 * @count:	Guest CP0_Count value to set.
 *
 * Sets the CP0_Count value and updates the timer accordingly.
 */
486
void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
487 488 489 490 491
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	ktime_t now;

	/* Calculate bias */
492
	now = kvm_mips_count_time(vcpu);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);

	if (kvm_mips_count_disabled(vcpu))
		/* The timer's disabled, adjust the static count */
		kvm_write_c0_guest_count(cop0, count);
	else
		/* Update timeout */
		kvm_mips_resume_hrtimer(vcpu, now, count);
}

/**
 * kvm_mips_init_count() - Initialise timer.
 * @vcpu:	Virtual CPU.
 *
 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
 * it going if it's enabled.
 */
void kvm_mips_init_count(struct kvm_vcpu *vcpu)
{
	/* 100 MHz */
	vcpu->arch.count_hz = 100*1000*1000;
	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
					  vcpu->arch.count_hz);
	vcpu->arch.count_dyn_bias = 0;

	/* Starting at 0 */
	kvm_mips_write_count(vcpu, 0);
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/**
 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 * @vcpu:	Virtual CPU.
 * @count_hz:	Frequency of CP0_Count timer in Hz.
 *
 * Change the frequency of the CP0_Count timer. This is done atomically so that
 * CP0_Count is continuous and no timer interrupt is lost.
 *
 * Returns:	-EINVAL if @count_hz is out of range.
 *		0 on success.
 */
int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int dc;
	ktime_t now;
	u32 count;

	/* ensure the frequency is in a sensible range... */
	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
		return -EINVAL;
	/* ... and has actually changed */
	if (vcpu->arch.count_hz == count_hz)
		return 0;

	/* Safely freeze timer so we can keep it continuous */
	dc = kvm_mips_count_disabled(vcpu);
	if (dc) {
		now = kvm_mips_count_time(vcpu);
		count = kvm_read_c0_guest_count(cop0);
	} else {
		now = kvm_mips_freeze_hrtimer(vcpu, &count);
	}

	/* Update the frequency */
	vcpu->arch.count_hz = count_hz;
	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
	vcpu->arch.count_dyn_bias = 0;

	/* Calculate adjusted bias so dynamic count is unchanged */
	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);

	/* Update and resume hrtimer */
	if (!dc)
		kvm_mips_resume_hrtimer(vcpu, now, count);
	return 0;
}

570 571 572 573
/**
 * kvm_mips_write_compare() - Modify compare and update timer.
 * @vcpu:	Virtual CPU.
 * @compare:	New CP0_Compare value.
574
 * @ack:	Whether to acknowledge timer interrupt.
575 576
 *
 * Update CP0_Compare to a new value and update the timeout.
577 578
 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
 * any pending timer interrupt is preserved.
579
 */
580
void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
581 582
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
583 584 585
	int dc;
	u32 old_compare = kvm_read_c0_guest_compare(cop0);
	ktime_t now;
586
	u32 count;
587 588

	/* if unchanged, must just be an ack */
589 590 591 592 593
	if (old_compare == compare) {
		if (!ack)
			return;
		kvm_mips_callbacks->dequeue_timer_int(vcpu);
		kvm_write_c0_guest_compare(cop0, compare);
594
		return;
595 596 597 598 599 600 601 602 603
	}

	/* freeze_hrtimer() takes care of timer interrupts <= count */
	dc = kvm_mips_count_disabled(vcpu);
	if (!dc)
		now = kvm_mips_freeze_hrtimer(vcpu, &count);

	if (ack)
		kvm_mips_callbacks->dequeue_timer_int(vcpu);
604 605 606

	kvm_write_c0_guest_compare(cop0, compare);

607 608 609
	/* resume_hrtimer() takes care of timer interrupts > count */
	if (!dc)
		kvm_mips_resume_hrtimer(vcpu, now, count);
610 611 612 613 614 615 616 617 618
}

/**
 * kvm_mips_count_disable() - Disable count.
 * @vcpu:	Virtual CPU.
 *
 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 * time will be handled but not after.
 *
619 620
 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 * count_ctl.DC has been set (count disabled).
621 622 623 624 625 626
 *
 * Returns:	The time that the timer was stopped.
 */
static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
627
	u32 count;
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	ktime_t now;

	/* Stop hrtimer */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	/* Set the static count from the dynamic count, handling pending TI */
	now = ktime_get();
	count = kvm_mips_read_count_running(vcpu, now);
	kvm_write_c0_guest_count(cop0, count);

	return now;
}

/**
 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 * @vcpu:	Virtual CPU.
 *
 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
646 647
 * before the final stop time will be handled if the timer isn't disabled by
 * count_ctl.DC, but not after.
648 649 650 651 652 653 654 655
 *
 * Assumes CP0_Cause.DC is clear (count enabled).
 */
void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
656 657
	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
		kvm_mips_count_disable(vcpu);
658 659 660 661 662 663 664
}

/**
 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 * @vcpu:	Virtual CPU.
 *
 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
665 666 667
 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 * potentially before even returning, so the caller should be careful with
 * ordering of CP0_Cause modifications so as not to lose it.
668 669 670 671 672 673
 *
 * Assumes CP0_Cause.DC is set (count disabled).
 */
void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
674
	u32 count;
675 676 677 678 679

	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);

	/*
	 * Set the dynamic count to match the static count.
680 681
	 * This starts the hrtimer if count_ctl.DC allows it.
	 * Otherwise it conveniently updates the biases.
682 683 684 685 686
	 */
	count = kvm_read_c0_guest_count(cop0);
	kvm_mips_write_count(vcpu, count);
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/**
 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 * @vcpu:	Virtual CPU.
 * @count_ctl:	Count control register new value.
 *
 * Set the count control KVM register. The timer is updated accordingly.
 *
 * Returns:	-EINVAL if reserved bits are set.
 *		0 on success.
 */
int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
	s64 delta;
	ktime_t expire, now;
703
	u32 count, compare;
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	/* Only allow defined bits to be changed */
	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
		return -EINVAL;

	/* Apply new value */
	vcpu->arch.count_ctl = count_ctl;

	/* Master CP0_Count disable */
	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
		/* Is CP0_Cause.DC already disabling CP0_Count? */
		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
				/* Just record the current time */
				vcpu->arch.count_resume = ktime_get();
		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
			/* disable timer and record current time */
			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
		} else {
			/*
			 * Calculate timeout relative to static count at resume
			 * time (wrap 0 to 2^32).
			 */
			count = kvm_read_c0_guest_count(cop0);
			compare = kvm_read_c0_guest_compare(cop0);
729
			delta = (u64)(u32)(compare - count - 1) + 1;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
			delta = div_u64(delta * NSEC_PER_SEC,
					vcpu->arch.count_hz);
			expire = ktime_add_ns(vcpu->arch.count_resume, delta);

			/* Handle pending interrupt */
			now = ktime_get();
			if (ktime_compare(now, expire) >= 0)
				/* Nothing should be waiting on the timeout */
				kvm_mips_callbacks->queue_timer_int(vcpu);

			/* Resume hrtimer without changing bias */
			count = kvm_mips_read_count_running(vcpu, now);
			kvm_mips_resume_hrtimer(vcpu, now, count);
		}
	}

	return 0;
}

/**
 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 * @vcpu:		Virtual CPU.
 * @count_resume:	Count resume register new value.
 *
 * Set the count resume KVM register.
 *
 * Returns:	-EINVAL if out of valid range (0..now).
 *		0 on success.
 */
int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
{
	/*
	 * It doesn't make sense for the resume time to be in the future, as it
	 * would be possible for the next interrupt to be more than a full
	 * period in the future.
	 */
	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
		return -EINVAL;

	vcpu->arch.count_resume = ns_to_ktime(count_resume);
	return 0;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786
/**
 * kvm_mips_count_timeout() - Push timer forward on timeout.
 * @vcpu:	Virtual CPU.
 *
 * Handle an hrtimer event by push the hrtimer forward a period.
 *
 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 */
enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
{
	/* Add the Count period to the current expiry time */
	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
			       vcpu->arch.count_period);
	return HRTIMER_RESTART;
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
}

enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;

	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
			  kvm_read_c0_guest_epc(cop0));
		kvm_clear_c0_guest_status(cop0, ST0_EXL);
		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);

	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
		kvm_clear_c0_guest_status(cop0, ST0_ERL);
		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
	} else {
804 805
		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
			vcpu->arch.pc);
806 807 808 809 810 811 812 813 814 815 816 817
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
{
	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
		  vcpu->arch.pending_exceptions);

	++vcpu->stat.wait_exits;
818
	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
819 820 821 822
	if (!vcpu->arch.pending_exceptions) {
		vcpu->arch.wait = 1;
		kvm_vcpu_block(vcpu);

823 824 825
		/*
		 * We we are runnable, then definitely go off to user space to
		 * check if any I/O interrupts are pending.
826 827 828 829 830 831 832
		 */
		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
		}
	}

833
	return EMULATE_DONE;
834 835
}

836 837 838
/*
 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
 * we can catch this, if things ever change
839 840 841 842
 */
enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
843
	unsigned long pc = vcpu->arch.pc;
844

845
	kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
846
	return EMULATE_FAIL;
847 848 849 850 851 852 853 854
}

/* Write Guest TLB Entry @ Index */
enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int index = kvm_read_c0_guest_index(cop0);
	struct kvm_mips_tlb *tlb = NULL;
855
	unsigned long pc = vcpu->arch.pc;
856 857

	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
858
		kvm_debug("%s: illegal index: %d\n", __func__, index);
859
		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
860 861 862 863
			  pc, index, kvm_read_c0_guest_entryhi(cop0),
			  kvm_read_c0_guest_entrylo0(cop0),
			  kvm_read_c0_guest_entrylo1(cop0),
			  kvm_read_c0_guest_pagemask(cop0));
864 865 866 867
		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
	}

	tlb = &vcpu->arch.guest_tlb[index];
868 869 870 871
	/*
	 * Probe the shadow host TLB for the entry being overwritten, if one
	 * matches, invalidate it
	 */
872 873 874 875
	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);

	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
876 877
	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
878

879
	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
880 881 882 883
		  pc, index, kvm_read_c0_guest_entryhi(cop0),
		  kvm_read_c0_guest_entrylo0(cop0),
		  kvm_read_c0_guest_entrylo1(cop0),
		  kvm_read_c0_guest_pagemask(cop0));
884

885
	return EMULATE_DONE;
886 887 888 889 890 891 892
}

/* Write Guest TLB Entry @ Random Index */
enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_mips_tlb *tlb = NULL;
893
	unsigned long pc = vcpu->arch.pc;
894 895 896 897 898 899 900
	int index;

	get_random_bytes(&index, sizeof(index));
	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);

	tlb = &vcpu->arch.guest_tlb[index];

901 902 903 904
	/*
	 * Probe the shadow host TLB for the entry being overwritten, if one
	 * matches, invalidate it
	 */
905 906 907 908
	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);

	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
909 910
	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
911

912
	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
913 914 915
		  pc, index, kvm_read_c0_guest_entryhi(cop0),
		  kvm_read_c0_guest_entrylo0(cop0),
		  kvm_read_c0_guest_entrylo1(cop0));
916

917
	return EMULATE_DONE;
918 919 920 921 922 923
}

enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	long entryhi = kvm_read_c0_guest_entryhi(cop0);
924
	unsigned long pc = vcpu->arch.pc;
925 926 927 928 929 930
	int index = -1;

	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);

	kvm_write_c0_guest_index(cop0, index);

931
	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
932 933
		  index);

934
	return EMULATE_DONE;
935 936
}

937 938 939 940 941 942 943 944 945
/**
 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config1 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
{
946 947 948 949 950 951 952
	unsigned int mask = 0;

	/* Permit FPU to be present if FPU is supported */
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
		mask |= MIPS_CONF1_FP;

	return mask;
953 954 955 956 957 958 959 960 961 962 963
}

/**
 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config3 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
{
964 965
	/* Config4 and ULRI are optional */
	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
966 967 968 969 970 971

	/* Permit MSA to be present if MSA is supported */
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		mask |= MIPS_CONF3_MSA;

	return mask;
972 973 974 975 976 977 978 979 980 981 982 983
}

/**
 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config4 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
{
	/* Config5 is optional */
J
James Hogan 已提交
984 985 986 987 988 989
	unsigned int mask = MIPS_CONF_M;

	/* KScrExist */
	mask |= (unsigned int)vcpu->arch.kscratch_enabled << 16;

	return mask;
990 991 992 993 994 995 996 997 998 999 1000
}

/**
 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config5 CP0
 * register, by the guest itself.
 */
unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
{
1001 1002
	unsigned int mask = 0;

1003 1004 1005 1006
	/* Permit MSAEn changes if MSA supported and enabled */
	if (kvm_mips_guest_has_msa(&vcpu->arch))
		mask |= MIPS_CONF5_MSAEN;

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * Permit guest FPU mode changes if FPU is enabled and the relevant
	 * feature exists according to FIR register.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		if (cpu_has_fre)
			mask |= MIPS_CONF5_FRE;
		/* We don't support UFR or UFE */
	}

	return mask;
1018 1019
}

1020 1021
enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
					   u32 *opc, u32 cause,
1022
					   struct kvm_run *run,
1023
					   struct kvm_vcpu *vcpu)
1024 1025 1026
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;
1027
	u32 rt, rd, sel;
1028 1029 1030 1031 1032 1033 1034 1035
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
1036
	if (er == EMULATE_FAIL)
1037 1038
		return er;

1039 1040
	if (inst.co_format.co) {
		switch (inst.co_format.func) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		case tlbr_op:	/*  Read indexed TLB entry  */
			er = kvm_mips_emul_tlbr(vcpu);
			break;
		case tlbwi_op:	/*  Write indexed  */
			er = kvm_mips_emul_tlbwi(vcpu);
			break;
		case tlbwr_op:	/*  Write random  */
			er = kvm_mips_emul_tlbwr(vcpu);
			break;
		case tlbp_op:	/* TLB Probe */
			er = kvm_mips_emul_tlbp(vcpu);
			break;
		case rfe_op:
1054
			kvm_err("!!!COP0_RFE!!!\n");
1055 1056 1057 1058 1059 1060 1061 1062 1063
			break;
		case eret_op:
			er = kvm_mips_emul_eret(vcpu);
			goto dont_update_pc;
		case wait_op:
			er = kvm_mips_emul_wait(vcpu);
			break;
		}
	} else {
1064 1065 1066 1067 1068
		rt = inst.c0r_format.rt;
		rd = inst.c0r_format.rd;
		sel = inst.c0r_format.sel;

		switch (inst.c0r_format.rs) {
1069 1070 1071 1072 1073 1074
		case mfc_op:
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[rd][sel]++;
#endif
			/* Get reg */
			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1075 1076
				vcpu->arch.gprs[rt] =
				    (s32)kvm_mips_read_count(vcpu);
1077 1078 1079 1080 1081
			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
				vcpu->arch.gprs[rt] = 0x0;
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mfc0(inst, opc, vcpu);
#endif
1082
			} else {
1083
				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1084 1085 1086 1087 1088 1089

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mfc0(inst, opc, vcpu);
#endif
			}

1090 1091 1092
			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);
1093 1094 1095 1096
			break;

		case dmfc_op:
			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1097 1098 1099 1100

			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);
1101 1102 1103 1104 1105 1106
			break;

		case mtc_op:
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[rd][sel]++;
#endif
1107 1108 1109 1110
			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);

1111 1112 1113
			if ((rd == MIPS_CP0_TLB_INDEX)
			    && (vcpu->arch.gprs[rt] >=
				KVM_MIPS_GUEST_TLB_SIZE)) {
1114 1115
				kvm_err("Invalid TLB Index: %ld",
					vcpu->arch.gprs[rt]);
1116 1117 1118 1119 1120 1121 1122 1123 1124
				er = EMULATE_FAIL;
				break;
			}
#define C0_EBASE_CORE_MASK 0xff
			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
				/* Preserve CORE number */
				kvm_change_c0_guest_ebase(cop0,
							  ~(C0_EBASE_CORE_MASK),
							  vcpu->arch.gprs[rt]);
1125 1126
				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
					kvm_read_c0_guest_ebase(cop0));
1127
			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1128
				u32 nasid =
1129
					vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1130
				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1131
				    ((kvm_read_c0_guest_entryhi(cop0) &
1132
				      KVM_ENTRYHI_ASID) != nasid)) {
1133
					trace_kvm_asid_change(vcpu,
1134
						kvm_read_c0_guest_entryhi(cop0)
1135 1136
							& KVM_ENTRYHI_ASID,
						nasid);
1137 1138 1139 1140 1141 1142 1143 1144 1145

					/* Blow away the shadow host TLBs */
					kvm_mips_flush_host_tlb(1);
				}
				kvm_write_c0_guest_entryhi(cop0,
							   vcpu->arch.gprs[rt]);
			}
			/* Are we writing to COUNT */
			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1146
				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1147 1148 1149 1150
				goto done;
			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
				/* If we are writing to COMPARE */
				/* Clear pending timer interrupt, if any */
1151
				kvm_mips_write_compare(vcpu,
1152 1153
						       vcpu->arch.gprs[rt],
						       true);
1154
			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
				unsigned int old_val, val, change;

				old_val = kvm_read_c0_guest_status(cop0);
				val = vcpu->arch.gprs[rt];
				change = val ^ old_val;

				/* Make sure that the NMI bit is never set */
				val &= ~ST0_NMI;

				/*
				 * Don't allow CU1 or FR to be set unless FPU
				 * capability enabled and exists in guest
				 * configuration.
				 */
				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
					val &= ~(ST0_CU1 | ST0_FR);

				/*
				 * Also don't allow FR to be set if host doesn't
				 * support it.
				 */
				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
					val &= ~ST0_FR;


				/* Handle changes in FPU mode */
				preempt_disable();

				/*
				 * FPU and Vector register state is made
				 * UNPREDICTABLE by a change of FR, so don't
				 * even bother saving it.
				 */
				if (change & ST0_FR)
					kvm_drop_fpu(vcpu);

1191 1192 1193 1194 1195 1196 1197 1198 1199
				/*
				 * If MSA state is already live, it is undefined
				 * how it interacts with FR=0 FPU state, and we
				 * don't want to hit reserved instruction
				 * exceptions trying to save the MSA state later
				 * when CU=1 && FR=1, so play it safe and save
				 * it first.
				 */
				if (change & ST0_CU1 && !(val & ST0_FR) &&
1200
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1201 1202
					kvm_lose_fpu(vcpu);

1203
				/*
1204 1205 1206 1207 1208
				 * Propagate CU1 (FPU enable) changes
				 * immediately if the FPU context is already
				 * loaded. When disabling we leave the context
				 * loaded so it can be quickly enabled again in
				 * the near future.
1209
				 */
1210
				if (change & ST0_CU1 &&
1211
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1212 1213 1214 1215 1216
					change_c0_status(ST0_CU1, val);

				preempt_enable();

				kvm_write_c0_guest_status(cop0, val);
1217 1218

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1219 1220 1221 1222 1223 1224
				/*
				 * If FPU present, we need CU1/FR bits to take
				 * effect fairly soon.
				 */
				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
					kvm_mips_trans_mtc0(inst, opc, vcpu);
1225
#endif
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
				unsigned int old_val, val, change, wrmask;

				old_val = kvm_read_c0_guest_config5(cop0);
				val = vcpu->arch.gprs[rt];

				/* Only a few bits are writable in Config5 */
				wrmask = kvm_mips_config5_wrmask(vcpu);
				change = (val ^ old_val) & wrmask;
				val = old_val ^ change;


1238
				/* Handle changes in FPU/MSA modes */
1239 1240 1241 1242 1243 1244 1245
				preempt_disable();

				/*
				 * Propagate FRE changes immediately if the FPU
				 * context is already loaded.
				 */
				if (change & MIPS_CONF5_FRE &&
1246
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1247 1248
					change_c0_config5(MIPS_CONF5_FRE, val);

1249 1250 1251 1252 1253 1254 1255
				/*
				 * Propagate MSAEn changes immediately if the
				 * MSA context is already loaded. When disabling
				 * we leave the context loaded so it can be
				 * quickly enabled again in the near future.
				 */
				if (change & MIPS_CONF5_MSAEN &&
1256
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1257 1258 1259
					change_c0_config5(MIPS_CONF5_MSAEN,
							  val);

1260 1261 1262
				preempt_enable();

				kvm_write_c0_guest_config5(cop0, val);
1263
			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1264
				u32 old_cause, new_cause;
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
				old_cause = kvm_read_c0_guest_cause(cop0);
				new_cause = vcpu->arch.gprs[rt];
				/* Update R/W bits */
				kvm_change_c0_guest_cause(cop0, 0x08800300,
							  new_cause);
				/* DC bit enabling/disabling timer? */
				if ((old_cause ^ new_cause) & CAUSEF_DC) {
					if (new_cause & CAUSEF_DC)
						kvm_mips_count_disable_cause(vcpu);
					else
						kvm_mips_count_enable_cause(vcpu);
				}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
				u32 mask = MIPS_HWRENA_CPUNUM |
					   MIPS_HWRENA_SYNCISTEP |
					   MIPS_HWRENA_CC |
					   MIPS_HWRENA_CCRES;

				if (kvm_read_c0_guest_config3(cop0) &
				    MIPS_CONF3_ULRI)
					mask |= MIPS_HWRENA_ULR;
				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1288 1289 1290 1291 1292 1293 1294 1295 1296
			} else {
				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mtc0(inst, opc, vcpu);
#endif
			}
			break;

		case dmtc_op:
1297 1298
			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
				vcpu->arch.pc, rt, rd, sel);
1299 1300 1301
			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);
1302 1303 1304
			er = EMULATE_FAIL;
			break;

1305
		case mfmc0_op:
1306 1307 1308
#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[MIPS_CP0_STATUS][0]++;
#endif
1309
			if (rt != 0)
1310 1311 1312
				vcpu->arch.gprs[rt] =
				    kvm_read_c0_guest_status(cop0);
			/* EI */
1313
			if (inst.mfmc0_format.sc) {
1314
				kvm_debug("[%#lx] mfmc0_op: EI\n",
1315 1316 1317
					  vcpu->arch.pc);
				kvm_set_c0_guest_status(cop0, ST0_IE);
			} else {
1318
				kvm_debug("[%#lx] mfmc0_op: DI\n",
1319 1320 1321 1322 1323 1324 1325 1326
					  vcpu->arch.pc);
				kvm_clear_c0_guest_status(cop0, ST0_IE);
			}

			break;

		case wrpgpr_op:
			{
1327 1328
				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
				u32 pss =
1329
				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1330 1331 1332 1333
				/*
				 * We don't support any shadow register sets, so
				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
				 */
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
				if (css || pss) {
					er = EMULATE_FAIL;
					break;
				}
				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
					  vcpu->arch.gprs[rt]);
				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
			}
			break;
		default:
1344
			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1345
				vcpu->arch.pc, inst.c0r_format.rs);
1346 1347 1348 1349 1350 1351
			er = EMULATE_FAIL;
			break;
		}
	}

done:
1352 1353
	/* Rollback PC only if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		vcpu->arch.pc = curr_pc;

dont_update_pc:
	/*
	 * This is for special instructions whose emulation
	 * updates the PC, so do not overwrite the PC under
	 * any circumstances
	 */

	return er;
}

1366 1367
enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
					     u32 cause,
1368 1369
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
1370 1371
{
	enum emulation_result er = EMULATE_DO_MMIO;
1372
	u32 rt;
1373
	u32 bytes;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	void *data = run->mmio.data;
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

1386
	rt = inst.i_format.rt;
1387

1388
	switch (inst.i_format.opcode) {
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	case sb_op:
		bytes = 1;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
		*(u8 *) data = vcpu->arch.gprs[rt];
		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1409
			  *(u8 *) data);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

		break;

	case sw_op:
		bytes = 4;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
1431
		*(u32 *) data = vcpu->arch.gprs[rt];
1432 1433 1434

		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1435
			  vcpu->arch.gprs[rt], *(u32 *) data);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		break;

	case sh_op:
		bytes = 2;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
1456
		*(u16 *) data = vcpu->arch.gprs[rt];
1457 1458 1459

		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1460
			  vcpu->arch.gprs[rt], *(u32 *) data);
1461 1462 1463
		break;

	default:
1464
		kvm_err("Store not yet supported (inst=0x%08x)\n",
1465
			inst.word);
1466 1467 1468 1469
		er = EMULATE_FAIL;
		break;
	}

1470 1471
	/* Rollback PC if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
1472 1473 1474 1475 1476
		vcpu->arch.pc = curr_pc;

	return er;
}

1477 1478
enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
					    u32 cause, struct kvm_run *run,
1479
					    struct kvm_vcpu *vcpu)
1480 1481
{
	enum emulation_result er = EMULATE_DO_MMIO;
1482
	u32 op, rt;
1483
	u32 bytes;
1484

1485 1486
	rt = inst.i_format.rt;
	op = inst.i_format.opcode;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

	vcpu->arch.pending_load_cause = cause;
	vcpu->arch.io_gpr = rt;

	switch (op) {
	case lw_op:
		bytes = 4;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 0;
		break;

	case lh_op:
	case lhu_op:
		bytes = 2;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 0;

		if (op == lh_op)
			vcpu->mmio_needed = 2;
		else
			vcpu->mmio_needed = 1;

		break;

	case lbu_op:
	case lb_op:
		bytes = 1;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_is_write = 0;

		if (op == lb_op)
			vcpu->mmio_needed = 2;
		else
			vcpu->mmio_needed = 1;

		break;

	default:
1572
		kvm_err("Load not yet supported (inst=0x%08x)\n",
1573
			inst.word);
1574 1575 1576 1577 1578 1579 1580
		er = EMULATE_FAIL;
		break;
	}

	return er;
}

1581 1582
enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
					     u32 *opc, u32 cause,
1583 1584
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
1585 1586 1587
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;
1588 1589
	u32 cache, op_inst, op, base;
	s16 offset;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long va;
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

1603 1604
	base = inst.i_format.rs;
	op_inst = inst.i_format.rt;
1605 1606 1607 1608
	if (cpu_has_mips_r6)
		offset = inst.spec3_format.simmediate;
	else
		offset = inst.i_format.simmediate;
1609 1610
	cache = op_inst & CacheOp_Cache;
	op = op_inst & CacheOp_Op;
1611 1612 1613 1614 1615 1616

	va = arch->gprs[base] + offset;

	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
		  cache, op, base, arch->gprs[base], offset);

1617 1618 1619 1620
	/*
	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
	 * invalidate the caches entirely by stepping through all the
	 * ways/indexes
1621
	 */
1622
	if (op == Index_Writeback_Inv) {
1623 1624 1625
		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
			  arch->gprs[base], offset);
1626

1627
		if (cache == Cache_D)
1628
			r4k_blast_dcache();
1629
		else if (cache == Cache_I)
1630 1631
			r4k_blast_icache();
		else {
1632 1633
			kvm_err("%s: unsupported CACHE INDEX operation\n",
				__func__);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
			return EMULATE_FAIL;
		}

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
		kvm_mips_trans_cache_index(inst, opc, vcpu);
#endif
		goto done;
	}

	preempt_disable();
	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1645 1646 1647 1648 1649 1650 1651 1652
		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
		    kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
			kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
				__func__, va, vcpu, read_c0_entryhi());
			er = EMULATE_FAIL;
			preempt_enable();
			goto done;
		}
1653 1654 1655 1656 1657
	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
		int index;

		/* If an entry already exists then skip */
1658
		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1659 1660
			goto skip_fault;

1661 1662 1663
		/*
		 * If address not in the guest TLB, then give the guest a fault,
		 * the resulting handler will do the right thing
1664 1665
		 */
		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1666
						  (kvm_read_c0_guest_entryhi
1667
						   (cop0) & KVM_ENTRYHI_ASID));
1668 1669 1670

		if (index < 0) {
			vcpu->arch.host_cp0_badvaddr = va;
1671
			vcpu->arch.pc = curr_pc;
1672 1673 1674 1675 1676 1677
			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
							 vcpu);
			preempt_enable();
			goto dont_update_pc;
		} else {
			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1678 1679 1680 1681
			/*
			 * Check if the entry is valid, if not then setup a TLB
			 * invalid exception to the guest
			 */
1682
			if (!TLB_IS_VALID(*tlb, va)) {
1683 1684
				vcpu->arch.host_cp0_badvaddr = va;
				vcpu->arch.pc = curr_pc;
1685 1686 1687 1688
				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
								run, vcpu);
				preempt_enable();
				goto dont_update_pc;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
			}
			/*
			 * We fault an entry from the guest tlb to the
			 * shadow host TLB
			 */
			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
					__func__, va, index, vcpu,
					read_c0_entryhi());
				er = EMULATE_FAIL;
				preempt_enable();
				goto done;
1701 1702 1703
			}
		}
	} else {
1704 1705
		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			cache, op, base, arch->gprs[base], offset);
1706 1707
		er = EMULATE_FAIL;
		preempt_enable();
1708
		goto done;
1709 1710 1711 1712 1713

	}

skip_fault:
	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1714
	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1715 1716 1717
		flush_dcache_line(va);

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1718 1719 1720 1721
		/*
		 * Replace the CACHE instruction, with a SYNCI, not the same,
		 * but avoids a trap
		 */
1722 1723
		kvm_mips_trans_cache_va(inst, opc, vcpu);
#endif
1724
	} else if (op_inst == Hit_Invalidate_I) {
1725 1726 1727 1728 1729 1730 1731 1732
		flush_dcache_line(va);
		flush_icache_line(va);

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
		/* Replace the CACHE instruction, with a SYNCI */
		kvm_mips_trans_cache_va(inst, opc, vcpu);
#endif
	} else {
1733 1734
		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			cache, op, base, arch->gprs[base], offset);
1735 1736 1737 1738
		er = EMULATE_FAIL;
	}

	preempt_enable();
1739 1740 1741 1742
done:
	/* Rollback PC only if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
		vcpu->arch.pc = curr_pc;
1743

1744
dont_update_pc:
1745 1746 1747 1748 1749
	/*
	 * This is for exceptions whose emulation updates the PC, so do not
	 * overwrite the PC under any circumstances
	 */

1750 1751 1752
	return er;
}

1753
enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1754 1755
					    struct kvm_run *run,
					    struct kvm_vcpu *vcpu)
1756
{
1757
	union mips_instruction inst;
1758 1759
	enum emulation_result er = EMULATE_DONE;

1760 1761
	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
1762 1763
		opc += 1;

1764
	inst.word = kvm_get_inst(opc, vcpu);
1765

1766
	switch (inst.r_format.opcode) {
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	case cop0_op:
		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
		break;
	case sb_op:
	case sh_op:
	case sw_op:
		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
		break;
	case lb_op:
	case lbu_op:
	case lhu_op:
	case lh_op:
	case lw_op:
		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
		break;

1783
#ifndef CONFIG_CPU_MIPSR6
1784 1785
	case cache_op:
		++vcpu->stat.cache_exits;
1786
		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1787 1788
		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
		break;
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
#else
	case spec3_op:
		switch (inst.spec3_format.func) {
		case cache6_op:
			++vcpu->stat.cache_exits;
			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
			er = kvm_mips_emulate_cache(inst, opc, cause, run,
						    vcpu);
			break;
		default:
			goto unknown;
		};
		break;
unknown:
#endif
1804 1805

	default:
1806
		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1807
			inst.word);
1808 1809 1810 1811 1812 1813 1814 1815
		kvm_arch_vcpu_dump_regs(vcpu);
		er = EMULATE_FAIL;
		break;
	}

	return er;
}

1816
enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1817
					       u32 *opc,
1818 1819
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
1838
					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1839 1840 1841 1842 1843

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
1844
		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1845 1846 1847 1848 1849 1850
		er = EMULATE_FAIL;
	}

	return er;
}

1851
enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1852
						  u32 *opc,
1853 1854
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
1855 1856 1857 1858
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1859
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* set pc to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x0;

	} else {
		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
1885
				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1886 1887 1888 1889 1890 1891 1892 1893

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

1894
	return EMULATE_DONE;
1895 1896
}

1897
enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
1898
						 u32 *opc,
1899 1900
						 struct kvm_run *run,
						 struct kvm_vcpu *vcpu)
1901 1902 1903 1904 1905
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi =
		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1906
		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
			  arch->pc);

		/* set pc to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
1931
				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1932 1933 1934 1935 1936 1937 1938 1939

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

1940
	return EMULATE_DONE;
1941 1942
}

1943
enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
1944
						  u32 *opc,
1945 1946
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
1947 1948 1949 1950
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1951
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x0;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
1975
				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1976 1977 1978 1979 1980 1981 1982 1983

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

1984
	return EMULATE_DONE;
1985 1986
}

1987
enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
1988
						 u32 *opc,
1989 1990
						 struct kvm_run *run,
						 struct kvm_vcpu *vcpu)
1991 1992 1993 1994
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1995
		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
2019
				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2020 2021 2022 2023 2024 2025 2026 2027

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

2028
	return EMULATE_DONE;
2029 2030 2031
}

/* TLBMOD: store into address matching TLB with Dirty bit off */
2032
enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
2033 2034
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
2035 2036 2037
{
	enum emulation_result er = EMULATE_DONE;
#ifdef DEBUG
2038 2039
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2040
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2041 2042
	int index;

2043
	/* If address not in the guest TLB, then we are in trouble */
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
	if (index < 0) {
		/* XXXKYMA Invalidate and retry */
		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
		     __func__, entryhi);
		kvm_mips_dump_guest_tlbs(vcpu);
		kvm_mips_dump_host_tlbs();
		return EMULATE_FAIL;
	}
#endif

	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
	return er;
}

2060
enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2061
					      u32 *opc,
2062 2063
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
2064 2065 2066
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2067
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	struct kvm_vcpu_arch *arch = &vcpu->arch;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
			  arch->pc);

		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

2090 2091
	kvm_change_c0_guest_cause(cop0, (0xff),
				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2092 2093 2094 2095 2096 2097 2098 2099

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

2100
	return EMULATE_DONE;
2101 2102
}

2103
enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2104
					       u32 *opc,
2105 2106
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

	}

	arch->pc = KVM_GUEST_KSEG0 + 0x180;

	kvm_change_c0_guest_cause(cop0, (0xff),
2126
				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2127 2128
	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));

2129
	return EMULATE_DONE;
2130 2131
}

2132
enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2133
					      u32 *opc,
2134 2135
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2154
					  (EXCCODE_RI << CAUSEB_EXCCODE));
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver RI when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2167
enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2168
					      u32 *opc,
2169 2170
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2189
					  (EXCCODE_BP << CAUSEB_EXCCODE));
2190 2191 2192 2193 2194

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
2195
		kvm_err("Trying to deliver BP when EXL is already set\n");
2196 2197 2198 2199 2200 2201
		er = EMULATE_FAIL;
	}

	return er;
}

2202
enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2203
						u32 *opc,
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
						struct kvm_run *run,
						struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2224
					  (EXCCODE_TR << CAUSEB_EXCCODE));
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver TRAP when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2237
enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2238
						  u32 *opc,
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2259
					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2272
enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2273
					       u32 *opc,
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2294
					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver FPE when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2307
enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2308
						  u32 *opc,
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2329
					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2342
enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2343 2344
					 struct kvm_run *run,
					 struct kvm_vcpu *vcpu)
2345 2346 2347 2348 2349
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;
	unsigned long curr_pc;
2350
	union mips_instruction inst;
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

2361
	/* Fetch the instruction. */
2362 2363 2364
	if (cause & CAUSEF_BD)
		opc += 1;

2365
	inst.word = kvm_get_inst(opc, vcpu);
2366

2367
	if (inst.word == KVM_INVALID_INST) {
2368
		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2369 2370 2371
		return EMULATE_FAIL;
	}

2372
	if (inst.r_format.opcode == spec3_op &&
2373 2374 2375
	    inst.r_format.func == rdhwr_op &&
	    inst.r_format.rs == 0 &&
	    (inst.r_format.re >> 3) == 0) {
2376
		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2377 2378 2379
		int rd = inst.r_format.rd;
		int rt = inst.r_format.rt;
		int sel = inst.r_format.re & 0x7;
2380

2381 2382 2383 2384 2385 2386
		/* If usermode, check RDHWR rd is allowed by guest HWREna */
		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
				  rd, opc);
			goto emulate_ri;
		}
2387
		switch (rd) {
J
James Hogan 已提交
2388
		case MIPS_HWR_CPUNUM:		/* CPU number */
2389
			arch->gprs[rt] = vcpu->vcpu_id;
2390
			break;
J
James Hogan 已提交
2391
		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2392 2393 2394
			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
					     current_cpu_data.icache.linesz);
			break;
J
James Hogan 已提交
2395
		case MIPS_HWR_CC:		/* Read count register */
2396
			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2397
			break;
J
James Hogan 已提交
2398
		case MIPS_HWR_CCRES:		/* Count register resolution */
2399 2400 2401 2402 2403 2404 2405 2406 2407
			switch (current_cpu_data.cputype) {
			case CPU_20KC:
			case CPU_25KF:
				arch->gprs[rt] = 1;
				break;
			default:
				arch->gprs[rt] = 2;
			}
			break;
J
James Hogan 已提交
2408
		case MIPS_HWR_ULR:		/* Read UserLocal register */
2409 2410 2411 2412
			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
			break;

		default:
2413
			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2414
			goto emulate_ri;
2415
		}
2416 2417 2418

		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
			      vcpu->arch.gprs[rt]);
2419
	} else {
2420 2421
		kvm_debug("Emulate RI not supported @ %p: %#x\n",
			  opc, inst.word);
2422
		goto emulate_ri;
2423 2424
	}

2425 2426 2427
	return EMULATE_DONE;

emulate_ri:
2428
	/*
2429 2430
	 * Rollback PC (if in branch delay slot then the PC already points to
	 * branch target), and pass the RI exception to the guest OS.
2431
	 */
2432 2433
	vcpu->arch.pc = curr_pc;
	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2434 2435
}

2436 2437
enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
						  struct kvm_run *run)
2438 2439 2440 2441 2442
{
	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
	enum emulation_result er = EMULATE_DONE;

	if (run->mmio.len > sizeof(*gpr)) {
2443
		kvm_err("Bad MMIO length: %d", run->mmio.len);
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		er = EMULATE_FAIL;
		goto done;
	}

	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
	if (er == EMULATE_FAIL)
		return er;

	switch (run->mmio.len) {
	case 4:
2454
		*gpr = *(s32 *) run->mmio.data;
2455 2456 2457 2458
		break;

	case 2:
		if (vcpu->mmio_needed == 2)
2459
			*gpr = *(s16 *) run->mmio.data;
2460
		else
2461
			*gpr = *(u16 *)run->mmio.data;
2462 2463 2464 2465

		break;
	case 1:
		if (vcpu->mmio_needed == 2)
2466
			*gpr = *(s8 *) run->mmio.data;
2467 2468 2469 2470 2471 2472
		else
			*gpr = *(u8 *) run->mmio.data;
		break;
	}

	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2473 2474 2475
		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
			  vcpu->mmio_needed);
2476 2477 2478 2479 2480

done:
	return er;
}

2481
static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2482
						  u32 *opc,
2483 2484
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
2485
{
2486
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (exccode << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);

		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
			  exccode, kvm_read_c0_guest_epc(cop0),
			  kvm_read_c0_guest_badvaddr(cop0));
	} else {
2512
		kvm_err("Trying to deliver EXC when EXL is already set\n");
2513 2514 2515 2516 2517 2518
		er = EMULATE_FAIL;
	}

	return er;
}

2519
enum emulation_result kvm_mips_check_privilege(u32 cause,
2520
					       u32 *opc,
2521 2522
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
2523 2524
{
	enum emulation_result er = EMULATE_DONE;
2525
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2526 2527 2528 2529 2530 2531
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;

	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);

	if (usermode) {
		switch (exccode) {
2532 2533 2534 2535 2536 2537 2538 2539
		case EXCCODE_INT:
		case EXCCODE_SYS:
		case EXCCODE_BP:
		case EXCCODE_RI:
		case EXCCODE_TR:
		case EXCCODE_MSAFPE:
		case EXCCODE_FPE:
		case EXCCODE_MSADIS:
2540 2541
			break;

2542
		case EXCCODE_CPU:
2543 2544 2545 2546
			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
				er = EMULATE_PRIV_FAIL;
			break;

2547
		case EXCCODE_MOD:
2548 2549
			break;

2550
		case EXCCODE_TLBL:
2551 2552 2553 2554
			/*
			 * We we are accessing Guest kernel space, then send an
			 * address error exception to the guest
			 */
2555
			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2556 2557
				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
					  badvaddr);
2558
				cause &= ~0xff;
2559
				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2560 2561 2562 2563
				er = EMULATE_PRIV_FAIL;
			}
			break;

2564
		case EXCCODE_TLBS:
2565 2566 2567 2568
			/*
			 * We we are accessing Guest kernel space, then send an
			 * address error exception to the guest
			 */
2569
			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2570 2571
				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
					  badvaddr);
2572
				cause &= ~0xff;
2573
				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2574 2575 2576 2577
				er = EMULATE_PRIV_FAIL;
			}
			break;

2578
		case EXCCODE_ADES:
2579 2580
			kvm_debug("%s: address error ST @ %#lx\n", __func__,
				  badvaddr);
2581 2582
			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
				cause &= ~0xff;
2583
				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2584 2585 2586
			}
			er = EMULATE_PRIV_FAIL;
			break;
2587
		case EXCCODE_ADEL:
2588 2589
			kvm_debug("%s: address error LD @ %#lx\n", __func__,
				  badvaddr);
2590 2591
			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
				cause &= ~0xff;
2592
				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2593 2594 2595 2596 2597 2598 2599 2600 2601
			}
			er = EMULATE_PRIV_FAIL;
			break;
		default:
			er = EMULATE_PRIV_FAIL;
			break;
		}
	}

2602
	if (er == EMULATE_PRIV_FAIL)
2603
		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2604

2605 2606 2607
	return er;
}

2608 2609
/*
 * User Address (UA) fault, this could happen if
2610 2611 2612 2613 2614
 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
 *     case we pass on the fault to the guest kernel and let it handle it.
 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
 *     case we inject the TLB from the Guest TLB into the shadow host TLB
 */
2615
enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2616
					      u32 *opc,
2617 2618
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
2619 2620
{
	enum emulation_result er = EMULATE_DONE;
2621
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2622 2623 2624
	unsigned long va = vcpu->arch.host_cp0_badvaddr;
	int index;

2625 2626
	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
		  vcpu->arch.host_cp0_badvaddr);
2627

2628 2629 2630 2631 2632
	/*
	 * KVM would not have got the exception if this entry was valid in the
	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
	 * send the guest an exception. The guest exc handler should then inject
	 * an entry into the guest TLB.
2633 2634
	 */
	index = kvm_mips_guest_tlb_lookup(vcpu,
2635
		      (va & VPN2_MASK) |
2636 2637
		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
		       KVM_ENTRYHI_ASID));
2638
	if (index < 0) {
2639
		if (exccode == EXCCODE_TLBL) {
2640
			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2641
		} else if (exccode == EXCCODE_TLBS) {
2642 2643
			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
		} else {
2644 2645
			kvm_err("%s: invalid exc code: %d\n", __func__,
				exccode);
2646 2647 2648 2649 2650
			er = EMULATE_FAIL;
		}
	} else {
		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];

2651 2652 2653 2654
		/*
		 * Check if the entry is valid, if not then setup a TLB invalid
		 * exception to the guest
		 */
2655
		if (!TLB_IS_VALID(*tlb, va)) {
2656
			if (exccode == EXCCODE_TLBL) {
2657 2658
				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
								vcpu);
2659
			} else if (exccode == EXCCODE_TLBS) {
2660 2661 2662
				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
								vcpu);
			} else {
2663 2664
				kvm_err("%s: invalid exc code: %d\n", __func__,
					exccode);
2665 2666 2667
				er = EMULATE_FAIL;
			}
		} else {
2668
			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2669
				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2670 2671 2672 2673
			/*
			 * OK we have a Guest TLB entry, now inject it into the
			 * shadow host TLB
			 */
2674 2675 2676 2677 2678 2679
			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
					__func__, va, index, vcpu,
					read_c0_entryhi());
				er = EMULATE_FAIL;
			}
2680 2681 2682 2683 2684
		}
	}

	return er;
}