vega10_hwmgr.c 159.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
23 24 25

#include <linux/delay.h>
#include <linux/fb.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include <linux/module.h>
#include <linux/slab.h>

#include "hwmgr.h"
#include "amd_powerplay.h"
#include "vega10_smumgr.h"
#include "hardwaremanager.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "cgs_common.h"
#include "vega10_powertune.h"
#include "smu9.h"
#include "smu9_driver_if.h"
#include "vega10_inc.h"
#include "pp_soc15.h"
#include "pppcielanes.h"
#include "vega10_hwmgr.h"
#include "vega10_processpptables.h"
#include "vega10_pptable.h"
#include "vega10_thermal.h"
#include "pp_debug.h"
#include "pp_acpi.h"
#include "amd_pcie_helpers.h"
#include "cgs_linux.h"
#include "ppinterrupt.h"
51
#include "pp_overdriver.h"
52
#include "pp_thermal.h"
53 54 55 56 57 58 59

#define VOLTAGE_SCALE  4
#define VOLTAGE_VID_OFFSET_SCALE1   625
#define VOLTAGE_VID_OFFSET_SCALE2   100

#define HBM_MEMORY_CHANNEL_WIDTH    128

60
static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

#define MEM_FREQ_LOW_LATENCY        25000
#define MEM_FREQ_HIGH_LATENCY       80000
#define MEM_LATENCY_HIGH            245
#define MEM_LATENCY_LOW             35
#define MEM_LATENCY_ERR             0xFFFF

#define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
#define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0

//DF_CS_AON0_DramBaseAddress0
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
82 83
static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask);
84

85
static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

struct vega10_power_state *cast_phw_vega10_power_state(
				  struct pp_hw_power_state *hw_ps)
{
	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
				"Invalid Powerstate Type!",
				 return NULL;);

	return (struct vega10_power_state *)hw_ps;
}

const struct vega10_power_state *cast_const_phw_vega10_power_state(
				 const struct pp_hw_power_state *hw_ps)
{
	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
				"Invalid Powerstate Type!",
				 return NULL;);

	return (const struct vega10_power_state *)hw_ps;
}

static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	data->registry_data.sclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
	data->registry_data.socclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
	data->registry_data.mclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
118 119
	data->registry_data.pcie_dpm_key_disabled =
			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
120 121 122 123 124 125 126 127 128 129

	data->registry_data.dcefclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;

	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
		data->registry_data.power_containment_support = 1;
		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
		data->registry_data.enable_tdc_limit_feature = 1;
	}

130
	data->registry_data.clock_stretcher_support =
131
			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
132

133 134 135
	data->registry_data.ulv_support =
			hwmgr->feature_mask & PP_ULV_MASK ? true : false;

136 137
	data->registry_data.sclk_deep_sleep_support =
			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
138

139 140 141 142 143 144 145 146 147 148 149 150 151
	data->registry_data.disable_water_mark = 0;

	data->registry_data.fan_control_support = 1;
	data->registry_data.thermal_support = 1;
	data->registry_data.fw_ctf_enabled = 1;

	data->registry_data.avfs_support = 1;
	data->registry_data.led_dpm_enabled = 1;

	data->registry_data.vr0hot_enabled = 1;
	data->registry_data.vr1hot_enabled = 1;
	data->registry_data.regulator_hot_gpio_support = 1;

152 153 154 155 156 157 158 159 160 161 162 163 164
	data->registry_data.didt_support = 1;
	if (data->registry_data.didt_support) {
		data->registry_data.didt_mode = 6;
		data->registry_data.sq_ramping_support = 1;
		data->registry_data.db_ramping_support = 0;
		data->registry_data.td_ramping_support = 0;
		data->registry_data.tcp_ramping_support = 0;
		data->registry_data.dbr_ramping_support = 0;
		data->registry_data.edc_didt_support = 1;
		data->registry_data.gc_didt_support = 0;
		data->registry_data.psm_didt_support = 0;
	}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;

	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
}

static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct cgs_system_info sys_info = {0};
	int result;

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DynamicPatchPowerState);

	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ControlVDDCI);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableSMU7ThermalManagement);

	sys_info.size = sizeof(struct cgs_system_info);
	sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
	result = cgs_query_system_info(hwmgr->device, &sys_info);

	if (!result && (sys_info.value & AMD_PG_SUPPORT_UVD))
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_UVDPowerGating);

	if (!result && (sys_info.value & AMD_PG_SUPPORT_VCE))
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_VCEPowerGating);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UnTabledHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_FanSpeedInTableIsRPM);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ODFuzzyFanControlSupport);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_DynamicPowerManagement);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SMC);

	/* power tune caps */
	/* assume disabled */
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PowerContainment);
238 239
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DiDtSupport);
240 241 242 243 244 245 246 247
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SQRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DBRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TDRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TCPRamping);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DBRRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DiDtEDCEnable);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_GCEDC);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PSM);

	if (data->registry_data.didt_support) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
		if (data->registry_data.sq_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
		if (data->registry_data.db_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
		if (data->registry_data.td_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
		if (data->registry_data.tcp_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
		if (data->registry_data.dbr_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
		if (data->registry_data.edc_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
		if (data->registry_data.gc_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
		if (data->registry_data.psm_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
	}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	if (data->registry_data.power_containment_support)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_PowerContainment);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_CAC);

	if (table_info->tdp_table->usClockStretchAmount &&
			data->registry_data.clock_stretcher_support)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ClockStretcher);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UVDDPM);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_VCEDPM);

	return 0;
}

static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	int i;

	vega10_initialize_power_tune_defaults(hwmgr);

	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
		data->smu_features[i].smu_feature_id = 0xffff;
		data->smu_features[i].smu_feature_bitmap = 1 << i;
		data->smu_features[i].enabled = false;
		data->smu_features[i].supported = false;
	}

	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
			FEATURE_DPM_PREFETCHER_BIT;
	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
			FEATURE_DPM_GFXCLK_BIT;
	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
			FEATURE_DPM_UCLK_BIT;
	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
			FEATURE_DPM_SOCCLK_BIT;
	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
			FEATURE_DPM_UVD_BIT;
	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
			FEATURE_DPM_VCE_BIT;
	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
			FEATURE_DPM_MP0CLK_BIT;
	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
			FEATURE_DPM_LINK_BIT;
	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
			FEATURE_DPM_DCEFCLK_BIT;
	data->smu_features[GNLD_ULV].smu_feature_id =
			FEATURE_ULV_BIT;
	data->smu_features[GNLD_AVFS].smu_feature_id =
			FEATURE_AVFS_BIT;
	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
			FEATURE_DS_GFXCLK_BIT;
	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
			FEATURE_DS_SOCCLK_BIT;
	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
			FEATURE_DS_LCLK_BIT;
	data->smu_features[GNLD_PPT].smu_feature_id =
			FEATURE_PPT_BIT;
	data->smu_features[GNLD_TDC].smu_feature_id =
			FEATURE_TDC_BIT;
	data->smu_features[GNLD_THERMAL].smu_feature_id =
			FEATURE_THERMAL_BIT;
	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
			FEATURE_GFX_PER_CU_CG_BIT;
	data->smu_features[GNLD_RM].smu_feature_id =
			FEATURE_RM_BIT;
	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
			FEATURE_DS_DCEFCLK_BIT;
	data->smu_features[GNLD_ACDC].smu_feature_id =
			FEATURE_ACDC_BIT;
	data->smu_features[GNLD_VR0HOT].smu_feature_id =
			FEATURE_VR0HOT_BIT;
	data->smu_features[GNLD_VR1HOT].smu_feature_id =
			FEATURE_VR1HOT_BIT;
	data->smu_features[GNLD_FW_CTF].smu_feature_id =
			FEATURE_FW_CTF_BIT;
	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
			FEATURE_LED_DISPLAY_BIT;
	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
			FEATURE_FAN_CONTROL_BIT;
367
	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
368
	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
369 370 371 372 373 374 375 376 377 378 379 380 381

	if (!data->registry_data.prefetcher_dpm_key_disabled)
		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;

	if (!data->registry_data.sclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_GFXCLK].supported = true;

	if (!data->registry_data.mclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_UCLK].supported = true;

	if (!data->registry_data.socclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_SOCCLK].supported = true;

382
	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
383 384
		data->smu_features[GNLD_DPM_UVD].supported = true;

385
	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
386 387 388 389 390 391 392 393
		data->smu_features[GNLD_DPM_VCE].supported = true;

	if (!data->registry_data.pcie_dpm_key_disabled)
		data->smu_features[GNLD_DPM_LINK].supported = true;

	if (!data->registry_data.dcefclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;

394 395
	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
	    data->registry_data.sclk_deep_sleep_support) {
396 397 398
		data->smu_features[GNLD_DS_GFXCLK].supported = true;
		data->smu_features[GNLD_DS_SOCCLK].supported = true;
		data->smu_features[GNLD_DS_LCLK].supported = true;
399
		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	}

	if (data->registry_data.enable_pkg_pwr_tracking_feature)
		data->smu_features[GNLD_PPT].supported = true;

	if (data->registry_data.enable_tdc_limit_feature)
		data->smu_features[GNLD_TDC].supported = true;

	if (data->registry_data.thermal_support)
		data->smu_features[GNLD_THERMAL].supported = true;

	if (data->registry_data.fan_control_support)
		data->smu_features[GNLD_FAN_CONTROL].supported = true;

	if (data->registry_data.fw_ctf_enabled)
		data->smu_features[GNLD_FW_CTF].supported = true;

	if (data->registry_data.avfs_support)
		data->smu_features[GNLD_AVFS].supported = true;

	if (data->registry_data.led_dpm_enabled)
		data->smu_features[GNLD_LED_DISPLAY].supported = true;

	if (data->registry_data.vr1hot_enabled)
		data->smu_features[GNLD_VR1HOT].supported = true;

	if (data->registry_data.vr0hot_enabled)
		data->smu_features[GNLD_VR0HOT].supported = true;

429
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion);
430
	vega10_read_arg_from_smc(hwmgr, &(hwmgr->smu_version));
431
		/* ACG firmware has major version 5 */
432
	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
433 434
		data->smu_features[GNLD_ACG].supported = true;

435 436 437
	if (data->registry_data.didt_support)
		data->smu_features[GNLD_DIDT].supported = true;

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
}

#ifdef PPLIB_VEGA10_EVV_SUPPORT
static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
	phm_ppt_v1_voltage_lookup_table *lookup_table,
	uint16_t virtual_voltage_id, int32_t *socclk)
{
	uint8_t entry_id;
	uint8_t voltage_id;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);

	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
			"Lookup table is empty",
			return -EINVAL);

	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
			break;
	}

	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
			"Can't find requested voltage id in vdd_dep_on_socclk table!",
			return -EINVAL);

	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;

	return 0;
}

#define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
/**
* Get Leakage VDDC based on leakage ID.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0.
*/
static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	uint16_t vv_id;
	uint32_t vddc = 0;
	uint16_t i, j;
	uint32_t sclk = 0;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
			table_info->vdd_dep_on_socclk;
	int result;

	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;

		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
				table_info->vddc_lookup_table, vv_id, &sclk)) {
495
			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				for (j = 1; j < socclk_table->count; j++) {
					if (socclk_table->entries[j].clk == sclk &&
							socclk_table->entries[j].cks_enable == 0) {
						sclk += 5000;
						break;
					}
				}
			}

			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
					"Error retrieving EVV voltage value!",
					continue);


			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
					"Invalid VDDC value", result = -EINVAL;);

			/* the voltage should not be zero nor equal to leakage ID */
			if (vddc != 0 && vddc != vv_id) {
				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
				data->vddc_leakage.count++;
			}
		}
	}

	return 0;
}

/**
 * Change virtual leakage voltage to actual value.
 *
 * @param     hwmgr  the address of the powerplay hardware manager.
 * @param     pointer to changing voltage
 * @param     pointer to leakage table
 */
static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
{
	uint32_t index;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
	for (index = 0; index < leakage_table->count; index++) {
		/* if this voltage matches a leakage voltage ID */
		/* patch with actual leakage voltage */
		if (leakage_table->leakage_id[index] == *voltage) {
			*voltage = leakage_table->actual_voltage[index];
			break;
		}
	}

	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
550
		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
}

/**
* Patch voltage lookup table by EVV leakages.
*
* @param     hwmgr  the address of the powerplay hardware manager.
* @param     pointer to voltage lookup table
* @param     pointer to leakage table
* @return     always 0
*/
static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_voltage_lookup_table *lookup_table,
		struct vega10_leakage_voltage *leakage_table)
{
	uint32_t i;

	for (i = 0; i < lookup_table->count; i++)
		vega10_patch_with_vdd_leakage(hwmgr,
				&lookup_table->entries[i].us_vdd, leakage_table);

	return 0;
}

static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
		uint16_t *vddc)
{
	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);

	return 0;
}
#endif

static int vega10_patch_voltage_dependency_tables_with_lookup_table(
		struct pp_hwmgr *hwmgr)
{
587 588
	uint8_t entry_id, voltage_id;
	unsigned i;
589 590 591 592
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
593 594
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
			table_info->vdd_dep_on_mclk;
595

596 597 598 599 600 601 602 603 604 605
	for (i = 0; i < 6; i++) {
		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
		switch (i) {
			case 0: vdt = table_info->vdd_dep_on_socclk; break;
			case 1: vdt = table_info->vdd_dep_on_sclk; break;
			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
		}
606

607 608 609 610 611
		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
			voltage_id = vdt->entries[entry_id].vddInd;
			vdt->entries[entry_id].vddc =
					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
		}
612 613
	}

614 615 616 617
	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
		voltage_id = mm_table->entries[entry_id].vddcInd;
		mm_table->entries[entry_id].vddc =
			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	}

	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
		voltage_id = mclk_table->entries[entry_id].vddInd;
		mclk_table->entries[entry_id].vddc =
				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
		voltage_id = mclk_table->entries[entry_id].vddciInd;
		mclk_table->entries[entry_id].vddci =
				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
		voltage_id = mclk_table->entries[entry_id].mvddInd;
		mclk_table->entries[entry_id].mvdd =
				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
	}


	return 0;

}

static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
	uint32_t table_size, i, j;
	struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;

	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
		"Lookup table is empty", return -EINVAL);

	table_size = lookup_table->count;

	/* Sorting voltages */
	for (i = 0; i < table_size - 1; i++) {
		for (j = i + 1; j > 0; j--) {
			if (lookup_table->entries[j].us_vdd <
					lookup_table->entries[j - 1].us_vdd) {
				tmp_voltage_lookup_record = lookup_table->entries[j - 1];
				lookup_table->entries[j - 1] = lookup_table->entries[j];
				lookup_table->entries[j] = tmp_voltage_lookup_record;
			}
		}
	}

	return 0;
}

static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
{
	int result = 0;
	int tmp_result;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
#ifdef PPLIB_VEGA10_EVV_SUPPORT
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);

	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
			table_info->vddc_lookup_table, &(data->vddc_leakage));
	if (tmp_result)
		result = tmp_result;

	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
	if (tmp_result)
		result = tmp_result;
#endif

	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
	if (tmp_result)
		result = tmp_result;

	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
	if (tmp_result)
		result = tmp_result;

	return result;
}

static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
			table_info->vdd_dep_on_socclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
			table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
704
		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
705
	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
706
		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
707 708

	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
709
		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
710
	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
711
		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	table_info->max_clock_voltage_on_ac.sclk =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.mclk =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.vddc =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
	table_info->max_clock_voltage_on_ac.vddci =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;

	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
		table_info->max_clock_voltage_on_ac.sclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
		table_info->max_clock_voltage_on_ac.mclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
		table_info->max_clock_voltage_on_ac.vddc;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
		table_info->max_clock_voltage_on_ac.vddci;

	return 0;
}

static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;

	kfree(hwmgr->backend);
	hwmgr->backend = NULL;

	return 0;
}

static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
	int result = 0;
	struct vega10_hwmgr *data;
	uint32_t config_telemetry = 0;
	struct pp_atomfwctrl_voltage_table vol_table;
	struct cgs_system_info sys_info = {0};
752
	uint32_t reg;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;

	vega10_set_default_registry_data(hwmgr);

	data->disable_dpm_mask = 0xff;
	data->workload_mask = 0xff;

	/* need to set voltage control types before EVV patching */
	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;

	/* VDDCR_SOC */
	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
				&vol_table)) {
			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
					(vol_table.telemetry_offset & 0xff);
			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
		}
	} else {
		kfree(hwmgr->backend);
		hwmgr->backend = NULL;
		PP_ASSERT_WITH_CODE(false,
				"VDDCR_SOC is not SVID2!",
				return -1);
	}

	/* MVDDC */
	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
				&vol_table)) {
			config_telemetry |=
					((vol_table.telemetry_slope << 24) & 0xff000000) |
					((vol_table.telemetry_offset << 16) & 0xff0000);
			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
		}
	}

	 /* VDDCI_MEM */
802
	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
	}

	data->config_telemetry = config_telemetry;

	vega10_set_features_platform_caps(hwmgr);

	vega10_init_dpm_defaults(hwmgr);

#ifdef PPLIB_VEGA10_EVV_SUPPORT
	/* Get leakage voltage based on leakage ID. */
	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
			"Get EVV Voltage Failed.  Abort Driver loading!",
			return -1);
#endif

	/* Patch our voltage dependency table with actual leakage voltage
	 * We need to perform leakage translation before it's used by other functions
	 */
	vega10_complete_dependency_tables(hwmgr);

	/* Parse pptable data read from VBIOS */
	vega10_set_private_data_based_on_pptable(hwmgr);

	data->is_tlu_enabled = false;

	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
			VEGA10_MAX_HARDWARE_POWERLEVELS;
	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;

	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
	hwmgr->platform_descriptor.clockStep.engineClock = 500;
	hwmgr->platform_descriptor.clockStep.memoryClock = 500;

	sys_info.size = sizeof(struct cgs_system_info);
	sys_info.info_id = CGS_SYSTEM_INFO_GFX_CU_INFO;
	result = cgs_query_system_info(hwmgr->device, &sys_info);
	data->total_active_cus = sys_info.value;
	/* Setup default Overdrive Fan control settings */
	data->odn_fan_table.target_fan_speed =
			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
	data->odn_fan_table.target_temperature =
			hwmgr->thermal_controller.
			advanceFanControlParameters.ucTargetTemperature;
	data->odn_fan_table.min_performance_clock =
			hwmgr->thermal_controller.advanceFanControlParameters.
			ulMinFanSCLKAcousticLimit;
	data->odn_fan_table.min_fan_limit =
			hwmgr->thermal_controller.
			advanceFanControlParameters.usFanPWMMinLimit *
			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;

859 860 861 862 863 864 865 866 867 868
	reg = soc15_get_register_offset(DF_HWID, 0,
			mmDF_CS_AON0_DramBaseAddress0_BASE_IDX,
			mmDF_CS_AON0_DramBaseAddress0);
	data->mem_channels = (cgs_read_register(hwmgr->device, reg) &
			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
			"Mem Channel Index Exceeded maximum!",
			return -EINVAL);

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	return result;
}

static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	data->low_sclk_interrupt_threshold = 0;

	return 0;
}

static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);

	struct pp_atomfwctrl_voltage_table table;
	uint8_t i, j;
	uint32_t mask = 0;
	uint32_t tmp;
	int32_t ret = 0;

	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
						VOLTAGE_OBJ_GPIO_LUT, &table);

	if (!ret) {
		tmp = table.mask_low;
		for (i = 0, j = 0; i < 32; i++) {
			if (tmp & 1) {
				mask |= (uint32_t)(i << (8 * j));
				if (++j >= 3)
					break;
			}
			tmp >>= 1;
		}
	}

	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
	return 0;
}

static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
{
	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
			"Failed to init sclk threshold!",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
			"Failed to set up led dpm config!",
			return -EINVAL);

	return 0;
}

static bool vega10_is_dpm_running(struct pp_hwmgr *hwmgr)
{
	uint32_t features_enabled;

932
	if (!vega10_get_smc_features(hwmgr, &features_enabled)) {
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		if (features_enabled & SMC_DPM_FEATURES)
			return true;
	}
	return false;
}

/**
* Remove repeated voltage values and create table with unique values.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @param    vol_table  the pointer to changing voltage table
* @return    0 in success
*/

static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	uint32_t i, j;
	uint16_t vvalue;
	bool found = false;
	struct pp_atomfwctrl_voltage_table *table;

	PP_ASSERT_WITH_CODE(vol_table,
			"Voltage Table empty.", return -EINVAL);
	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
			GFP_KERNEL);

	if (!table)
		return -ENOMEM;

	table->mask_low = vol_table->mask_low;
	table->phase_delay = vol_table->phase_delay;

	for (i = 0; i < vol_table->count; i++) {
		vvalue = vol_table->entries[i].value;
		found = false;

		for (j = 0; j < table->count; j++) {
			if (vvalue == table->entries[j].value) {
				found = true;
				break;
			}
		}

		if (!found) {
			table->entries[table->count].value = vvalue;
			table->entries[table->count].smio_low =
					vol_table->entries[i].smio_low;
			table->count++;
		}
	}

	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
	kfree(table);

	return 0;
}

static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	int i;

	PP_ASSERT_WITH_CODE(dep_table->count,
			"Voltage Dependency Table empty.",
			return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < vol_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].mvdd;
		vol_table->entries[i].smio_low = 0;
	}

	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
			vol_table),
			"Failed to trim MVDD Table!",
			return -1);

	return 0;
}

static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	uint32_t i;

	PP_ASSERT_WITH_CODE(dep_table->count,
			"Voltage Dependency Table empty.",
			return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < dep_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].vddci;
		vol_table->entries[i].smio_low = 0;
	}

	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
			"Failed to trim VDDCI table.",
			return -1);

	return 0;
}

static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	int i;

	PP_ASSERT_WITH_CODE(dep_table->count,
			"Voltage Dependency Table empty.",
			return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < vol_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].vddc;
		vol_table->entries[i].smio_low = 0;
	}

	return 0;
}

/* ---- Voltage Tables ----
 * If the voltage table would be bigger than
 * what will fit into the state table on
 * the SMC keep only the higher entries.
 */
static void vega10_trim_voltage_table_to_fit_state_table(
		struct pp_hwmgr *hwmgr,
		uint32_t max_vol_steps,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	unsigned int i, diff;

	if (vol_table->count <= max_vol_steps)
		return;

	diff = vol_table->count - max_vol_steps;

	for (i = 0; i < max_vol_steps; i++)
		vol_table->entries[i] = vol_table->entries[i + diff];

	vol_table->count = max_vol_steps;
}

/**
* Create Voltage Tables.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	int result;

	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
		result = vega10_get_mvdd_voltage_table(hwmgr,
				table_info->vdd_dep_on_mclk,
				&(data->mvdd_voltage_table));
		PP_ASSERT_WITH_CODE(!result,
				"Failed to retrieve MVDDC table!",
				return result);
	}

	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
		result = vega10_get_vddci_voltage_table(hwmgr,
				table_info->vdd_dep_on_mclk,
				&(data->vddci_voltage_table));
		PP_ASSERT_WITH_CODE(!result,
				"Failed to retrieve VDDCI_MEM table!",
				return result);
	}

	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
		result = vega10_get_vdd_voltage_table(hwmgr,
				table_info->vdd_dep_on_sclk,
				&(data->vddc_voltage_table));
		PP_ASSERT_WITH_CODE(!result,
				"Failed to retrieve VDDCR_SOC table!",
				return result);
	}

	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
			"Too many voltage values for VDDC. Trimming to fit state table.",
			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
					16, &(data->vddc_voltage_table)));

	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
			"Too many voltage values for VDDCI. Trimming to fit state table.",
			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
					16, &(data->vddci_voltage_table)));

	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
			"Too many voltage values for MVDD. Trimming to fit state table.",
			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
					16, &(data->mvdd_voltage_table)));


	return 0;
}

/*
 * @fn vega10_init_dpm_state
 * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
 *
 * @param    dpm_state - the address of the DPM Table to initiailize.
 * @return   None.
 */
static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
{
	dpm_state->soft_min_level = 0xff;
	dpm_state->soft_max_level = 0xff;
	dpm_state->hard_min_level = 0xff;
	dpm_state->hard_max_level = 0xff;
}

static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
		struct vega10_single_dpm_table *dpm_table,
		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
	int i;

1171 1172
	dpm_table->count = 0;

1173
	for (i = 0; i < dep_table->count; i++) {
1174
		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
				dep_table->entries[i].clk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_table->entries[i].clk;
			dpm_table->dpm_levels[dpm_table->count].enabled = true;
			dpm_table->count++;
		}
	}
}
static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *bios_pcie_table =
			table_info->pcie_table;
	uint32_t i;

	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
			"Incorrect number of PCIE States from VBIOS!",
			return -1);

1198
	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1199 1200 1201 1202 1203 1204 1205 1206
		if (data->registry_data.pcieSpeedOverride)
			pcie_table->pcie_gen[i] =
					data->registry_data.pcieSpeedOverride;
		else
			pcie_table->pcie_gen[i] =
					bios_pcie_table->entries[i].gen_speed;

		if (data->registry_data.pcieLaneOverride)
1207 1208
			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
					data->registry_data.pcieLaneOverride);
1209
		else
1210 1211
			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
							bios_pcie_table->entries[i].lane_width);
1212 1213 1214 1215 1216 1217 1218 1219
		if (data->registry_data.pcieClockOverride)
			pcie_table->lclk[i] =
					data->registry_data.pcieClockOverride;
		else
			pcie_table->lclk[i] =
					bios_pcie_table->entries[i].pcie_sclk;
	}

1220
	pcie_table->count = NUM_LINK_LEVELS;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	return 0;
}

/*
 * This function is to initialize all DPM state tables
 * for SMU based on the dependency table.
 * Dynamic state patching function will then trim these
 * state tables to the allowed range based
 * on the power policy or external client requests,
 * such as UVD request, etc.
 */
static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct vega10_single_dpm_table *dpm_table;
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
			table_info->vdd_dep_on_socclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
			table_info->mm_dep_table;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
			table_info->vdd_dep_on_dcefclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
			table_info->vdd_dep_on_pixclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
			table_info->vdd_dep_on_dispclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
			table_info->vdd_dep_on_phyclk;

	PP_ASSERT_WITH_CODE(dep_soc_table,
			"SOCCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
			"SOCCLK dependency table is empty. This table is mandatory",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_gfx_table,
			"GFXCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
			"GFXCLK dependency table is empty. This table is mandatory",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_mclk_table,
			"MCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
			"MCLK dependency table has to have is missing. This table is mandatory",
			return -EINVAL);

	/* Initialize Sclk DPM table based on allow Sclk values */
	dpm_table = &(data->dpm_table.soc_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_soc_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.gfx_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_gfx_table);
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	/* Initialize Mclk DPM table based on allow Mclk values */
	data->dpm_table.mem_table.count = 0;
	dpm_table = &(data->dpm_table.mem_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_mclk_table);
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	data->dpm_table.eclk_table.count = 0;
	dpm_table = &(data->dpm_table.eclk_table);
	for (i = 0; i < dep_mm_table->count; i++) {
		if (i == 0 || dpm_table->dpm_levels
1306
				[dpm_table->count - 1].value <=
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
						dep_mm_table->entries[i].eclk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_mm_table->entries[i].eclk;
			dpm_table->dpm_levels[dpm_table->count].enabled =
					(i == 0) ? true : false;
			dpm_table->count++;
		}
	}
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	data->dpm_table.vclk_table.count = 0;
	data->dpm_table.dclk_table.count = 0;
	dpm_table = &(data->dpm_table.vclk_table);
	for (i = 0; i < dep_mm_table->count; i++) {
		if (i == 0 || dpm_table->dpm_levels
1322
				[dpm_table->count - 1].value <=
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
						dep_mm_table->entries[i].vclk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_mm_table->entries[i].vclk;
			dpm_table->dpm_levels[dpm_table->count].enabled =
					(i == 0) ? true : false;
			dpm_table->count++;
		}
	}
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.dclk_table);
	for (i = 0; i < dep_mm_table->count; i++) {
		if (i == 0 || dpm_table->dpm_levels
1336
				[dpm_table->count - 1].value <=
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
						dep_mm_table->entries[i].dclk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_mm_table->entries[i].dclk;
			dpm_table->dpm_levels[dpm_table->count].enabled =
					(i == 0) ? true : false;
			dpm_table->count++;
		}
	}
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	/* Assume there is no headless Vega10 for now */
	dpm_table = &(data->dpm_table.dcef_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_dcef_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.pixel_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_pix_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.display_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_disp_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.phy_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_phy_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	vega10_setup_default_pcie_table(hwmgr);

	/* save a copy of the default DPM table */
	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
			sizeof(struct vega10_dpm_table));

1382 1383
	if (PP_CAP(PHM_PlatformCaps_ODNinACSupport) ||
	    PP_CAP(PHM_PlatformCaps_ODNinDCSupport)) {
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		data->odn_dpm_table.odn_core_clock_dpm_levels.
		number_of_performance_levels = data->dpm_table.gfx_table.count;
		for (i = 0; i < data->dpm_table.gfx_table.count; i++) {
			data->odn_dpm_table.odn_core_clock_dpm_levels.
			performance_level_entries[i].clock =
					data->dpm_table.gfx_table.dpm_levels[i].value;
			data->odn_dpm_table.odn_core_clock_dpm_levels.
			performance_level_entries[i].enabled = true;
		}

		data->odn_dpm_table.vdd_dependency_on_sclk.count =
				dep_gfx_table->count;
		for (i = 0; i < dep_gfx_table->count; i++) {
			data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].clk =
					dep_gfx_table->entries[i].clk;
			data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].vddInd =
					dep_gfx_table->entries[i].vddInd;
			data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].cks_enable =
					dep_gfx_table->entries[i].cks_enable;
			data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].cks_voffset =
					dep_gfx_table->entries[i].cks_voffset;
		}

		data->odn_dpm_table.odn_memory_clock_dpm_levels.
		number_of_performance_levels = data->dpm_table.mem_table.count;
		for (i = 0; i < data->dpm_table.mem_table.count; i++) {
			data->odn_dpm_table.odn_memory_clock_dpm_levels.
			performance_level_entries[i].clock =
					data->dpm_table.mem_table.dpm_levels[i].value;
			data->odn_dpm_table.odn_memory_clock_dpm_levels.
			performance_level_entries[i].enabled = true;
		}

		data->odn_dpm_table.vdd_dependency_on_mclk.count = dep_mclk_table->count;
		for (i = 0; i < dep_mclk_table->count; i++) {
			data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].clk =
					dep_mclk_table->entries[i].clk;
			data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].vddInd =
					dep_mclk_table->entries[i].vddInd;
			data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].vddci =
					dep_mclk_table->entries[i].vddci;
		}
	}

	return 0;
}

/*
 * @fn vega10_populate_ulv_state
 * @brief Function to provide parameters for Utral Low Voltage state to SMC.
 *
 * @param    hwmgr - the address of the hardware manager.
 * @return   Always 0.
 */
static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);

	data->smc_state_table.pp_table.UlvOffsetVid =
1446
			(uint8_t)table_info->us_ulv_voltage_offset;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	data->smc_state_table.pp_table.UlvSmnclkDid =
			(uint8_t)(table_info->us_ulv_smnclk_did);
	data->smc_state_table.pp_table.UlvMp1clkDid =
			(uint8_t)(table_info->us_ulv_mp1clk_did);
	data->smc_state_table.pp_table.UlvGfxclkBypass =
			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
			(uint8_t)(data->vddc_voltage_table.psi0_enable);
	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
			(uint8_t)(data->vddc_voltage_table.psi1_enable);

	return 0;
}

static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
		uint32_t lclock, uint8_t *curr_lclk_did)
{
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
			hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			lclock, &dividers),
			"Failed to get LCLK clock settings from VBIOS!",
			return -1);

	*curr_lclk_did = dividers.ulDid;

	return 0;
}

static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
{
	int result = -1;
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_pcie_table *pcie_table =
			&(data->dpm_table.pcie_table);
	uint32_t i, j;

	for (i = 0; i < pcie_table->count; i++) {
		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];

		result = vega10_populate_single_lclk_level(hwmgr,
				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
		if (result) {
			pr_info("Populate LClock Level %d Failed!\n", i);
			return result;
		}
	}

	j = i - 1;
	while (i < NUM_LINK_LEVELS) {
		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];

		result = vega10_populate_single_lclk_level(hwmgr,
				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
		if (result) {
			pr_info("Populate LClock Level %d Failed!\n", i);
			return result;
		}
		i++;
	}

	return result;
}

/**
* Populates single SMC GFXSCLK structure using the provided engine clock
*
* @param    hwmgr      the address of the hardware manager
* @param    gfx_clock  the GFX clock to use to populate the structure.
* @param    current_gfxclk_level  location in PPTable for the SMC GFXCLK structure.
*/

static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1527 1528
		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
		uint32_t *acg_freq)
1529 1530 1531 1532 1533 1534 1535 1536
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk =
			table_info->vdd_dep_on_sclk;
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1537 1538 1539
	uint32_t gfx_max_clock =
			hwmgr->platform_descriptor.overdriveLimit.engineClock;
	uint32_t i = 0;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

	if (data->apply_overdrive_next_settings_mask &
			DPMTABLE_OD_UPDATE_VDDC)
		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
						&(data->odn_dpm_table.vdd_dependency_on_sclk);

	PP_ASSERT_WITH_CODE(dep_on_sclk,
			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
			return -EINVAL);

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
	else {
		for (i = 0; i < dep_on_sclk->count; i++) {
			if (dep_on_sclk->entries[i].clk == gfx_clock)
				break;
		}
		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
				return -EINVAL);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	}

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
			gfx_clock, &dividers),
			"Failed to get GFX Clock settings from VBIOS!",
			return -EINVAL);

	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
	current_gfxclk_level->FbMult =
			cpu_to_le32(dividers.ulPll_fb_mult);
	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1572
	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1573 1574 1575 1576 1577 1578
	current_gfxclk_level->SsFbMult =
			cpu_to_le32(dividers.ulPll_ss_fbsmult);
	current_gfxclk_level->SsSlewFrac =
			cpu_to_le16(dividers.usPll_ss_slew_frac);
	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);

1579 1580
	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	return 0;
}

/**
 * @brief Populates single SMC SOCCLK structure using the provided clock.
 *
 * @param    hwmgr - the address of the hardware manager.
 * @param    soc_clock - the SOC clock to use to populate the structure.
 * @param    current_socclk_level - location in PPTable for the SMC SOCCLK structure.
 * @return   0 on success..
 */
static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
		uint32_t soc_clock, uint8_t *current_soc_did,
		uint8_t *current_vol_index)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc =
			table_info->vdd_dep_on_socclk;
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
	uint32_t i;

	PP_ASSERT_WITH_CODE(dep_on_soc,
			"Invalid SOC_VDD-SOC_CLK Dependency Table!",
			return -EINVAL);
	for (i = 0; i < dep_on_soc->count; i++) {
		if (dep_on_soc->entries[i].clk == soc_clock)
			break;
	}
	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			soc_clock, &dividers),
			"Failed to get SOC Clock settings from VBIOS!",
			return -EINVAL);

	*current_soc_did = (uint8_t)dividers.ulDid;
	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);

	return 0;
}

uint16_t vega10_locate_vddc_given_clock(struct pp_hwmgr *hwmgr,
		uint32_t clk,
		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
	uint16_t i;

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].clk == clk)
			return dep_table->entries[i].vddc;
	}

	pr_info("[LocateVddcGivenClock] Cannot locate SOC Vddc for this clock!");
	return 0;
}

/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param    hwmgr      the address of the hardware manager
*/
static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_socclk;
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
	int result = 0;
	uint32_t i, j;

	for (i = 0; i < dpm_table->count; i++) {
		result = vega10_populate_single_gfx_level(hwmgr,
				dpm_table->dpm_levels[i].value,
1661 1662
				&(pp_table->GfxclkLevel[i]),
				&(pp_table->AcgFreqTable[i]));
1663 1664 1665 1666 1667 1668 1669 1670
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_GFXCLK_DPM_LEVELS) {
		result = vega10_populate_single_gfx_level(hwmgr,
				dpm_table->dpm_levels[j].value,
1671 1672
				&(pp_table->GfxclkLevel[i]),
				&(pp_table->AcgFreqTable[i]));
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		if (result)
			return result;
		i++;
	}

	pp_table->GfxclkSlewRate =
			cpu_to_le16(table_info->us_gfxclk_slew_rate);

	dpm_table = &(data->dpm_table.soc_table);
	for (i = 0; i < dpm_table->count; i++) {
		pp_table->SocVid[i] =
				(uint8_t)convert_to_vid(
				vega10_locate_vddc_given_clock(hwmgr,
						dpm_table->dpm_levels[i].value,
						dep_table));
		result = vega10_populate_single_soc_level(hwmgr,
				dpm_table->dpm_levels[i].value,
				&(pp_table->SocclkDid[i]),
				&(pp_table->SocDpmVoltageIndex[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_SOCCLK_DPM_LEVELS) {
		pp_table->SocVid[i] = pp_table->SocVid[j];
		result = vega10_populate_single_soc_level(hwmgr,
				dpm_table->dpm_levels[j].value,
				&(pp_table->SocclkDid[i]),
				&(pp_table->SocDpmVoltageIndex[i]));
		if (result)
			return result;
		i++;
	}

	return result;
}

/**
 * @brief Populates single SMC GFXCLK structure using the provided clock.
 *
 * @param    hwmgr - the address of the hardware manager.
 * @param    mem_clock - the memory clock to use to populate the structure.
 * @return   0 on success..
 */
static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
		uint32_t mem_clock, uint8_t *current_mem_vid,
		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk =
			table_info->vdd_dep_on_mclk;
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1729 1730 1731
	uint32_t mem_max_clock =
			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
	uint32_t i = 0;
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

	if (data->apply_overdrive_next_settings_mask &
			DPMTABLE_OD_UPDATE_VDDC)
		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
					&data->odn_dpm_table.vdd_dependency_on_mclk;

	PP_ASSERT_WITH_CODE(dep_on_mclk,
			"Invalid SOC_VDD-UCLK Dependency Table!",
			return -EINVAL);

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK)
		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
	else {
		for (i = 0; i < dep_on_mclk->count; i++) {
			if (dep_on_mclk->entries[i].clk == mem_clock)
				break;
		}
		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
				return -EINVAL);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	}

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
			"Failed to get UCLK settings from VBIOS!",
			return -1);

	*current_mem_vid =
			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
	*current_mem_soc_vind =
			(uint8_t)(dep_on_mclk->entries[i].vddInd);
	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
	current_memclk_level->Did = (uint8_t)(dividers.ulDid);

	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
			"Invalid Divider ID!",
			return -EINVAL);

	return 0;
}

/**
 * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
 *
 * @param    pHwMgr - the address of the hardware manager.
 * @return   PP_Result_OK on success.
 */
static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *dpm_table =
			&(data->dpm_table.mem_table);
	int result = 0;
1787
	uint32_t i, j;
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

	for (i = 0; i < dpm_table->count; i++) {
		result = vega10_populate_single_memory_level(hwmgr,
				dpm_table->dpm_levels[i].value,
				&(pp_table->MemVid[i]),
				&(pp_table->UclkLevel[i]),
				&(pp_table->MemSocVoltageIndex[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_UCLK_DPM_LEVELS) {
		result = vega10_populate_single_memory_level(hwmgr,
				dpm_table->dpm_levels[j].value,
				&(pp_table->MemVid[i]),
				&(pp_table->UclkLevel[i]),
				&(pp_table->MemSocVoltageIndex[i]));
		if (result)
			return result;
		i++;
	}

1811
	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1812
	pp_table->MemoryChannelWidth =
1813 1814
			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
					channel_number[data->mem_channels]);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

	pp_table->LowestUclkReservedForUlv =
			(uint8_t)(data->lowest_uclk_reserved_for_ulv);

	return result;
}

static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
		DSPCLK_e disp_clock)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)
			(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
	uint32_t i;
	uint16_t clk = 0, vddc = 0;
	uint8_t vid = 0;

	switch (disp_clock) {
	case DSPCLK_DCEFCLK:
		dep_table = table_info->vdd_dep_on_dcefclk;
		break;
	case DSPCLK_DISPCLK:
		dep_table = table_info->vdd_dep_on_dispclk;
		break;
	case DSPCLK_PIXCLK:
		dep_table = table_info->vdd_dep_on_pixclk;
		break;
	case DSPCLK_PHYCLK:
		dep_table = table_info->vdd_dep_on_phyclk;
		break;
	default:
		return -1;
	}

	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
			"Number Of Entries Exceeded maximum!",
			return -1);

	for (i = 0; i < dep_table->count; i++) {
		clk = (uint16_t)(dep_table->entries[i].clk / 100);
		vddc = table_info->vddc_lookup_table->
				entries[dep_table->entries[i].vddInd].us_vdd;
		vid = (uint8_t)convert_to_vid(vddc);
		pp_table->DisplayClockTable[disp_clock][i].Freq =
				cpu_to_le16(clk);
		pp_table->DisplayClockTable[disp_clock][i].Vid =
				cpu_to_le16(vid);
	}

	while (i < NUM_DSPCLK_LEVELS) {
		pp_table->DisplayClockTable[disp_clock][i].Freq =
				cpu_to_le16(clk);
		pp_table->DisplayClockTable[disp_clock][i].Vid =
				cpu_to_le16(vid);
		i++;
	}

	return 0;
}

static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
{
	uint32_t i;

	for (i = 0; i < DSPCLK_COUNT; i++) {
		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
				"Failed to populate Clock in DisplayClockTable!",
				return -1);
	}

	return 0;
}

static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
		uint32_t eclock, uint8_t *current_eclk_did,
		uint8_t *current_soc_vol)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
			table_info->mm_dep_table;
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
	uint32_t i;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			eclock, &dividers),
			"Failed to get ECLK clock settings from VBIOS!",
			return -1);

	*current_eclk_did = (uint8_t)dividers.ulDid;

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].eclk == eclock)
			*current_soc_vol = dep_table->entries[i].vddcInd;
	}

	return 0;
}

static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
	int result = -EINVAL;
	uint32_t i, j;

	for (i = 0; i < dpm_table->count; i++) {
		result = vega10_populate_single_eclock_level(hwmgr,
				dpm_table->dpm_levels[i].value,
				&(pp_table->EclkDid[i]),
				&(pp_table->VceDpmVoltageIndex[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_VCE_DPM_LEVELS) {
		result = vega10_populate_single_eclock_level(hwmgr,
				dpm_table->dpm_levels[j].value,
				&(pp_table->EclkDid[i]),
				&(pp_table->VceDpmVoltageIndex[i]));
		if (result)
			return result;
		i++;
	}

	return result;
}

static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
		uint32_t vclock, uint8_t *current_vclk_did)
{
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			vclock, &dividers),
			"Failed to get VCLK clock settings from VBIOS!",
			return -EINVAL);

	*current_vclk_did = (uint8_t)dividers.ulDid;

	return 0;
}

static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
		uint32_t dclock, uint8_t *current_dclk_did)
{
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			dclock, &dividers),
			"Failed to get DCLK clock settings from VBIOS!",
			return -EINVAL);

	*current_dclk_did = (uint8_t)dividers.ulDid;

	return 0;
}

static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *vclk_dpm_table =
			&(data->dpm_table.vclk_table);
	struct vega10_single_dpm_table *dclk_dpm_table =
			&(data->dpm_table.dclk_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
			table_info->mm_dep_table;
	int result = -EINVAL;
	uint32_t i, j;

	for (i = 0; i < vclk_dpm_table->count; i++) {
		result = vega10_populate_single_vclock_level(hwmgr,
				vclk_dpm_table->dpm_levels[i].value,
				&(pp_table->VclkDid[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_UVD_DPM_LEVELS) {
		result = vega10_populate_single_vclock_level(hwmgr,
				vclk_dpm_table->dpm_levels[j].value,
				&(pp_table->VclkDid[i]));
		if (result)
			return result;
		i++;
	}

	for (i = 0; i < dclk_dpm_table->count; i++) {
		result = vega10_populate_single_dclock_level(hwmgr,
				dclk_dpm_table->dpm_levels[i].value,
				&(pp_table->DclkDid[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_UVD_DPM_LEVELS) {
		result = vega10_populate_single_dclock_level(hwmgr,
				dclk_dpm_table->dpm_levels[j].value,
				&(pp_table->DclkDid[i]));
		if (result)
			return result;
		i++;
	}

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].vclk ==
				vclk_dpm_table->dpm_levels[i].value &&
			dep_table->entries[i].dclk ==
				dclk_dpm_table->dpm_levels[i].value)
			pp_table->UvdDpmVoltageIndex[i] =
					dep_table->entries[i].vddcInd;
		else
			return -1;
	}

	j = i - 1;
	while (i < NUM_UVD_DPM_LEVELS) {
		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
		i++;
	}

	return 0;
}

static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_sclk;
	uint32_t i;

2066
	for (i = 0; i < dep_table->count; i++) {
2067
		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2068 2069
		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	}

	return 0;
}

static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_sclk;
	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
	int result = 0;
	uint32_t i;

	pp_table->MinVoltageVid = (uint8_t)0xff;
	pp_table->MaxVoltageVid = (uint8_t)0;

	if (data->smu_features[GNLD_AVFS].supported) {
		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
		if (!result) {
			pp_table->MinVoltageVid = (uint8_t)
					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
			pp_table->MaxVoltageVid = (uint8_t)
					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));

			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2106 2107 2108

			pp_table->BtcGbVdroopTableCksOff.a0 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2109
			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2110 2111
			pp_table->BtcGbVdroopTableCksOff.a1 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2112
			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2113 2114
			pp_table->BtcGbVdroopTableCksOff.a2 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;

			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
			pp_table->BtcGbVdroopTableCksOn.a0 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
			pp_table->BtcGbVdroopTableCksOn.a1 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
			pp_table->BtcGbVdroopTableCksOn.a2 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2127 2128 2129 2130

			pp_table->AvfsGbCksOn.m1 =
					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
			pp_table->AvfsGbCksOn.m2 =
2131
					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2132 2133 2134 2135
			pp_table->AvfsGbCksOn.b =
					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
			pp_table->AvfsGbCksOn.m1_shift = 24;
			pp_table->AvfsGbCksOn.m2_shift = 12;
2136
			pp_table->AvfsGbCksOn.b_shift = 0;
2137

2138 2139
			pp_table->OverrideAvfsGbCksOn =
					avfs_params.ucEnableGbFuseTableCkson;
2140 2141 2142
			pp_table->AvfsGbCksOff.m1 =
					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
			pp_table->AvfsGbCksOff.m2 =
2143
					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2144 2145 2146 2147
			pp_table->AvfsGbCksOff.b =
					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
			pp_table->AvfsGbCksOff.m1_shift = 24;
			pp_table->AvfsGbCksOff.m2_shift = 12;
2148 2149
			pp_table->AvfsGbCksOff.b_shift = 0;

2150 2151 2152
			for (i = 0; i < dep_table->count; i++)
				pp_table->StaticVoltageOffsetVid[i] =
						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2153 2154 2155 2156 2157 2158 2159 2160

			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->disp_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->disp_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
						(int32_t)data->disp_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2161
						(int32_t)data->disp_clk_quad_eqn_b;
2162 2163 2164 2165 2166 2167
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
						(int32_t)data->disp_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
						(int32_t)avfs_params.ulDispclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2168
						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2169 2170 2171 2172 2173 2174
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
						(int32_t)avfs_params.ulDispclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
R
Rex Zhu 已提交
2175
			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2176 2177 2178 2179 2180 2181 2182 2183

			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->dcef_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->dcef_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
						(int32_t)data->dcef_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2184
						(int32_t)data->dcef_clk_quad_eqn_b;
2185 2186 2187 2188 2189 2190
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
						(int32_t)data->dcef_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2191
						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2192 2193 2194 2195 2196 2197
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
						(int32_t)avfs_params.ulDcefclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
R
Rex Zhu 已提交
2198
			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2199 2200 2201 2202 2203 2204 2205 2206

			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->pixel_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->pixel_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
						(int32_t)data->pixel_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2207
						(int32_t)data->pixel_clk_quad_eqn_b;
2208 2209 2210 2211 2212 2213
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
						(int32_t)data->pixel_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2214
						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2215 2216 2217 2218 2219 2220
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
						(int32_t)avfs_params.ulPixelclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
R
Rex Zhu 已提交
2221
			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2222 2223 2224 2225 2226 2227 2228
			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->phy_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->phy_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
						(int32_t)data->phy_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2229
						(int32_t)data->phy_clk_quad_eqn_b;
2230 2231 2232 2233 2234 2235
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
						(int32_t)data->phy_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2236
						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2237 2238 2239 2240 2241 2242
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
						(int32_t)avfs_params.ulPhyclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
R
Rex Zhu 已提交
2243
			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;

			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
			pp_table->AcgAvfsGb.m1_shift             = 0;
			pp_table->AcgAvfsGb.m2_shift             = 0;
			pp_table->AcgAvfsGb.b_shift              = 0;

2259 2260 2261 2262 2263 2264 2265 2266
		} else {
			data->smu_features[GNLD_AVFS].supported = false;
		}
	}

	return 0;
}

2267 2268 2269 2270 2271 2272 2273
static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	uint32_t agc_btc_response;

	if (data->smu_features[GNLD_ACG].supported) {
2274
		if (0 == vega10_enable_smc_features(hwmgr, true,
2275 2276 2277
					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;

2278
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg);
2279

2280 2281
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc);
		vega10_read_arg_from_smc(hwmgr, &agc_btc_response);
2282 2283 2284

		if (1 == agc_btc_response) {
			if (1 == data->acg_loop_state)
2285
				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop);
2286
			else if (2 == data->acg_loop_state)
2287 2288
				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop);
			if (0 == vega10_enable_smc_features(hwmgr, true,
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
				data->smu_features[GNLD_ACG].smu_feature_bitmap))
					data->smu_features[GNLD_ACG].enabled = true;
		} else {
			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
			data->smu_features[GNLD_ACG].enabled = false;
		}
	}

	return 0;
}

static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

2305 2306
	if (data->smu_features[GNLD_ACG].supported && 
	    data->smu_features[GNLD_ACG].enabled)
2307
		if (!vega10_enable_smc_features(hwmgr, false,
2308
			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2309 2310 2311 2312 2313
			data->smu_features[GNLD_ACG].enabled = false;

	return 0;
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
	int result;

	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
	if (!result) {
2324 2325
		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
		    data->registry_data.regulator_hot_gpio_support) {
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
		} else {
			pp_table->VR0HotGpio = 0;
			pp_table->VR0HotPolarity = 0;
			pp_table->VR1HotGpio = 0;
			pp_table->VR1HotPolarity = 0;
		}

2337 2338
		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
		    data->registry_data.ac_dc_switch_gpio_support) {
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
		} else {
			pp_table->AcDcGpio = 0;
			pp_table->AcDcPolarity = 0;
		}
	}

	return result;
}

static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_AVFS].supported) {
		if (enable) {
2357
			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2358 2359 2360 2361 2362 2363
					true,
					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
					"[avfs_control] Attempt to Enable AVFS feature Failed!",
					return -1);
			data->smu_features[GNLD_AVFS].enabled = true;
		} else {
2364
			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2365
					false,
2366
					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2367 2368 2369 2370 2371 2372 2373 2374 2375
					"[avfs_control] Attempt to Disable AVFS feature Failed!",
					return -1);
			data->smu_features[GNLD_AVFS].enabled = false;
		}
	}

	return 0;
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
{
	int result = 0;

	uint64_t serial_number = 0;
	uint32_t top32, bottom32;
	struct phm_fuses_default fuse;

	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);

2387 2388
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32);
	vega10_read_arg_from_smc(hwmgr, &top32);
2389

2390 2391
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32);
	vega10_read_arg_from_smc(hwmgr, &bottom32);
2392 2393 2394

	serial_number = ((uint64_t)bottom32 << 32) | top32;

2395
	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2396 2397 2398 2399 2400 2401 2402 2403 2404
		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2405
		result = vega10_copy_table_to_smc(hwmgr,
2406 2407 2408 2409 2410 2411 2412 2413 2414
			(uint8_t *)avfs_fuse_table, AVFSFUSETABLE);
		PP_ASSERT_WITH_CODE(!result,
			"Failed to upload FuseOVerride!",
			);
	}

	return result;
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static int vega10_save_default_power_profile(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
	uint32_t min_level;

	hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE;
	hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE;

	/* Optimize compute power profile: Use only highest
	 * 2 power levels (if more than 2 are available)
	 */
	if (dpm_table->count > 2)
		min_level = dpm_table->count - 2;
	else if (dpm_table->count == 2)
		min_level = 1;
	else
		min_level = 0;

	hwmgr->default_compute_power_profile.min_sclk =
			dpm_table->dpm_levels[min_level].value;

	hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile;
	hwmgr->compute_power_profile = hwmgr->default_compute_power_profile;

	return 0;
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
/**
* Initializes the SMC table and uploads it
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @param    pInput  the pointer to input data (PowerState)
* @return   always 0
*/
static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct pp_atomfwctrl_voltage_table voltage_table;
2459
	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

	result = vega10_setup_default_dpm_tables(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to setup default DPM tables!",
			return result);

	pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
			VOLTAGE_OBJ_SVID2,  &voltage_table);
	pp_table->MaxVidStep = voltage_table.max_vid_step;

	pp_table->GfxDpmVoltageMode =
			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
	pp_table->SocDpmVoltageMode =
			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
	pp_table->UclkDpmVoltageMode =
			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
	pp_table->UvdDpmVoltageMode =
			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
	pp_table->VceDpmVoltageMode =
			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
	pp_table->Mp0DpmVoltageMode =
			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2482

2483 2484 2485
	pp_table->DisplayDpmVoltageMode =
			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);

2486 2487 2488
	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	if (data->registry_data.ulv_support &&
			table_info->us_ulv_voltage_offset) {
		result = vega10_populate_ulv_state(hwmgr);
		PP_ASSERT_WITH_CODE(!result,
				"Failed to initialize ULV state!",
				return result);
	}

	result = vega10_populate_smc_link_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Link Level!",
			return result);

	result = vega10_populate_all_graphic_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Graphics Level!",
			return result);

	result = vega10_populate_all_memory_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Memory Level!",
			return result);

	result = vega10_populate_all_display_clock_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Display Level!",
			return result);

	result = vega10_populate_smc_vce_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize VCE Level!",
			return result);

	result = vega10_populate_smc_uvd_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize UVD Level!",
			return result);

2527
	if (data->registry_data.clock_stretcher_support) {
2528 2529 2530 2531 2532 2533
		result = vega10_populate_clock_stretcher_table(hwmgr);
		PP_ASSERT_WITH_CODE(!result,
				"Failed to populate Clock Stretcher Table!",
				return result);
	}

2534 2535 2536 2537 2538 2539 2540 2541
	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
	if (!result) {
		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2542
		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2543
		if (0 != boot_up_values.usVddc) {
2544
			smum_send_msg_to_smc_with_parameter(hwmgr,
2545 2546 2547 2548 2549 2550
						PPSMC_MSG_SetFloorSocVoltage,
						(boot_up_values.usVddc * 4));
			data->vbios_boot_state.bsoc_vddc_lock = true;
		} else {
			data->vbios_boot_state.bsoc_vddc_lock = false;
		}
2551
		smum_send_msg_to_smc_with_parameter(hwmgr,
2552 2553
				PPSMC_MSG_SetMinDeepSleepDcefclk,
			(uint32_t)(data->vbios_boot_state.dcef_clock / 100));
2554 2555
	}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	result = vega10_populate_avfs_parameters(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize AVFS Parameters!",
			return result);

	result = vega10_populate_gpio_parameters(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize GPIO Parameters!",
			return result);

	pp_table->GfxclkAverageAlpha = (uint8_t)
			(data->gfxclk_average_alpha);
	pp_table->SocclkAverageAlpha = (uint8_t)
			(data->socclk_average_alpha);
	pp_table->UclkAverageAlpha = (uint8_t)
			(data->uclk_average_alpha);
	pp_table->GfxActivityAverageAlpha = (uint8_t)
			(data->gfx_activity_average_alpha);

2575 2576
	vega10_populate_and_upload_avfs_fuse_override(hwmgr);

2577
	result = vega10_copy_table_to_smc(hwmgr,
2578 2579 2580 2581
			(uint8_t *)pp_table, PPTABLE);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to upload PPtable!", return result);

2582 2583
	result = vega10_avfs_enable(hwmgr, true);
	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2584
					return result);
2585
	vega10_acg_enable(hwmgr);
2586 2587
	vega10_save_default_power_profile(hwmgr);

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	return 0;
}

static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_THERMAL].supported) {
		if (data->smu_features[GNLD_THERMAL].enabled)
			pr_info("THERMAL Feature Already enabled!");

		PP_ASSERT_WITH_CODE(
2600
				!vega10_enable_smc_features(hwmgr,
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
				true,
				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
				"Enable THERMAL Feature Failed!",
				return -1);
		data->smu_features[GNLD_THERMAL].enabled = true;
	}

	return 0;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619
static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_THERMAL].supported) {
		if (!data->smu_features[GNLD_THERMAL].enabled)
			pr_info("THERMAL Feature Already disabled!");

		PP_ASSERT_WITH_CODE(
2620
				!vega10_enable_smc_features(hwmgr,
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
				false,
				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
				"disable THERMAL Feature Failed!",
				return -1);
		data->smu_features[GNLD_THERMAL].enabled = false;
	}

	return 0;
}

2631 2632 2633 2634 2635
static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

2636
	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2637 2638
		if (data->smu_features[GNLD_VR0HOT].supported) {
			PP_ASSERT_WITH_CODE(
2639
					!vega10_enable_smc_features(hwmgr,
2640 2641 2642 2643 2644 2645 2646 2647
					true,
					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
					"Attempt to Enable VR0 Hot feature Failed!",
					return -1);
			data->smu_features[GNLD_VR0HOT].enabled = true;
		} else {
			if (data->smu_features[GNLD_VR1HOT].supported) {
				PP_ASSERT_WITH_CODE(
2648
						!vega10_enable_smc_features(hwmgr,
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
						true,
						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
						"Attempt to Enable VR0 Hot feature Failed!",
						return -1);
				data->smu_features[GNLD_VR1HOT].enabled = true;
			}
		}
	}
	return 0;
}

static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	if (data->registry_data.ulv_support) {
2666
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2667 2668 2669 2670 2671 2672 2673 2674 2675
				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
				"Enable ULV Feature Failed!",
				return -1);
		data->smu_features[GNLD_ULV].enabled = true;
	}

	return 0;
}

2676 2677 2678 2679 2680 2681
static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	if (data->registry_data.ulv_support) {
2682
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2683 2684 2685 2686 2687 2688 2689 2690 2691
				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
				"disable ULV Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_ULV].enabled = false;
	}

	return 0;
}

2692 2693 2694 2695 2696 2697
static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2698
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2699 2700
				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
				"Attempt to Enable DS_GFXCLK Feature Failed!",
2701
				return -EINVAL);
2702 2703 2704 2705
		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
	}

	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2706
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2707
				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2708 2709
				"Attempt to Enable DS_SOCCLK Feature Failed!",
				return -EINVAL);
2710 2711 2712 2713
		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
	}

	if (data->smu_features[GNLD_DS_LCLK].supported) {
2714
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2715
				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2716 2717
				"Attempt to Enable DS_LCLK Feature Failed!",
				return -EINVAL);
2718 2719 2720
		data->smu_features[GNLD_DS_LCLK].enabled = true;
	}

2721
	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2722
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
				"Attempt to Enable DS_DCEFCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
	}

	return 0;
}

static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2738
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2739 2740 2741 2742 2743 2744 2745
				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
				"Attempt to disable DS_GFXCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
	}

	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2746
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2747 2748 2749 2750 2751 2752 2753
				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
				"Attempt to disable DS_ Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
	}

	if (data->smu_features[GNLD_DS_LCLK].supported) {
2754
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2755 2756 2757 2758 2759 2760 2761
				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
				"Attempt to disable DS_LCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_LCLK].enabled = false;
	}

	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2762
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2763 2764 2765 2766 2767 2768
				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
				"Attempt to disable DS_DCEFCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
	}

2769 2770 2771
	return 0;
}

2772 2773 2774 2775 2776 2777 2778 2779
static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	uint32_t i, feature_mask = 0;


	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2780
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2781 2782 2783
				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
		"Attempt to disable LED DPM feature failed!", return -EINVAL);
		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	}

	for (i = 0; i < GNLD_DPM_MAX; i++) {
		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
			if (data->smu_features[i].supported) {
				if (data->smu_features[i].enabled) {
					feature_mask |= data->smu_features[i].
							smu_feature_bitmap;
					data->smu_features[i].enabled = false;
				}
			}
		}
	}

2798
	vega10_enable_smc_features(hwmgr, false, feature_mask);
2799 2800 2801 2802

	return 0;
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
/**
 * @brief Tell SMC to enabled the supported DPMs.
 *
 * @param    hwmgr - the address of the powerplay hardware manager.
 * @Param    bitmap - bitmap for the features to enabled.
 * @return   0 on at least one DPM is successfully enabled.
 */
static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	uint32_t i, feature_mask = 0;

	for (i = 0; i < GNLD_DPM_MAX; i++) {
		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
			if (data->smu_features[i].supported) {
				if (!data->smu_features[i].enabled) {
					feature_mask |= data->smu_features[i].
							smu_feature_bitmap;
					data->smu_features[i].enabled = true;
				}
			}
		}
	}

2828
	if (vega10_enable_smc_features(hwmgr,
2829 2830 2831 2832 2833 2834 2835 2836 2837
			true, feature_mask)) {
		for (i = 0; i < GNLD_DPM_MAX; i++) {
			if (data->smu_features[i].smu_feature_bitmap &
					feature_mask)
				data->smu_features[i].enabled = false;
		}
	}

	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2838
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2839 2840 2841 2842 2843
				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
	}

2844
	if (data->vbios_boot_state.bsoc_vddc_lock) {
2845
		smum_send_msg_to_smc_with_parameter(hwmgr,
2846 2847 2848 2849
						PPSMC_MSG_SetFloorSocVoltage, 0);
		data->vbios_boot_state.bsoc_vddc_lock = false;
	}

2850
	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2851
		if (data->smu_features[GNLD_ACDC].supported) {
2852
			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
					"Attempt to Enable DS_GFXCLK Feature Failed!",
					return -1);
			data->smu_features[GNLD_ACDC].enabled = true;
		}
	}

	return 0;
}

static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	int tmp_result, result = 0;

2869
	tmp_result = smum_send_msg_to_smc_with_parameter(hwmgr,
2870 2871 2872 2873 2874
			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to configure telemetry!",
			return tmp_result);

2875
	smum_send_msg_to_smc_with_parameter(hwmgr,
2876 2877 2878 2879 2880 2881 2882
			PPSMC_MSG_NumOfDisplays, 0);

	tmp_result = (!vega10_is_dpm_running(hwmgr)) ? 0 : -1;
	PP_ASSERT_WITH_CODE(!tmp_result,
			"DPM is already running right , skipping re-enablement!",
			return 0);

2883 2884
	if ((hwmgr->smu_version == 0x001c2c00) ||
			(hwmgr->smu_version == 0x001c2d00)) {
2885 2886 2887 2888 2889 2890 2891
		tmp_result = smum_send_msg_to_smc_with_parameter(hwmgr,
				PPSMC_MSG_UpdatePkgPwrPidAlpha, 1);
		PP_ASSERT_WITH_CODE(!tmp_result,
				"Failed to set package power PID!",
				return tmp_result);
	}

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	tmp_result = vega10_construct_voltage_tables(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to contruct voltage tables!",
			result = tmp_result);

	tmp_result = vega10_init_smc_table(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to initialize SMC table!",
			result = tmp_result);

2902
	if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		tmp_result = vega10_enable_thermal_protection(hwmgr);
		PP_ASSERT_WITH_CODE(!tmp_result,
				"Failed to enable thermal protection!",
				result = tmp_result);
	}

	tmp_result = vega10_enable_vrhot_feature(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to enable VR hot feature!",
			result = tmp_result);

	tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to enable deep sleep master switch!",
			result = tmp_result);

	tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to start DPM!", result = tmp_result);

2923 2924 2925 2926 2927
	/* enable didt, do not abort if failed didt */
	tmp_result = vega10_enable_didt_config(hwmgr);
	PP_ASSERT(!tmp_result,
			"Failed to enable didt config!");

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	tmp_result = vega10_enable_power_containment(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to enable power containment!",
			result = tmp_result);

	tmp_result = vega10_power_control_set_level(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to power control set level!",
			result = tmp_result);

2938 2939 2940 2941 2942
	tmp_result = vega10_enable_ulv(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to enable ULV!",
			result = tmp_result);

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	return result;
}

static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
{
	return sizeof(struct vega10_power_state);
}

static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
		void *state, struct pp_power_state *power_state,
		void *pp_table, uint32_t classification_flag)
{
2955
	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	struct vega10_power_state *vega10_power_state =
			cast_phw_vega10_power_state(&(power_state->hardware));
	struct vega10_performance_level *performance_level;
	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
			(ATOM_Vega10_SOCCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
			(ATOM_Vega10_GFXCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
			(ATOM_Vega10_MCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));


	/* The following fields are not initialized here:
	 * id orderedList allStatesList
	 */
	power_state->classification.ui_label =
			(le16_to_cpu(state_entry->usClassification) &
			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
	power_state->classification.flags = classification_flag;
	/* NOTE: There is a classification2 flag in BIOS
	 * that is not being used right now
	 */
	power_state->classification.temporary_state = false;
	power_state->classification.to_be_deleted = false;

	power_state->validation.disallowOnDC =
			((le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Vega10_DISALLOW_ON_DC) != 0);

	power_state->display.disableFrameModulation = false;
	power_state->display.limitRefreshrate = false;
	power_state->display.enableVariBright =
			((le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);

	power_state->validation.supportedPowerLevels = 0;
	power_state->uvd_clocks.VCLK = 0;
	power_state->uvd_clocks.DCLK = 0;
	power_state->temperatures.min = 0;
	power_state->temperatures.max = 0;

	performance_level = &(vega10_power_state->performance_levels
			[vega10_power_state->performance_level_count++]);

	PP_ASSERT_WITH_CODE(
			(vega10_power_state->performance_level_count <
					NUM_GFXCLK_DPM_LEVELS),
			"Performance levels exceeds SMC limit!",
			return -1);

	PP_ASSERT_WITH_CODE(
			(vega10_power_state->performance_level_count <=
					hwmgr->platform_descriptor.
					hardwareActivityPerformanceLevels),
			"Performance levels exceeds Driver limit!",
			return -1);

	/* Performance levels are arranged from low to high. */
	performance_level->soc_clock = socclk_dep_table->entries
			[state_entry->ucSocClockIndexLow].ulClk;
	performance_level->gfx_clock = gfxclk_dep_table->entries
			[state_entry->ucGfxClockIndexLow].ulClk;
	performance_level->mem_clock = mclk_dep_table->entries
			[state_entry->ucMemClockIndexLow].ulMemClk;

	performance_level = &(vega10_power_state->performance_levels
				[vega10_power_state->performance_level_count++]);
	performance_level->soc_clock = socclk_dep_table->entries
3033 3034 3035
				[state_entry->ucSocClockIndexHigh].ulClk;
	if (gfxclk_dep_table->ucRevId == 0) {
		performance_level->gfx_clock = gfxclk_dep_table->entries
3036
			[state_entry->ucGfxClockIndexHigh].ulClk;
3037 3038 3039 3040 3041
	} else if (gfxclk_dep_table->ucRevId == 1) {
		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
		performance_level->gfx_clock = patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
	}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	performance_level->mem_clock = mclk_dep_table->entries
			[state_entry->ucMemClockIndexHigh].ulMemClk;
	return 0;
}

static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
		unsigned long entry_index, struct pp_power_state *state)
{
	int result;
	struct vega10_power_state *ps;

	state->hardware.magic = PhwVega10_Magic;

	ps = cast_phw_vega10_power_state(&state->hardware);

	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
			vega10_get_pp_table_entry_callback_func);

	/*
	 * This is the earliest time we have all the dependency table
	 * and the VBIOS boot state
	 */
	/* set DC compatible flag if this state supports DC */
	if (!state->validation.disallowOnDC)
		ps->dc_compatible = true;

	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;

	return 0;
}

static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
	     struct pp_hw_power_state *hw_ps)
{
	return 0;
}

static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
				struct pp_power_state  *request_ps,
			const struct pp_power_state *current_ps)
{
	struct vega10_power_state *vega10_ps =
				cast_phw_vega10_power_state(&request_ps->hardware);
	uint32_t sclk;
	uint32_t mclk;
	struct PP_Clocks minimum_clocks = {0};
	bool disable_mclk_switching;
	bool disable_mclk_switching_for_frame_lock;
	bool disable_mclk_switching_for_vr;
	bool force_mclk_high;
	struct cgs_display_info info = {0};
	const struct phm_clock_and_voltage_limits *max_limits;
	uint32_t i;
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	int32_t count;
	uint32_t stable_pstate_sclk_dpm_percentage;
	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
	uint32_t latency;

	data->battery_state = (PP_StateUILabel_Battery ==
			request_ps->classification.ui_label);

	if (vega10_ps->performance_level_count != 2)
		pr_info("VI should always have 2 performance levels");

	max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
			&(hwmgr->dyn_state.max_clock_voltage_on_dc);

	/* Cap clock DPM tables at DC MAX if it is in DC. */
	if (PP_PowerSource_DC == hwmgr->power_source) {
		for (i = 0; i < vega10_ps->performance_level_count; i++) {
			if (vega10_ps->performance_levels[i].mem_clock >
				max_limits->mclk)
				vega10_ps->performance_levels[i].mem_clock =
						max_limits->mclk;
			if (vega10_ps->performance_levels[i].gfx_clock >
				max_limits->sclk)
				vega10_ps->performance_levels[i].gfx_clock =
						max_limits->sclk;
		}
	}

	cgs_get_active_displays_info(hwmgr->device, &info);

	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
	minimum_clocks.engineClock = hwmgr->display_config.min_core_set_clock;
3132
	minimum_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock;
3133

3134
	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3135 3136
		stable_pstate_sclk_dpm_percentage =
			data->registry_data.stable_pstate_sclk_dpm_percentage;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		PP_ASSERT_WITH_CODE(
			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
			"percent sclk value must range from 1% to 100%, setting default value",
			stable_pstate_sclk_dpm_percentage = 75);

		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
		stable_pstate_sclk = (max_limits->sclk *
				stable_pstate_sclk_dpm_percentage) / 100;

		for (count = table_info->vdd_dep_on_sclk->count - 1;
				count >= 0; count--) {
			if (stable_pstate_sclk >=
					table_info->vdd_dep_on_sclk->entries[count].clk) {
				stable_pstate_sclk =
						table_info->vdd_dep_on_sclk->entries[count].clk;
				break;
			}
		}

		if (count < 0)
			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;

		stable_pstate_mclk = max_limits->mclk;

		minimum_clocks.engineClock = stable_pstate_sclk;
		minimum_clocks.memoryClock = stable_pstate_mclk;
	}

	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
				    hwmgr->platform_descriptor.platformCaps,
				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3169 3170
	disable_mclk_switching_for_vr = PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

	disable_mclk_switching = (info.display_count > 1) ||
				    disable_mclk_switching_for_frame_lock ||
				    disable_mclk_switching_for_vr ||
				    force_mclk_high;

	sclk = vega10_ps->performance_levels[0].gfx_clock;
	mclk = vega10_ps->performance_levels[0].mem_clock;

	if (sclk < minimum_clocks.engineClock)
		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
				max_limits->sclk : minimum_clocks.engineClock;

	if (mclk < minimum_clocks.memoryClock)
		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
				max_limits->mclk : minimum_clocks.memoryClock;

	vega10_ps->performance_levels[0].gfx_clock = sclk;
	vega10_ps->performance_levels[0].mem_clock = mclk;

3191 3192 3193 3194
	if (vega10_ps->performance_levels[1].gfx_clock <
			vega10_ps->performance_levels[0].gfx_clock)
		vega10_ps->performance_levels[0].gfx_clock =
				vega10_ps->performance_levels[1].gfx_clock;
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

	if (disable_mclk_switching) {
		/* Set Mclk the max of level 0 and level 1 */
		if (mclk < vega10_ps->performance_levels[1].mem_clock)
			mclk = vega10_ps->performance_levels[1].mem_clock;

		/* Find the lowest MCLK frequency that is within
		 * the tolerable latency defined in DAL
		 */
		latency = 0;
		for (i = 0; i < data->mclk_latency_table.count; i++) {
			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
				(data->mclk_latency_table.entries[i].frequency >=
						vega10_ps->performance_levels[0].mem_clock) &&
				(data->mclk_latency_table.entries[i].frequency <=
						vega10_ps->performance_levels[1].mem_clock))
				mclk = data->mclk_latency_table.entries[i].frequency;
		}
		vega10_ps->performance_levels[0].mem_clock = mclk;
	} else {
		if (vega10_ps->performance_levels[1].mem_clock <
				vega10_ps->performance_levels[0].mem_clock)
3217 3218
			vega10_ps->performance_levels[0].mem_clock =
					vega10_ps->performance_levels[1].mem_clock;
3219 3220
	}

3221
	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		for (i = 0; i < vega10_ps->performance_level_count; i++) {
			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
		}
	}

	return 0;
}

static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	const struct vega10_power_state *vega10_ps =
			cast_const_phw_vega10_power_state(states->pnew_state);
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *sclk_table =
			&(data->dpm_table.gfx_table);
	uint32_t sclk = vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].gfx_clock;
	struct vega10_single_dpm_table *mclk_table =
			&(data->dpm_table.mem_table);
	uint32_t mclk = vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].mem_clock;
	struct PP_Clocks min_clocks = {0};
	uint32_t i;
	struct cgs_display_info info = {0};

	data->need_update_dpm_table = 0;

3253 3254
	if (PP_CAP(PHM_PlatformCaps_ODNinACSupport) ||
	    PP_CAP(PHM_PlatformCaps_ODNinDCSupport)) {
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		for (i = 0; i < sclk_table->count; i++) {
			if (sclk == sclk_table->dpm_levels[i].value)
				break;
		}

		if (!(data->apply_overdrive_next_settings_mask &
				DPMTABLE_OD_UPDATE_SCLK) && i >= sclk_table->count) {
			/* Check SCLK in DAL's minimum clocks
			 * in case DeepSleep divider update is required.
			 */
			if (data->display_timing.min_clock_in_sr !=
					min_clocks.engineClockInSR &&
				(min_clocks.engineClockInSR >=
						VEGA10_MINIMUM_ENGINE_CLOCK ||
					data->display_timing.min_clock_in_sr >=
						VEGA10_MINIMUM_ENGINE_CLOCK))
				data->need_update_dpm_table |= DPMTABLE_UPDATE_SCLK;
		}

		cgs_get_active_displays_info(hwmgr->device, &info);

		if (data->display_timing.num_existing_displays !=
				info.display_count)
			data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
	} else {
		for (i = 0; i < sclk_table->count; i++) {
			if (sclk == sclk_table->dpm_levels[i].value)
				break;
		}

		if (i >= sclk_table->count)
			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
		else {
			/* Check SCLK in DAL's minimum clocks
			 * in case DeepSleep divider update is required.
			 */
			if (data->display_timing.min_clock_in_sr !=
					min_clocks.engineClockInSR &&
				(min_clocks.engineClockInSR >=
						VEGA10_MINIMUM_ENGINE_CLOCK ||
					data->display_timing.min_clock_in_sr >=
						VEGA10_MINIMUM_ENGINE_CLOCK))
				data->need_update_dpm_table |= DPMTABLE_UPDATE_SCLK;
		}

		for (i = 0; i < mclk_table->count; i++) {
			if (mclk == mclk_table->dpm_levels[i].value)
				break;
		}

		cgs_get_active_displays_info(hwmgr->device, &info);

		if (i >= mclk_table->count)
			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;

		if (data->display_timing.num_existing_displays !=
				info.display_count ||
				i >= mclk_table->count)
			data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
	}
	return 0;
}

static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result = 0;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	const struct vega10_power_state *vega10_ps =
			cast_const_phw_vega10_power_state(states->pnew_state);
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	uint32_t sclk = vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].gfx_clock;
	uint32_t mclk = vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].mem_clock;
	struct vega10_dpm_table *dpm_table = &data->dpm_table;
	struct vega10_dpm_table *golden_dpm_table =
			&data->golden_dpm_table;
	uint32_t dpm_count, clock_percent;
	uint32_t i;

3338 3339
	if (PP_CAP(PHM_PlatformCaps_ODNinACSupport) ||
	    PP_CAP(PHM_PlatformCaps_ODNinDCSupport)) {
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379

		if (!data->need_update_dpm_table &&
			!data->apply_optimized_settings &&
			!data->apply_overdrive_next_settings_mask)
			return 0;

		if (data->apply_overdrive_next_settings_mask &
				DPMTABLE_OD_UPDATE_SCLK) {
			for (dpm_count = 0;
					dpm_count < dpm_table->gfx_table.count;
					dpm_count++) {
				dpm_table->gfx_table.dpm_levels[dpm_count].enabled =
						data->odn_dpm_table.odn_core_clock_dpm_levels.
						performance_level_entries[dpm_count].enabled;
				dpm_table->gfx_table.dpm_levels[dpm_count].value =
						data->odn_dpm_table.odn_core_clock_dpm_levels.
						performance_level_entries[dpm_count].clock;
			}
		}

		if (data->apply_overdrive_next_settings_mask &
				DPMTABLE_OD_UPDATE_MCLK) {
			for (dpm_count = 0;
					dpm_count < dpm_table->mem_table.count;
					dpm_count++) {
				dpm_table->mem_table.dpm_levels[dpm_count].enabled =
						data->odn_dpm_table.odn_memory_clock_dpm_levels.
						performance_level_entries[dpm_count].enabled;
				dpm_table->mem_table.dpm_levels[dpm_count].value =
						data->odn_dpm_table.odn_memory_clock_dpm_levels.
						performance_level_entries[dpm_count].clock;
			}
		}

		if ((data->need_update_dpm_table & DPMTABLE_UPDATE_SCLK) ||
			data->apply_optimized_settings ||
			(data->apply_overdrive_next_settings_mask &
					DPMTABLE_OD_UPDATE_SCLK)) {
			result = vega10_populate_all_graphic_levels(hwmgr);
			PP_ASSERT_WITH_CODE(!result,
3380
					"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3381 3382 3383 3384 3385 3386 3387 3388
					return result);
		}

		if ((data->need_update_dpm_table & DPMTABLE_UPDATE_MCLK) ||
			(data->apply_overdrive_next_settings_mask &
					DPMTABLE_OD_UPDATE_MCLK)){
			result = vega10_populate_all_memory_levels(hwmgr);
			PP_ASSERT_WITH_CODE(!result,
3389
					"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
					return result);
		}
	} else {
		if (!data->need_update_dpm_table &&
				!data->apply_optimized_settings)
			return 0;

		if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK &&
				data->smu_features[GNLD_DPM_GFXCLK].supported) {
				dpm_table->
				gfx_table.dpm_levels[dpm_table->gfx_table.count - 1].
				value = sclk;
3402 3403
				if (PP_CAP(PHM_PlatformCaps_OD6PlusinACSupport) ||
				    PP_CAP(PHM_PlatformCaps_OD6PlusinDCSupport)) {
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
					/* Need to do calculation based on the golden DPM table
					 * as the Heatmap GPU Clock axis is also based on
					 * the default values
					 */
					PP_ASSERT_WITH_CODE(
							golden_dpm_table->gfx_table.dpm_levels
							[golden_dpm_table->gfx_table.count - 1].value,
							"Divide by 0!",
							return -1);

					dpm_count = dpm_table->gfx_table.count < 2 ?
							0 : dpm_table->gfx_table.count - 2;
					for (i = dpm_count; i > 1; i--) {
						if (sclk > golden_dpm_table->gfx_table.dpm_levels
							[golden_dpm_table->gfx_table.count - 1].value) {
							clock_percent =
								((sclk - golden_dpm_table->gfx_table.dpm_levels
								[golden_dpm_table->gfx_table.count - 1].value) *
								100) /
								golden_dpm_table->gfx_table.dpm_levels
								[golden_dpm_table->gfx_table.count - 1].value;

							dpm_table->gfx_table.dpm_levels[i].value =
								golden_dpm_table->gfx_table.dpm_levels[i].value +
								(golden_dpm_table->gfx_table.dpm_levels[i].value *
								clock_percent) / 100;
						} else if (golden_dpm_table->
								gfx_table.dpm_levels[dpm_table->gfx_table.count-1].value >
								sclk) {
							clock_percent =
								((golden_dpm_table->gfx_table.dpm_levels
								[golden_dpm_table->gfx_table.count - 1].value -
								sclk) *	100) /
								golden_dpm_table->gfx_table.dpm_levels
								[golden_dpm_table->gfx_table.count-1].value;

							dpm_table->gfx_table.dpm_levels[i].value =
								golden_dpm_table->gfx_table.dpm_levels[i].value -
								(golden_dpm_table->gfx_table.dpm_levels[i].value *
								clock_percent) / 100;
						} else
							dpm_table->gfx_table.dpm_levels[i].value =
								golden_dpm_table->gfx_table.dpm_levels[i].value;
					}
				}
			}

		if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK &&
				data->smu_features[GNLD_DPM_UCLK].supported) {
			dpm_table->
			mem_table.dpm_levels[dpm_table->mem_table.count - 1].
			value = mclk;

3457 3458
			if (PP_CAP(PHM_PlatformCaps_OD6PlusinACSupport) ||
			    PP_CAP(PHM_PlatformCaps_OD6PlusinDCSupport)) {
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

				PP_ASSERT_WITH_CODE(
					golden_dpm_table->mem_table.dpm_levels
					[golden_dpm_table->mem_table.count - 1].value,
					"Divide by 0!",
					return -1);

				dpm_count = dpm_table->mem_table.count < 2 ?
						0 : dpm_table->mem_table.count - 2;
				for (i = dpm_count; i > 1; i--) {
					if (mclk > golden_dpm_table->mem_table.dpm_levels
						[golden_dpm_table->mem_table.count-1].value) {
						clock_percent = ((mclk -
							golden_dpm_table->mem_table.dpm_levels
							[golden_dpm_table->mem_table.count-1].value) *
							100) /
							golden_dpm_table->mem_table.dpm_levels
							[golden_dpm_table->mem_table.count-1].value;

						dpm_table->mem_table.dpm_levels[i].value =
							golden_dpm_table->mem_table.dpm_levels[i].value +
							(golden_dpm_table->mem_table.dpm_levels[i].value *
							clock_percent) / 100;
					} else if (golden_dpm_table->mem_table.dpm_levels
							[dpm_table->mem_table.count-1].value > mclk) {
						clock_percent = ((golden_dpm_table->mem_table.dpm_levels
							[golden_dpm_table->mem_table.count-1].value - mclk) *
							100) /
							golden_dpm_table->mem_table.dpm_levels
							[golden_dpm_table->mem_table.count-1].value;

						dpm_table->mem_table.dpm_levels[i].value =
							golden_dpm_table->mem_table.dpm_levels[i].value -
							(golden_dpm_table->mem_table.dpm_levels[i].value *
							clock_percent) / 100;
					} else
						dpm_table->mem_table.dpm_levels[i].value =
							golden_dpm_table->mem_table.dpm_levels[i].value;
				}
			}
		}

		if ((data->need_update_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) ||
			data->apply_optimized_settings) {
			result = vega10_populate_all_graphic_levels(hwmgr);
			PP_ASSERT_WITH_CODE(!result,
3506
					"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3507 3508 3509 3510 3511 3512 3513
					return result);
		}

		if (data->need_update_dpm_table &
				(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
			result = vega10_populate_all_memory_levels(hwmgr);
			PP_ASSERT_WITH_CODE(!result,
3514
					"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
					return result);
		}
	}
	return result;
}

static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
		struct vega10_single_dpm_table *dpm_table,
		uint32_t low_limit, uint32_t high_limit)
{
	uint32_t i;

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit) ||
		    (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}
	return 0;
}

static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
		struct vega10_single_dpm_table *dpm_table,
		uint32_t low_limit, uint32_t high_limit,
		uint32_t disable_dpm_mask)
{
	uint32_t i;

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit) ||
		    (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else if (!((1 << i) & disable_dpm_mask))
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}
	return 0;
}

static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
		const struct vega10_power_state *vega10_ps)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	uint32_t high_limit_count;

	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
			"power state did not have any performance level",
			return -1);

	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;

	vega10_trim_single_dpm_states(hwmgr,
			&(data->dpm_table.soc_table),
			vega10_ps->performance_levels[0].soc_clock,
			vega10_ps->performance_levels[high_limit_count].soc_clock);

	vega10_trim_single_dpm_states_with_mask(hwmgr,
			&(data->dpm_table.gfx_table),
			vega10_ps->performance_levels[0].gfx_clock,
			vega10_ps->performance_levels[high_limit_count].gfx_clock,
			data->disable_dpm_mask);

	vega10_trim_single_dpm_states(hwmgr,
			&(data->dpm_table.mem_table),
			vega10_ps->performance_levels[0].mem_clock,
			vega10_ps->performance_levels[high_limit_count].mem_clock);

	return 0;
}

static uint32_t vega10_find_lowest_dpm_level(
		struct vega10_single_dpm_table *table)
{
	uint32_t i;

	for (i = 0; i < table->count; i++) {
		if (table->dpm_levels[i].enabled)
			break;
	}

	return i;
}

static uint32_t vega10_find_highest_dpm_level(
		struct vega10_single_dpm_table *table)
{
	uint32_t i = 0;

	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
		for (i = table->count; i > 0; i--) {
			if (table->dpm_levels[i - 1].enabled)
				return i - 1;
		}
	} else {
		pr_info("DPM Table Has Too Many Entries!");
		return MAX_REGULAR_DPM_NUMBER - 1;
	}

	return i;
}

static void vega10_apply_dal_minimum_voltage_request(
		struct pp_hwmgr *hwmgr)
{
	return;
}

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);

	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;

	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
}

3636 3637 3638 3639
static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
3640
	uint32_t socclk_idx;
3641 3642 3643 3644 3645 3646 3647

	vega10_apply_dal_minimum_voltage_request(hwmgr);

	if (!data->registry_data.sclk_dpm_key_disabled) {
		if (data->smc_state_table.gfx_boot_level !=
				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
				PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3648
				hwmgr,
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
				PPSMC_MSG_SetSoftMinGfxclkByIndex,
				data->smc_state_table.gfx_boot_level),
				"Failed to set soft min sclk index!",
				return -EINVAL);
			data->dpm_table.gfx_table.dpm_state.soft_min_level =
					data->smc_state_table.gfx_boot_level;
		}
	}

	if (!data->registry_data.mclk_dpm_key_disabled) {
		if (data->smc_state_table.mem_boot_level !=
				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3661 3662
			if (data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) {
				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3663
				PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3664
							hwmgr,
3665 3666 3667 3668 3669 3670
						PPSMC_MSG_SetSoftMinSocclkByIndex,
						socclk_idx),
						"Failed to set soft min uclk index!",
						return -EINVAL);
			} else {
				PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3671
						hwmgr,
3672 3673 3674 3675 3676
						PPSMC_MSG_SetSoftMinUclkByIndex,
						data->smc_state_table.mem_boot_level),
						"Failed to set soft min uclk index!",
						return -EINVAL);
			}
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
			data->dpm_table.mem_table.dpm_state.soft_min_level =
					data->smc_state_table.mem_boot_level;
		}
	}

	return 0;
}

static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	vega10_apply_dal_minimum_voltage_request(hwmgr);

	if (!data->registry_data.sclk_dpm_key_disabled) {
		if (data->smc_state_table.gfx_max_level !=
				data->dpm_table.gfx_table.dpm_state.soft_max_level) {
				PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3696
				hwmgr,
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
				data->smc_state_table.gfx_max_level),
				"Failed to set soft max sclk index!",
				return -EINVAL);
			data->dpm_table.gfx_table.dpm_state.soft_max_level =
					data->smc_state_table.gfx_max_level;
		}
	}

	if (!data->registry_data.mclk_dpm_key_disabled) {
		if (data->smc_state_table.mem_max_level !=
				data->dpm_table.mem_table.dpm_state.soft_max_level) {
				PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3710
				hwmgr,
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
				PPSMC_MSG_SetSoftMaxUclkByIndex,
				data->smc_state_table.mem_max_level),
				"Failed to set soft max mclk index!",
				return -EINVAL);
			data->dpm_table.mem_table.dpm_state.soft_max_level =
					data->smc_state_table.mem_max_level;
		}
	}

	return 0;
}

static int vega10_generate_dpm_level_enable_mask(
		struct pp_hwmgr *hwmgr, const void *input)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	const struct vega10_power_state *vega10_ps =
			cast_const_phw_vega10_power_state(states->pnew_state);
	int i;

	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
			"Attempt to Trim DPM States Failed!",
			return -1);

	data->smc_state_table.gfx_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.gfx_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
	data->smc_state_table.mem_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Attempt to upload DPM Bootup Levels Failed!",
			return -1);
	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Attempt to upload DPM Max Levels Failed!",
			return -1);
	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;


	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
		data->dpm_table.mem_table.dpm_levels[i].enabled = true;

	return 0;
}

int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_DPM_VCE].supported) {
3769
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
				enable,
				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
				"Attempt to Enable/Disable DPM VCE Failed!",
				return -1);
		data->smu_features[GNLD_DPM_VCE].enabled = enable;
	}

	return 0;
}

static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	int result = 0;
	uint32_t low_sclk_interrupt_threshold = 0;

3787
	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3788
		(data->low_sclk_interrupt_threshold != 0)) {
3789 3790 3791 3792 3793 3794 3795
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
				cpu_to_le32(low_sclk_interrupt_threshold);

		/* This message will also enable SmcToHost Interrupt */
3796
		result = smum_send_msg_to_smc_with_parameter(hwmgr,
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
				(uint32_t)low_sclk_interrupt_threshold);
	}

	return result;
}

static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
		const void *input)
{
	int tmp_result, result = 0;
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);

	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to find DPM states clocks in DPM table!",
			result = tmp_result);

	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to populate and upload SCLK MCLK DPM levels!",
			result = tmp_result);

	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to generate DPM level enabled mask!",
			result = tmp_result);

	tmp_result = vega10_update_sclk_threshold(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to update SCLK threshold!",
			result = tmp_result);

3832
	result = vega10_copy_table_to_smc(hwmgr,
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
			(uint8_t *)pp_table, PPTABLE);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to upload PPtable!", return result);

	data->apply_optimized_settings = false;
	data->apply_overdrive_next_settings_mask = 0;

	return 0;
}

3843
static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
{
	struct pp_power_state *ps;
	struct vega10_power_state *vega10_ps;

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	if (low)
		return vega10_ps->performance_levels[0].gfx_clock;
	else
		return vega10_ps->performance_levels
				[vega10_ps->performance_level_count - 1].gfx_clock;
}

3865
static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
{
	struct pp_power_state *ps;
	struct vega10_power_state *vega10_ps;

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	if (low)
		return vega10_ps->performance_levels[0].mem_clock;
	else
		return vega10_ps->performance_levels
				[vega10_ps->performance_level_count-1].mem_clock;
}

3887 3888 3889
static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
		struct pp_gpu_power *query)
{
3890 3891
	uint32_t value;

3892
	PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
3893 3894 3895 3896
			PPSMC_MSG_GetCurrPkgPwr),
			"Failed to get current package power!",
			return -EINVAL);

3897
	vega10_read_arg_from_smc(hwmgr, &value);
3898 3899 3900 3901
	/* power value is an integer */
	query->average_gpu_power = value << 8;

	return 0;
3902 3903
}

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
			      void *value, int *size)
{
	uint32_t sclk_idx, mclk_idx, activity_percent = 0;
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_dpm_table *dpm_table = &data->dpm_table;
	int ret = 0;

	switch (idx) {
	case AMDGPU_PP_SENSOR_GFX_SCLK:
3914
		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex);
3915
		if (!ret) {
3916
			vega10_read_arg_from_smc(hwmgr, &sclk_idx);
3917 3918 3919 3920 3921
			*((uint32_t *)value) = dpm_table->gfx_table.dpm_levels[sclk_idx].value;
			*size = 4;
		}
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
3922
		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex);
3923
		if (!ret) {
3924
			vega10_read_arg_from_smc(hwmgr, &mclk_idx);
3925 3926 3927 3928 3929
			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
			*size = 4;
		}
		break;
	case AMDGPU_PP_SENSOR_GPU_LOAD:
3930
		ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0);
3931
		if (!ret) {
3932
			vega10_read_arg_from_smc(hwmgr, &activity_percent);
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
			*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
			*size = 4;
		}
		break;
	case AMDGPU_PP_SENSOR_GPU_TEMP:
		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
		*size = 4;
		break;
3949 3950 3951 3952 3953 3954 3955 3956
	case AMDGPU_PP_SENSOR_GPU_POWER:
		if (*size < sizeof(struct pp_gpu_power))
			ret = -EINVAL;
		else {
			*size = sizeof(struct pp_gpu_power);
			ret = vega10_get_gpu_power(hwmgr, (struct pp_gpu_power *)value);
		}
		break;
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	default:
		ret = -EINVAL;
		break;
	}
	return ret;
}

static int vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
		bool has_disp)
{
3967
	return smum_send_msg_to_smc_with_parameter(hwmgr,
3968 3969 3970 3971 3972 3973 3974 3975 3976
			PPSMC_MSG_SetUclkFastSwitch,
			has_disp ? 0 : 1);
}

int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
		struct pp_display_clock_request *clock_req)
{
	int result = 0;
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
3977
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	DSPCLK_e clk_select = 0;
	uint32_t clk_request = 0;

	switch (clk_type) {
	case amd_pp_dcef_clock:
		clk_select = DSPCLK_DCEFCLK;
		break;
	case amd_pp_disp_clock:
		clk_select = DSPCLK_DISPCLK;
		break;
	case amd_pp_pixel_clock:
		clk_select = DSPCLK_PIXCLK;
		break;
	case amd_pp_phy_clock:
		clk_select = DSPCLK_PHYCLK;
		break;
	default:
		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
		result = -1;
		break;
	}

	if (!result) {
		clk_request = (clk_freq << 16) | clk_select;
4002
		result = smum_send_msg_to_smc_with_parameter(hwmgr,
4003 4004 4005 4006 4007 4008 4009
				PPSMC_MSG_RequestDisplayClockByFreq,
				clk_request);
	}

	return result;
}

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
						uint32_t frequency)
{
	uint8_t count;
	uint8_t i;

	if (mclk_table == NULL || mclk_table->count == 0)
		return 0;

	count = (uint8_t)(mclk_table->count);

	for(i = 0; i < count; i++) {
		if(mclk_table->entries[i].clk >= frequency)
			return i;
	}

	return i-1;
}

4030 4031 4032 4033 4034 4035 4036
static int vega10_notify_smc_display_config_after_ps_adjustment(
		struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *dpm_table =
			&data->dpm_table.dcef_table;
4037 4038 4039 4040
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
	uint32_t idx;
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	uint32_t num_active_disps = 0;
	struct cgs_display_info info = {0};
	struct PP_Clocks min_clocks = {0};
	uint32_t i;
	struct pp_display_clock_request clock_req;

	info.mode_info = NULL;

	cgs_get_active_displays_info(hwmgr->device, &info);

	num_active_disps = info.display_count;

	if (num_active_disps > 1)
		vega10_notify_smc_display_change(hwmgr, false);
	else
		vega10_notify_smc_display_change(hwmgr, true);

	min_clocks.dcefClock = hwmgr->display_config.min_dcef_set_clk;
	min_clocks.dcefClockInSR = hwmgr->display_config.min_dcef_deep_sleep_set_clk;
4060
	min_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock;
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

	for (i = 0; i < dpm_table->count; i++) {
		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
			break;
	}

	if (i < dpm_table->count) {
		clock_req.clock_type = amd_pp_dcef_clock;
		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value;
		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
			PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
4072
					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4073
					min_clocks.dcefClockInSR /100),
4074
					"Attempt to set divider for DCEFCLK Failed!",);
4075
		} else {
4076
			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4077 4078
		}
	} else {
4079
		pr_debug("Cannot find requested DCEFCLK!");
4080 4081 4082 4083
	}

	if (min_clocks.memoryClock != 0) {
		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4084
		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx);
4085 4086
		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
	}
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160

	return 0;
}

static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	data->smc_state_table.gfx_boot_level =
	data->smc_state_table.gfx_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
	data->smc_state_table.mem_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to highest!",
			return -1);

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -1);

	return 0;
}

static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	data->smc_state_table.gfx_boot_level =
	data->smc_state_table.gfx_max_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
	data->smc_state_table.mem_max_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to highest!",
			return -1);

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -1);

	return 0;

}

static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);

	data->smc_state_table.gfx_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.gfx_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
	data->smc_state_table.mem_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload DPM Bootup Levels!",
			return -1);

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload DPM Max Levels!",
			return -1);
	return 0;
}

4161 4162
static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4163
{
4164 4165
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4166

4167 4168 4169 4170 4171 4172
	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4173 4174
	}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
		*sclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
		*mclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
		*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
	}
	return 0;
4185 4186
}

4187
static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4188
{
4189 4190
	switch (mode) {
	case AMD_FAN_CTRL_NONE:
4191
		vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4192 4193
		break;
	case AMD_FAN_CTRL_MANUAL:
4194
		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4195
			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4196 4197
		break;
	case AMD_FAN_CTRL_AUTO:
4198
		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4199
			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4200 4201 4202 4203
		break;
	default:
		break;
	}
4204 4205
}

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
				enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask = 0;
	uint32_t mclk_mask = 0;
	uint32_t soc_mask = 0;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = vega10_force_dpm_highest(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = vega10_force_dpm_lowest(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
		ret = vega10_unforce_dpm_levels(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
		if (ret)
			return ret;
		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}

4240 4241 4242 4243 4244 4245 4246
	if (!ret) {
		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
	}
	return ret;
4247 4248
}

4249
static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4250
{
4251
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4252

4253 4254 4255 4256
	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
}

static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
		struct amd_pp_simple_clock_info *info)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_clock_and_voltage_limits *max_limits =
			&table_info->max_clock_voltage_on_ac;

	info->engine_max_clock = max_limits->sclk;
	info->memory_max_clock = max_limits->mclk;

	return 0;
}

static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_sclk;
	uint32_t i;

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].clk) {
			clocks->data[clocks->num_levels].clocks_in_khz =
					dep_table->entries[i].clk;
			clocks->num_levels++;
		}
	}

}

static uint32_t vega10_get_mem_latency(struct pp_hwmgr *hwmgr,
		uint32_t clock)
{
	if (clock >= MEM_FREQ_LOW_LATENCY &&
			clock < MEM_FREQ_HIGH_LATENCY)
		return MEM_LATENCY_HIGH;
	else if (clock >= MEM_FREQ_HIGH_LATENCY)
		return MEM_LATENCY_LOW;
	else
		return MEM_LATENCY_ERR;
}

static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_mclk;
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	uint32_t i;

	clocks->num_levels = 0;
	data->mclk_latency_table.count = 0;

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].clk) {
			clocks->data[clocks->num_levels].clocks_in_khz =
			data->mclk_latency_table.entries
			[data->mclk_latency_table.count].frequency =
					dep_table->entries[i].clk;
			clocks->data[clocks->num_levels].latency_in_us =
			data->mclk_latency_table.entries
			[data->mclk_latency_table.count].latency =
					vega10_get_mem_latency(hwmgr,
						dep_table->entries[i].clk);
			clocks->num_levels++;
			data->mclk_latency_table.count++;
		}
	}
}

static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_dcefclk;
	uint32_t i;

	for (i = 0; i < dep_table->count; i++) {
		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk;
		clocks->data[i].latency_in_us = 0;
		clocks->num_levels++;
	}
}

static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_socclk;
	uint32_t i;

	for (i = 0; i < dep_table->count; i++) {
		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk;
		clocks->data[i].latency_in_us = 0;
		clocks->num_levels++;
	}
}

static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_latency *clocks)
{
	switch (type) {
	case amd_pp_sys_clock:
		vega10_get_sclks(hwmgr, clocks);
		break;
	case amd_pp_mem_clock:
		vega10_get_memclocks(hwmgr, clocks);
		break;
	case amd_pp_dcef_clock:
		vega10_get_dcefclocks(hwmgr, clocks);
		break;
	case amd_pp_soc_clock:
		vega10_get_socclocks(hwmgr, clocks);
		break;
	default:
		return -1;
	}

	return 0;
}

static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_voltage *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
	uint32_t i;

	switch (type) {
	case amd_pp_mem_clock:
		dep_table = table_info->vdd_dep_on_mclk;
		break;
	case amd_pp_dcef_clock:
		dep_table = table_info->vdd_dep_on_dcefclk;
		break;
	case amd_pp_disp_clock:
		dep_table = table_info->vdd_dep_on_dispclk;
		break;
	case amd_pp_pixel_clock:
		dep_table = table_info->vdd_dep_on_pixclk;
		break;
	case amd_pp_phy_clock:
		dep_table = table_info->vdd_dep_on_phyclk;
		break;
	default:
		return -1;
	}

	for (i = 0; i < dep_table->count; i++) {
		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk;
		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
				entries[dep_table->entries[i].vddInd].us_vdd);
		clocks->num_levels++;
	}

	if (i < dep_table->count)
		return -1;

	return 0;
}

static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
		struct pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
	int result = 0;
	uint32_t i;

	if (!data->registry_data.disable_water_mark) {
		for (i = 0; i < wm_with_clock_ranges->num_wm_sets_dmif; i++) {
			table->WatermarkRow[WM_DCEFCLK][i].MinClock =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_dcefclk_in_khz) /
				100);
			table->WatermarkRow[WM_DCEFCLK][i].MaxClock =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_dcefclk_in_khz) /
				100);
			table->WatermarkRow[WM_DCEFCLK][i].MinUclk =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_memclk_in_khz) /
				100);
			table->WatermarkRow[WM_DCEFCLK][i].MaxUclk =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_memclk_in_khz) /
				100);
			table->WatermarkRow[WM_DCEFCLK][i].WmSetting = (uint8_t)
					wm_with_clock_ranges->wm_sets_dmif[i].wm_set_id;
		}

		for (i = 0; i < wm_with_clock_ranges->num_wm_sets_mcif; i++) {
			table->WatermarkRow[WM_SOCCLK][i].MinClock =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_socclk_in_khz) /
				100);
			table->WatermarkRow[WM_SOCCLK][i].MaxClock =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_socclk_in_khz) /
				100);
			table->WatermarkRow[WM_SOCCLK][i].MinUclk =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_memclk_in_khz) /
				100);
			table->WatermarkRow[WM_SOCCLK][i].MaxUclk =
				cpu_to_le16((uint16_t)
				(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_memclk_in_khz) /
				100);
			table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
					wm_with_clock_ranges->wm_sets_mcif[i].wm_set_id;
		}
		data->water_marks_bitmap = WaterMarksExist;
	}

	return result;
}

static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4492
	int i;
4493

4494
	if (hwmgr->request_dpm_level & (AMD_DPM_FORCED_LEVEL_AUTO |
4495 4496
				AMD_DPM_FORCED_LEVEL_LOW |
				AMD_DPM_FORCED_LEVEL_HIGH))
4497 4498 4499 4500 4501 4502 4503 4504
		return -EINVAL;

	switch (type) {
	case PP_SCLK:
		for (i = 0; i < 32; i++) {
			if (mask & (1 << i))
				break;
		}
4505
		data->smc_state_table.gfx_boot_level = i;
4506

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		for (i = 31; i >= 0; i--) {
			if (mask & (1 << i))
				break;
		}
		data->smc_state_table.gfx_max_level = i;

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to lowest!",
			return -EINVAL);

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -EINVAL);
4520 4521 4522 4523 4524 4525 4526
		break;

	case PP_MCLK:
		for (i = 0; i < 32; i++) {
			if (mask & (1 << i))
				break;
		}
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
		data->smc_state_table.mem_boot_level = i;

		for (i = 31; i >= 0; i--) {
			if (mask & (1 << i))
				break;
		}
		data->smc_state_table.mem_max_level = i;

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to lowest!",
			return -EINVAL);

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -EINVAL);
4542 4543

		break;
4544 4545

	case PP_PCIE:
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
	default:
		break;
	}

	return 0;
}

static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
	int i, now, size = 0;

	switch (type) {
	case PP_SCLK:
		if (data->registry_data.sclk_dpm_key_disabled)
			break;

4567
		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
4568 4569 4570
				PPSMC_MSG_GetCurrentGfxclkIndex),
				"Attempt to get current sclk index Failed!",
				return -1);
4571
		PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr,
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
				&now),
				"Attempt to read sclk index Failed!",
				return -1);

		for (i = 0; i < sclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, sclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_MCLK:
		if (data->registry_data.mclk_dpm_key_disabled)
			break;

4585
		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
4586 4587 4588
				PPSMC_MSG_GetCurrentUclkIndex),
				"Attempt to get current mclk index Failed!",
				return -1);
4589
		PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr,
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
				&now),
				"Attempt to read mclk index Failed!",
				return -1);

		for (i = 0; i < mclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, mclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_PCIE:
4600
		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
4601 4602 4603
				PPSMC_MSG_GetCurrentLinkIndex),
				"Attempt to get current mclk index Failed!",
				return -1);
4604
		PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr,
4605 4606 4607 4608 4609 4610
				&now),
				"Attempt to read mclk index Failed!",
				return -1);

		for (i = 0; i < pcie_table->count; i++)
			size += sprintf(buf + size, "%d: %s %s\n", i,
4611 4612 4613
					(pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
					(pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
					(pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
					(i == now) ? "*" : "");
		break;
	default:
		break;
	}
	return size;
}

static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	int result = 0;
	uint32_t num_turned_on_displays = 1;
	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
	struct cgs_display_info info = {0};

	if ((data->water_marks_bitmap & WaterMarksExist) &&
			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4632
		result = vega10_copy_table_to_smc(hwmgr,
4633 4634 4635 4636 4637 4638 4639 4640
			(uint8_t *)wm_table, WMTABLE);
		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL);
		data->water_marks_bitmap |= WaterMarksLoaded;
	}

	if (data->water_marks_bitmap & WaterMarksLoaded) {
		cgs_get_active_displays_info(hwmgr->device, &info);
		num_turned_on_displays = info.display_count;
4641
		smum_send_msg_to_smc_with_parameter(hwmgr,
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
			PPSMC_MSG_NumOfDisplays, num_turned_on_displays);
	}

	return result;
}

int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
	struct vega10_hwmgr *data =
			(struct vega10_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_DPM_UVD].supported) {
4654
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4655 4656 4657 4658 4659 4660 4661 4662 4663
				enable,
				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
				"Attempt to Enable/Disable DPM UVD Failed!",
				return -1);
		data->smu_features[GNLD_DPM_UVD].enabled = enable;
	}
	return 0;
}

4664
static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4665 4666 4667 4668
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);

	data->vce_power_gated = bgate;
4669
	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4670 4671
}

4672
static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4673 4674 4675 4676
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);

	data->uvd_power_gated = bgate;
4677
	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
}

static inline bool vega10_are_power_levels_equal(
				const struct vega10_performance_level *pl1,
				const struct vega10_performance_level *pl2)
{
	return ((pl1->soc_clock == pl2->soc_clock) &&
			(pl1->gfx_clock == pl2->gfx_clock) &&
			(pl1->mem_clock == pl2->mem_clock));
}

static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
				const struct pp_hw_power_state *pstate1,
			const struct pp_hw_power_state *pstate2, bool *equal)
{
	const struct vega10_power_state *psa;
	const struct vega10_power_state *psb;
	int i;

	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
		return -EINVAL;

	psa = cast_const_phw_vega10_power_state(pstate1);
	psb = cast_const_phw_vega10_power_state(pstate2);
	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
	if (psa->performance_level_count != psb->performance_level_count) {
		*equal = false;
		return 0;
	}

	for (i = 0; i < psa->performance_level_count; i++) {
		if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
			/* If we have found even one performance level pair that is different the states are different. */
			*equal = false;
			return 0;
		}
	}

	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
	*equal &= (psa->sclk_threshold == psb->sclk_threshold);

	return 0;
}

static bool
vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	bool is_update_required = false;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		is_update_required = true;

4736
	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4737 4738 4739 4740 4741 4742 4743
		if (data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr)
			is_update_required = true;
	}

	return is_update_required;
}

4744 4745 4746 4747 4748 4749 4750 4751 4752
static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	int tmp_result, result = 0;

	tmp_result = (vega10_is_dpm_running(hwmgr)) ? 0 : -1;
	PP_ASSERT_WITH_CODE(tmp_result == 0,
			"DPM is not running right now, no need to disable DPM!",
			return 0);

4753
	if (PP_CAP(PHM_PlatformCaps_ThermalController))
4754 4755 4756 4757 4758 4759
		vega10_disable_thermal_protection(hwmgr);

	tmp_result = vega10_disable_power_containment(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable power containment!", result = tmp_result);

4760 4761 4762 4763
	tmp_result = vega10_disable_didt_config(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable didt config!", result = tmp_result);

4764 4765 4766 4767 4768 4769 4770 4771
	tmp_result = vega10_avfs_enable(hwmgr, false);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable AVFS!", result = tmp_result);

	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to stop DPM!", result = tmp_result);

4772 4773 4774 4775
	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable deep sleep!", result = tmp_result);

4776 4777 4778 4779
	tmp_result = vega10_disable_ulv(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable ulv!", result = tmp_result);

4780 4781 4782
	tmp_result =  vega10_acg_disable(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable acg!", result = tmp_result);
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	return result;
}

static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	int result;

	result = vega10_disable_dpm_tasks(hwmgr);
	PP_ASSERT_WITH_CODE((0 == result),
			"[disable_dpm_tasks] Failed to disable DPM!",
			);
	data->water_marks_bitmap &= ~(WaterMarksLoaded);

	return result;
}

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
static void vega10_find_min_clock_index(struct pp_hwmgr *hwmgr,
		uint32_t *sclk_idx, uint32_t *mclk_idx,
		uint32_t min_sclk, uint32_t min_mclk)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_dpm_table *dpm_table = &(data->dpm_table);
	uint32_t i;

	for (i = 0; i < dpm_table->gfx_table.count; i++) {
		if (dpm_table->gfx_table.dpm_levels[i].enabled &&
			dpm_table->gfx_table.dpm_levels[i].value >= min_sclk) {
			*sclk_idx = i;
			break;
		}
	}

	for (i = 0; i < dpm_table->mem_table.count; i++) {
		if (dpm_table->mem_table.dpm_levels[i].enabled &&
			dpm_table->mem_table.dpm_levels[i].value >= min_mclk) {
			*mclk_idx = i;
			break;
		}
	}
}

static int vega10_set_power_profile_state(struct pp_hwmgr *hwmgr,
		struct amd_pp_profile *request)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4829
	uint32_t sclk_idx = ~0, mclk_idx = ~0;
4830 4831 4832 4833 4834 4835 4836

	if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_AUTO)
		return -EINVAL;

	vega10_find_min_clock_index(hwmgr, &sclk_idx, &mclk_idx,
			request->min_sclk, request->min_mclk);

4837
	if (sclk_idx != ~0) {
4838 4839 4840
		if (!data->registry_data.sclk_dpm_key_disabled)
			PP_ASSERT_WITH_CODE(
					!smum_send_msg_to_smc_with_parameter(
4841
					hwmgr,
4842 4843 4844 4845 4846 4847
					PPSMC_MSG_SetSoftMinGfxclkByIndex,
					sclk_idx),
					"Failed to set soft min sclk index!",
					return -EINVAL);
	}

4848
	if (mclk_idx != ~0) {
4849 4850 4851
		if (!data->registry_data.mclk_dpm_key_disabled)
			PP_ASSERT_WITH_CODE(
					!smum_send_msg_to_smc_with_parameter(
4852
					hwmgr,
4853 4854 4855 4856 4857 4858 4859 4860
					PPSMC_MSG_SetSoftMinUclkByIndex,
					mclk_idx),
					"Failed to set soft min mclk index!",
					return -EINVAL);
	}

	return 0;
}
4861

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
	struct vega10_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.gfx_table);
	int value;

	value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
			golden_sclk_table->dpm_levels
			[golden_sclk_table->count - 1].value) *
			100 /
			golden_sclk_table->dpm_levels
			[golden_sclk_table->count - 1].value;

	return value;
}

static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.gfx_table);
	struct pp_power_state *ps;
	struct vega10_power_state *vega10_ps;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	vega10_ps->performance_levels
	[vega10_ps->performance_level_count - 1].gfx_clock =
			golden_sclk_table->dpm_levels
			[golden_sclk_table->count - 1].value *
			value / 100 +
			golden_sclk_table->dpm_levels
			[golden_sclk_table->count - 1].value;

	if (vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].gfx_clock >
			hwmgr->platform_descriptor.overdriveLimit.engineClock)
		vega10_ps->performance_levels
		[vega10_ps->performance_level_count - 1].gfx_clock =
				hwmgr->platform_descriptor.overdriveLimit.engineClock;

	return 0;
}

static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
	struct vega10_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mem_table);
	int value;

	value = (mclk_table->dpm_levels
			[mclk_table->count - 1].value -
			golden_mclk_table->dpm_levels
			[golden_mclk_table->count - 1].value) *
			100 /
			golden_mclk_table->dpm_levels
			[golden_mclk_table->count - 1].value;

	return value;
}

static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
	struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
	struct vega10_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mem_table);
	struct pp_power_state  *ps;
	struct vega10_power_state  *vega10_ps;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	vega10_ps->performance_levels
	[vega10_ps->performance_level_count - 1].mem_clock =
			golden_mclk_table->dpm_levels
			[golden_mclk_table->count - 1].value *
			value / 100 +
			golden_mclk_table->dpm_levels
			[golden_mclk_table->count - 1].value;

	if (vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].mem_clock >
			hwmgr->platform_descriptor.overdriveLimit.memoryClock)
		vega10_ps->performance_levels
		[vega10_ps->performance_level_count - 1].mem_clock =
				hwmgr->platform_descriptor.overdriveLimit.memoryClock;

	return 0;
}
4964

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
					uint32_t virtual_addr_low,
					uint32_t virtual_addr_hi,
					uint32_t mc_addr_low,
					uint32_t mc_addr_hi,
					uint32_t size)
{
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
					virtual_addr_hi);
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetSystemVirtualDramAddrLow,
					virtual_addr_low);
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramAddrHigh,
					mc_addr_hi);

	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramAddrLow,
					mc_addr_low);

	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramSize,
					size);
	return 0;
}

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
		struct PP_TemperatureRange *thermal_data)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;

	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));

	thermal_data->max = table_info->tdp_table->usSoftwareShutdownTemp *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
static int vega10_register_thermal_interrupt(struct pp_hwmgr *hwmgr,
		const void *info)
{
	struct cgs_irq_src_funcs *irq_src =
			(struct cgs_irq_src_funcs *)info;

	if (hwmgr->thermal_controller.ucType ==
			ATOM_VEGA10_PP_THERMALCONTROLLER_VEGA10 ||
		hwmgr->thermal_controller.ucType ==
			ATOM_VEGA10_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) {
		PP_ASSERT_WITH_CODE(!cgs_add_irq_source(hwmgr->device,
				0xf, /* AMDGPU_IH_CLIENTID_THM */
				0, 0, irq_src[0].set, irq_src[0].handler, hwmgr),
				"Failed to register high thermal interrupt!",
				return -EINVAL);
		PP_ASSERT_WITH_CODE(!cgs_add_irq_source(hwmgr->device,
				0xf, /* AMDGPU_IH_CLIENTID_THM */
				1, 0, irq_src[1].set, irq_src[1].handler, hwmgr),
				"Failed to register low thermal interrupt!",
				return -EINVAL);
	}

	/* Register CTF(GPIO_19) interrupt */
	PP_ASSERT_WITH_CODE(!cgs_add_irq_source(hwmgr->device,
			0x16, /* AMDGPU_IH_CLIENTID_ROM_SMUIO, */
			83, 0, irq_src[2].set, irq_src[2].handler, hwmgr),
			"Failed to register CTF thermal interrupt!",
			return -EINVAL);

	return 0;
}

5038 5039 5040 5041 5042
static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
	.backend_init = vega10_hwmgr_backend_init,
	.backend_fini = vega10_hwmgr_backend_fini,
	.asic_setup = vega10_setup_asic_task,
	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5043
	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	.get_num_of_pp_table_entries =
			vega10_get_number_of_powerplay_table_entries,
	.get_power_state_size = vega10_get_power_state_size,
	.get_pp_table_entry = vega10_get_pp_table_entry,
	.patch_boot_state = vega10_patch_boot_state,
	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
	.power_state_set = vega10_set_power_state_tasks,
	.get_sclk = vega10_dpm_get_sclk,
	.get_mclk = vega10_dpm_get_mclk,
	.notify_smc_display_config_after_ps_adjustment =
			vega10_notify_smc_display_config_after_ps_adjustment,
	.force_dpm_level = vega10_dpm_force_dpm_level,
	.get_temperature = vega10_thermal_get_temperature,
	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
	.get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
	.set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
	.reset_fan_speed_to_default =
			vega10_fan_ctrl_reset_fan_speed_to_default,
	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
	.uninitialize_thermal_controller =
			vega10_thermal_ctrl_uninitialize_thermal_controller,
	.set_fan_control_mode = vega10_set_fan_control_mode,
	.get_fan_control_mode = vega10_get_fan_control_mode,
	.read_sensor = vega10_read_sensor,
	.get_dal_power_level = vega10_get_dal_power_level,
	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
	.display_clock_voltage_request = vega10_display_clock_voltage_request,
	.force_clock_level = vega10_force_clock_level,
	.print_clock_levels = vega10_print_clock_levels,
	.display_config_changed = vega10_display_configuration_changed_task,
	.powergate_uvd = vega10_power_gate_uvd,
	.powergate_vce = vega10_power_gate_vce,
	.check_states_equal = vega10_check_states_equal,
	.check_smc_update_required_for_display_configuration =
			vega10_check_smc_update_required_for_display_configuration,
5083 5084
	.power_off_asic = vega10_power_off_asic,
	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5085
	.set_power_profile_state = vega10_set_power_profile_state,
5086 5087 5088 5089
	.get_sclk_od = vega10_get_sclk_od,
	.set_sclk_od = vega10_set_sclk_od,
	.get_mclk_od = vega10_get_mclk_od,
	.set_mclk_od = vega10_set_mclk_od,
5090
	.avfs_control = vega10_avfs_enable,
5091
	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5092
	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5093
	.register_internal_thermal_interrupt = vega10_register_thermal_interrupt,
5094
	.start_thermal_controller = vega10_start_thermal_controller,
5095 5096 5097 5098 5099 5100
};

int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
{
	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
	hwmgr->pptable_func = &vega10_pptable_funcs;
5101

5102 5103
	return 0;
}