pgtable.h 10.7 KB
Newer Older
1 2
#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
3

4
#include <asm-generic/pgtable-nopmd.h>
5 6 7 8 9 10

#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/threads.h>
#include <asm/io.h>			/* For sub-arch specific PPC_PIN_SIZE */

11
extern unsigned long ioremap_bot;
12 13 14 15 16

#ifdef CONFIG_44x
extern int icache_44x_need_flush;
#endif

17 18
#endif /* __ASSEMBLY__ */

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#define PTE_INDEX_SIZE	PTE_SHIFT
#define PMD_INDEX_SIZE	0
#define PUD_INDEX_SIZE	0
#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)

#define PMD_CACHE_INDEX	PMD_INDEX_SIZE

#ifndef __ASSEMBLY__
#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
#define PMD_TABLE_SIZE	0
#define PUD_TABLE_SIZE	0
#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
#endif	/* __ASSEMBLY__ */

#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)

36 37 38 39 40 41 42 43 44 45 46
/*
 * The normal case is that PTEs are 32-bits and we have a 1-page
 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
 *
 * For any >32-bit physical address platform, we can use the following
 * two level page table layout where the pgdir is 8KB and the MS 13 bits
 * are an index to the second level table.  The combined pgdir/pmd first
 * level has 2048 entries and the second level has 512 64-bit PTE entries.
 * -Matt
 */
/* PGDIR_SHIFT determines what a top-level page table entry can map */
47
#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
48 49 50
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

51 52
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS		0
53 54

#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
55
#define FIRST_USER_ADDRESS	0UL
56 57

#define pte_ERROR(e) \
58
	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
59
		(unsigned long long)pte_val(e))
60
#define pgd_ERROR(e) \
61
	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
 * value (for now) on others, from where we can start layout kernel
 * virtual space that goes below PKMAP and FIXMAP
 */
#ifdef CONFIG_HIGHMEM
#define KVIRT_TOP	PKMAP_BASE
#else
#define KVIRT_TOP	(0xfe000000UL)	/* for now, could be FIXMAP_BASE ? */
#endif

/*
 * ioremap_bot starts at that address. Early ioremaps move down from there,
 * until mem_init() at which point this becomes the top of the vmalloc
 * and ioremap space
 */
79 80 81
#ifdef CONFIG_NOT_COHERENT_CACHE
#define IOREMAP_TOP	((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
#else
82
#define IOREMAP_TOP	KVIRT_TOP
83
#endif
84

85 86
/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
87
 * current 16MB value just means that there will be a 64MB "hole" after the
88 89 90 91 92 93 94 95
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 *
 * We no longer map larger than phys RAM with the BATs so we don't have
 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
 * about clashes between our early calls to ioremap() that start growing down
96
 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
 * we actually run into our mappings setup in the early boot with the VM
 * system.  This really does become a problem for machines with good amounts
 * of RAM.  -- Cort
 */
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#ifdef PPC_PIN_SIZE
#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#else
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#endif
#define VMALLOC_END	ioremap_bot

/*
 * Bits in a linux-style PTE.  These match the bits in the
 * (hardware-defined) PowerPC PTE as closely as possible.
 */

#if defined(CONFIG_40x)
116
#include <asm/nohash/32/pte-40x.h>
117
#elif defined(CONFIG_44x)
118
#include <asm/nohash/32/pte-44x.h>
119
#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
120
#include <asm/nohash/pte-book3e.h>
121
#elif defined(CONFIG_FSL_BOOKE)
122
#include <asm/nohash/32/pte-fsl-booke.h>
123
#elif defined(CONFIG_8xx)
124
#include <asm/nohash/32/pte-8xx.h>
125
#endif
126

127 128
/* And here we include common definitions */
#include <asm/pte-common.h>
129 130 131

#ifndef __ASSEMBLY__

132 133
#define pte_clear(mm, addr, ptep) \
	do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
134 135 136 137

#define pmd_none(pmd)		(!pmd_val(pmd))
#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
138 139 140 141 142 143
static inline void pmd_clear(pmd_t *pmdp)
{
	*pmdp = __pmd(0);
}


144 145 146 147 148 149 150 151 152 153 154 155

/*
 * When flushing the tlb entry for a page, we also need to flush the hash
 * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
 */
extern int flush_hash_pages(unsigned context, unsigned long va,
			    unsigned long pmdval, int count);

/* Add an HPTE to the hash table */
extern void add_hash_page(unsigned context, unsigned long va,
			  unsigned long pmdval);

156 157 158 159
/* Flush an entry from the TLB/hash table */
extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
			     unsigned long address);

160
/*
161 162 163 164 165 166 167 168
 * PTE updates. This function is called whenever an existing
 * valid PTE is updated. This does -not- include set_pte_at()
 * which nowadays only sets a new PTE.
 *
 * Depending on the type of MMU, we may need to use atomic updates
 * and the PTE may be either 32 or 64 bit wide. In the later case,
 * when using atomic updates, only the low part of the PTE is
 * accessed atomically.
169
 *
170 171 172 173
 * In addition, on 44x, we also maintain a global flag indicating
 * that an executable user mapping was modified, which is needed
 * to properly flush the virtually tagged instruction cache of
 * those implementations.
174 175
 */
#ifndef CONFIG_PTE_64BIT
176 177
static inline unsigned long pte_update(pte_t *p,
				       unsigned long clr,
178 179
				       unsigned long set)
{
180
#ifdef PTE_ATOMIC_UPDATES
181 182 183 184 185 186 187 188 189 190 191 192
	unsigned long old, tmp;

	__asm__ __volatile__("\
1:	lwarx	%0,0,%3\n\
	andc	%1,%0,%4\n\
	or	%1,%1,%5\n"
	PPC405_ERR77(0,%3)
"	stwcx.	%1,0,%3\n\
	bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*p)
	: "r" (p), "r" (clr), "r" (set), "m" (*p)
	: "cc" );
193 194 195 196 197
#else /* PTE_ATOMIC_UPDATES */
	unsigned long old = pte_val(*p);
	*p = __pte((old & ~clr) | set);
#endif /* !PTE_ATOMIC_UPDATES */

198
#ifdef CONFIG_44x
199
	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
200 201
		icache_44x_need_flush = 1;
#endif
202 203
	return old;
}
204 205 206 207
#else /* CONFIG_PTE_64BIT */
static inline unsigned long long pte_update(pte_t *p,
					    unsigned long clr,
					    unsigned long set)
208
{
209
#ifdef PTE_ATOMIC_UPDATES
210 211 212 213 214 215 216 217 218 219 220 221 222 223
	unsigned long long old;
	unsigned long tmp;

	__asm__ __volatile__("\
1:	lwarx	%L0,0,%4\n\
	lwzx	%0,0,%3\n\
	andc	%1,%L0,%5\n\
	or	%1,%1,%6\n"
	PPC405_ERR77(0,%3)
"	stwcx.	%1,0,%4\n\
	bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*p)
	: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
	: "cc" );
224 225
#else /* PTE_ATOMIC_UPDATES */
	unsigned long long old = pte_val(*p);
226
	*p = __pte((old & ~(unsigned long long)clr) | set);
227 228
#endif /* !PTE_ATOMIC_UPDATES */

229
#ifdef CONFIG_44x
230
	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
231 232
		icache_44x_need_flush = 1;
#endif
233 234
	return old;
}
235
#endif /* CONFIG_PTE_64BIT */
236 237

/*
238 239
 * 2.6 calls this without flushing the TLB entry; this is wrong
 * for our hash-based implementation, we fix that up here.
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
 */
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
{
	unsigned long old;
	old = pte_update(ptep, _PAGE_ACCESSED, 0);
#if _PAGE_HASHPTE != 0
	if (old & _PAGE_HASHPTE) {
		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
		flush_hash_pages(context, addr, ptephys, 1);
	}
#endif
	return (old & _PAGE_ACCESSED) != 0;
}
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
	__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
				       pte_t *ptep)
{
	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
}

#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pte_t *ptep)
{
268
	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
269
}
270 271 272 273 274 275
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
					   unsigned long addr, pte_t *ptep)
{
	ptep_set_wrprotect(mm, addr, ptep);
}

276

277
static inline void __ptep_set_access_flags(struct mm_struct *mm,
278 279
					   pte_t *ptep, pte_t entry,
					   unsigned long address)
280
{
281
	unsigned long set = pte_val(entry) &
282
		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
283 284 285
	unsigned long clr = ~pte_val(entry) & _PAGE_RO;

	pte_update(ptep, clr, set);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)

/*
 * Note that on Book E processors, the pmd contains the kernel virtual
 * (lowmem) address of the pte page.  The physical address is less useful
 * because everything runs with translation enabled (even the TLB miss
 * handler).  On everything else the pmd contains the physical address
 * of the pte page.  -- paulus
 */
#ifndef CONFIG_BOOKE
#define pmd_page_vaddr(pmd)	\
	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd)		\
302
	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
303 304 305 306
#else
#define pmd_page_vaddr(pmd)	\
	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd)		\
K
Kumar Gala 已提交
307
	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
308 309 310 311 312 313 314 315 316 317 318 319 320
#endif

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/* to find an entry in a page-table-directory */
#define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))

/* Find an entry in the third-level page table.. */
#define pte_index(address)		\
	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, addr)	\
321 322
	(pmd_bad(*(dir)) ? NULL : (pte_t *)pmd_page_vaddr(*(dir)) + \
				  pte_index(addr))
323
#define pte_offset_map(dir, addr)		\
P
Peter Zijlstra 已提交
324 325
	((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
#define pte_unmap(pte)		kunmap_atomic(pte)
326 327 328 329

/*
 * Encode and decode a swap entry.
 * Note that the bits we use in a PTE for representing a swap entry
330 331
 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
 *   -- paulus
332 333 334 335 336 337 338 339 340 341 342 343
 */
#define __swp_type(entry)		((entry).val & 0x1f)
#define __swp_offset(entry)		((entry).val >> 5)
#define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })

extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
		      pmd_t **pmdp);

#endif /* !__ASSEMBLY__ */

344
#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */