netdev.c 165.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2010 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38 39 40
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
41
#include <linux/slab.h>
42 43 44 45 46 47 48
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
49
#include <linux/pm_qos_params.h>
50
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
51
#include <linux/aer.h>
52 53 54

#include "e1000.h"

55 56 57
#define DRV_EXTRAVERSION "-k2"

#define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
58 59 60 61 62 63 64
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
65
	[board_82574]		= &e1000_82574_info,
66
	[board_82583]		= &e1000_82583_info,
67 68 69
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
70
	[board_ich10lan]	= &e1000_ich10_info,
71
	[board_pchlan]		= &e1000_pch_info,
72
	[board_pch2lan]		= &e1000_pch2_info,
73 74
};

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

#define E1000_RDFH	0x02410 /* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418 /* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420 /* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428 /* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430 /* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410 /* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418 /* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420 /* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428 /* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430 /* Tx Data FIFO Packet Count - RW */

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 2; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}


/*
 * e1000e_dump - Print registers, tx-ring and rx-ring
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
	struct e1000_rx_desc *rx_desc;
	struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
			netdev->name,
			netdev->state,
			netdev->trans_start,
			netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
227
		(unsigned long long)buffer_info->dma,
228 229
		buffer_info->length,
		buffer_info->next_to_watch,
230
		(unsigned long long)buffer_info->time_stamp);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
		" [bi->dma       ] leng  ntw timestamp        bi->skb "
		"<-- Legacy format\n");
	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
		" [bi->dma       ] leng  ntw timestamp        bi->skb "
		"<-- Ext Context format\n");
	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
		" [bi->dma       ] leng  ntw timestamp        bi->skb "
		"<-- Ext Data format\n");
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
			"%04X  %3X %016llX %p",
		       (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
			((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282 283 284 285 286
		       (unsigned long long)le64_to_cpu(u0->a),
		       (unsigned long long)le64_to_cpu(u0->b),
		       (unsigned long long)buffer_info->dma,
		       buffer_info->length, buffer_info->next_to_watch,
		       (unsigned long long)buffer_info->time_stamp,
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		       buffer_info->skb);
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC/U\n");
		else if (i == tx_ring->next_to_use)
			printk(KERN_CONT " NTU\n");
		else if (i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC\n");
		else
			printk(KERN_CONT "\n");

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	printk(KERN_INFO " %5d %5X %5X\n", 0,
		rx_ring->next_to_use, rx_ring->next_to_clean);

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
			"[buffer 1 63:0 ] "
		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
		       "[bi->skb] <-- Ext Pkt Split format\n");
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
			"[vl   l0 ee  es] "
		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
		       "[bi->skb] <-- Ext Rx Write-Back format\n");
		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
				le32_to_cpu(rx_desc_ps->wb.middle.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX %016llX %016llX "
					"---------------- %p", i,
361 362 363 364
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
365 366 367 368
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %016llX %016llX %p", i,
369 370 371 372 373
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
					buffer_info->skb);

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");
		}
		break;
	default:
	case 0:
		/* Legacy Receive Descriptor Format
		 *
		 * +-----------------------------------------------------+
		 * |                Buffer Address [63:0]                |
		 * +-----------------------------------------------------+
		 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
		 * +-----------------------------------------------------+
		 * 63       48 47    40 39      32 31         16 15      0
		 */
		printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
			"[vl er S cks ln] [bi->dma       ] [bi->skb] "
			"<-- Legacy format\n");
		for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
			rx_desc = E1000_RX_DESC(*rx_ring, i);
			buffer_info = &rx_ring->buffer_info[i];
			u0 = (struct my_u0 *)rx_desc;
			printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
410 411 412 413 414
				"%016llX %p", i,
				(unsigned long long)le64_to_cpu(u0->a),
				(unsigned long long)le64_to_cpu(u0->b),
				(unsigned long long)buffer_info->dma,
				buffer_info->skb);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter))
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					adapter->rx_buffer_len, true);
		}
	}

exit:
	return;
}

434 435 436 437 438 439 440 441 442 443 444 445
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
446
 * e1000_receive_skb - helper function to handle Rx indications
447 448 449 450 451 452 453 454
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
			      struct net_device *netdev,
			      struct sk_buff *skb,
A
Al Viro 已提交
455
			      u8 status, __le16 vlan)
456 457 458 459
{
	skb->protocol = eth_type_trans(skb, netdev);

	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
H
Herbert Xu 已提交
460 461
		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
				 le16_to_cpu(vlan), skb);
462
	else
H
Herbert Xu 已提交
463
		napi_gro_receive(&adapter->napi, skb);
464 465 466 467 468 469 470 471 472 473 474 475 476 477
}

/**
 * e1000_rx_checksum - Receive Checksum Offload for 82543
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
478 479

	skb_checksum_none_assert(skb);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
500 501 502
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
503 504
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
505 506
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

/**
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
				   int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
526
	unsigned int bufsz = adapter->rx_buffer_len;
527 528 529 530 531 532 533 534 535 536 537

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

538
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
539 540 541 542 543 544 545 546
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
547
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
548
						  adapter->rx_buffer_len,
549 550
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
551 552 553 554 555 556 557 558
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			break;
		}

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

559 560 561 562 563 564 565 566 567 568
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
			writel(i, adapter->hw.hw_addr + rx_ring->tail);
		}
569 570 571 572 573 574
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

575
	rx_ring->next_to_use = i;
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
				      int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
601 602 603
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
A
Al Viro 已提交
604
				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
A
Auke Kok 已提交
605 606 607 608
				continue;
			}
			if (!ps_page->page) {
				ps_page->page = alloc_page(GFP_ATOMIC);
609
				if (!ps_page->page) {
A
Auke Kok 已提交
610 611 612
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
613 614 615 616 617 618
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
619 620 621 622
					dev_err(&adapter->pdev->dev,
					  "RX DMA page map failed\n");
					adapter->rx_dma_failed++;
					goto no_buffers;
623 624
				}
			}
A
Auke Kok 已提交
625 626 627 628 629 630 631
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
			rx_desc->read.buffer_addr[j+1] =
			     cpu_to_le64(ps_page->dma);
632 633
		}

634 635
		skb = netdev_alloc_skb_ip_align(netdev,
						adapter->rx_ps_bsize0);
636 637 638 639 640 641 642

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
643
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
644
						  adapter->rx_ps_bsize0,
645 646
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
647 648 649 650 651 652 653 654 655 656
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

657 658 659 660 661 662 663 664 665 666 667
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
			writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
		}

668 669 670 671 672 673 674
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
675
	rx_ring->next_to_use = i;
676 677
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
                                         int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
694
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
695 696 697 698 699 700 701 702 703 704 705

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

706
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
			buffer_info->page = alloc_page(GFP_ATOMIC);
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
725
			buffer_info->dma = dma_map_page(&pdev->dev,
726 727
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
728
							DMA_FROM_DEVICE);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

752 753 754 755 756 757 758 759 760 761 762 763
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
764
	struct e1000_hw *hw = &adapter->hw;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
785
		rmb();	/* read descriptor and rx_buffer_info after status DD */
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
803
		dma_unmap_single(&pdev->dev,
804 805
				 buffer_info->dma,
				 adapter->rx_buffer_len,
806
				 DMA_FROM_DEVICE);
807 808 809 810
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

811 812 813 814 815 816 817 818 819 820 821
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
822
			/* All receives must fit into a single buffer */
823
			e_dbg("Receive packet consumed multiple buffers\n");
824 825
			/* recycle */
			buffer_info->skb = skb;
826 827
			if (status & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
828 829 830 831 832 833 834 835 836
			goto next_desc;
		}

		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
837 838 839 840
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

841 842 843
		total_rx_bytes += length;
		total_rx_packets++;

844 845
		/*
		 * code added for copybreak, this should improve
846
		 * performance for small packets with large amounts
847 848
		 * of reassembly being done in the stack
		 */
849 850
		if (length < copybreak) {
			struct sk_buff *new_skb =
851
			    netdev_alloc_skb_ip_align(netdev, length);
852
			if (new_skb) {
853 854 855 856 857 858
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter,
				  (u32)(status) |
				  ((u32)(rx_desc->errors) << 24),
				  le16_to_cpu(rx_desc->csum), skb);

		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
896
	adapter->total_rx_packets += total_rx_packets;
897 898
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
899 900 901 902 903 904
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
905 906
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
907 908
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
909
		else
910 911
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
912 913
		buffer_info->dma = 0;
	}
914 915 916 917
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
918
	buffer_info->time_stamp = 0;
919 920
}

921
static void e1000_print_hw_hang(struct work_struct *work)
922
{
923 924 925
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
926 927 928 929
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
930 931 932 933 934 935 936
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
937

938 939 940 941
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
942 943 944 945 946 947 948 949
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
950 951 952 953 954 955
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
956 957 958 959 960 961 962
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
963 964 965 966 967 968
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

993 994
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
995
		bool cleaned = false;
996
		rmb(); /* read buffer_info after eop_desc */
997
		for (; !cleaned; count++) {
998 999 1000 1001 1002
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1003 1004
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1015 1016
		if (i == tx_ring->next_to_use)
			break;
1017 1018 1019 1020 1021 1022 1023
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
1024 1025
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1039 1040 1041 1042
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1043
		adapter->detect_tx_hung = 0;
1044 1045
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1046 1047
			       + (adapter->tx_timeout_factor * HZ)) &&
		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1048
			schedule_work(&adapter->print_hang_task);
1049 1050 1051 1052 1053
			netif_stop_queue(netdev);
		}
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1054 1055
	netdev->stats.tx_bytes += total_tx_bytes;
	netdev->stats.tx_packets += total_tx_packets;
1056
	return (count < tx_ring->count);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
1069
	struct e1000_hw *hw = &adapter->hw;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1093
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
1108
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1109
				 adapter->rx_ps_bsize0,
1110
				 DMA_FROM_DEVICE);
1111 1112
		buffer_info->dma = 0;

1113 1114 1115 1116 1117
		/* see !EOP comment in other rx routine */
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1118 1119
			e_dbg("Packet Split buffers didn't pick up the full "
			      "packet\n");
1120
			dev_kfree_skb_irq(skb);
1121 1122
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1134 1135
			e_dbg("Last part of the packet spanning multiple "
			      "descriptors\n");
1136 1137 1138 1139 1140 1141 1142 1143
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1144 1145 1146 1147
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
1148 1149
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

1150 1151 1152 1153 1154
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
1155 1156 1157 1158
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
1159
			ps_page = &buffer_info->ps_pages[0];
1160

1161 1162
			/*
			 * there is no documentation about how to call
1163
			 * kmap_atomic, so we can't hold the mapping
1164 1165
			 * very long
			 */
1166 1167
			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
						PAGE_SIZE, DMA_FROM_DEVICE);
1168 1169 1170
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1171 1172
			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
						   PAGE_SIZE, DMA_FROM_DEVICE);
A
Auke Kok 已提交
1173

J
Jeff Kirsher 已提交
1174 1175 1176 1177
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1188
			ps_page = &buffer_info->ps_pages[j];
1189 1190
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1191 1192 1193 1194 1195 1196 1197 1198
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}

J
Jeff Kirsher 已提交
1199 1200 1201 1202 1203 1204
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
1242
	adapter->total_rx_packets += total_rx_packets;
1243 1244
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
1245 1246 1247
	return cleaned;
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1293
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1309 1310
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

		/* errors is only valid for DD + EOP descriptors */
		if (unlikely((status & E1000_RXD_STAT_EOP) &&
		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
				/* recycle both page and skb */
				buffer_info->skb = skb;
				/* an error means any chain goes out the window
				 * too */
				if (rx_ring->rx_skb_top)
					dev_kfree_skb(rx_ring->rx_skb_top);
				rx_ring->rx_skb_top = NULL;
				goto next_desc;
		}

#define rxtop rx_ring->rx_skb_top
		if (!(status & E1000_RXD_STAT_EOP)) {
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
		e1000_rx_checksum(adapter,
		                  (u32)(status) |
		                  ((u32)(rx_desc->errors) << 24),
		                  le16_to_cpu(rx_desc->csum), skb);

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1395
			e_err("pskb_may_pull failed.\n");
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
			dev_kfree_skb(skb);
			goto next_desc;
		}

		e1000_receive_skb(adapter, netdev, skb, status,
		                  rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
1424 1425
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
1426 1427 1428
	return cleaned;
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1446
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1447
						 adapter->rx_buffer_len,
1448
						 DMA_FROM_DEVICE);
1449
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1450
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1451
				               PAGE_SIZE,
1452
					       DMA_FROM_DEVICE);
1453
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1454
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1455
						 adapter->rx_ps_bsize0,
1456
						 DMA_FROM_DEVICE);
1457 1458 1459
			buffer_info->dma = 0;
		}

1460 1461 1462 1463 1464
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1465 1466 1467 1468 1469 1470
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1471
			ps_page = &buffer_info->ps_pages[j];
1472 1473
			if (!ps_page->page)
				break;
1474 1475
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1493
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1494 1495 1496 1497 1498

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1499 1500 1501 1502 1503 1504 1505 1506
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1519 1520 1521
	/*
	 * read ICR disables interrupts using IAM
	 */
1522

1523
	if (icr & E1000_ICR_LSC) {
1524
		hw->mac.get_link_status = 1;
1525 1526 1527 1528
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1529 1530
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1531
			schedule_work(&adapter->downshift_task);
1532

1533 1534
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1535
		 * link down event; disable receives here in the ISR and reset
1536 1537
		 * adapter in watchdog
		 */
1538 1539 1540 1541 1542
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1543
			adapter->flags |= FLAG_RX_RESTART_NOW;
1544 1545 1546 1547 1548 1549
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1550
	if (napi_schedule_prep(&adapter->napi)) {
1551 1552 1553 1554
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1555
		__napi_schedule(&adapter->napi);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1572

1573
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1574 1575
		return IRQ_NONE;  /* Not our interrupt */

1576 1577 1578 1579
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1580 1581 1582
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1583 1584 1585 1586 1587
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1588

1589
	if (icr & E1000_ICR_LSC) {
1590
		hw->mac.get_link_status = 1;
1591 1592 1593 1594
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1595 1596
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1597
			schedule_work(&adapter->downshift_task);
1598

1599 1600
		/*
		 * 80003ES2LAN workaround--
1601 1602 1603 1604 1605 1606 1607 1608 1609
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1610
			adapter->flags |= FLAG_RX_RESTART_NOW;
1611 1612 1613 1614 1615 1616
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1617
	if (napi_schedule_prep(&adapter->napi)) {
1618 1619 1620 1621
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1622
		__napi_schedule(&adapter->napi);
1623 1624 1625 1626 1627
	}

	return IRQ_HANDLED;
}

1628 1629 1630 1631 1632 1633 1634 1635
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1636 1637
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1654 1655
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1693
	if (napi_schedule_prep(&adapter->napi)) {
1694 1695
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1696
		__napi_schedule(&adapter->napi);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1793
	int i;
1794 1795 1796 1797

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1798 1799
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1800 1801 1802
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1803
				for (i = 0; i < adapter->num_vectors; i++)
1804 1805 1806 1807
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1808 1809
						      adapter->num_vectors);
				if (err == 0) {
1810
					return;
1811
				}
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
			}
			/* MSI-X failed, so fall through and try MSI */
			e_err("Failed to initialize MSI-X interrupts.  "
			      "Falling back to MSI interrupts.\n");
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
			e_err("Failed to initialize MSI interrupts.  Falling "
			      "back to legacy interrupts.\n");
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1833 1834 1835

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1850
		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1851 1852 1853
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1854
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1855 1856 1857 1858 1859 1860 1861 1862
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1863
		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1864 1865 1866
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1867
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1868 1869 1870 1871 1872 1873 1874 1875
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1876
			  e1000_msix_other, 0, netdev->name, netdev);
1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1886 1887 1888 1889 1890 1891
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1892 1893 1894 1895 1896
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

1897 1898 1899 1900 1901 1902 1903 1904
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
1905
	}
1906
	if (adapter->flags & FLAG_MSI_ENABLED) {
1907
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1908 1909 1910
				  netdev->name, netdev);
		if (!err)
			return err;
1911

1912 1913 1914
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1915 1916
	}

1917
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1918 1919 1920 1921
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

1922 1923 1924 1925 1926 1927 1928
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
1941
	}
1942 1943

	free_irq(adapter->pdev->irq, netdev);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
1954 1955
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
1956
	e1e_flush();
1957 1958 1959 1960 1961 1962 1963 1964

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1965 1966 1967 1968 1969 1970 1971 1972 1973
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1974 1975 1976 1977 1978 1979
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
1980
	e1e_flush();
1981 1982 1983 1984 1985 1986
}

/**
 * e1000_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
1987
 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
static void e1000_get_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2004
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2005 2006 2007 2008 2009 2010 2011
	}
}

/**
 * e1000_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
2012
 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
static void e1000_release_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2030
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2081
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2094 2095
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2096 2097 2098 2099 2100 2101 2102

	size = sizeof(struct e1000_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

A
Auke Kok 已提交
2103 2104 2105 2106 2107 2108 2109 2110
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2111 2112 2113 2114 2115 2116 2117 2118 2119

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2120
		goto err_pages;
2121 2122 2123 2124 2125 2126

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2127 2128 2129 2130 2131 2132

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2133 2134
err:
	vfree(rx_ring->buffer_info);
2135
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2199
	int i;
2200 2201 2202

	e1000_clean_rx_ring(adapter);

A
Auke Kok 已提交
2203 2204 2205 2206
	for (i = 0; i < rx_ring->count; i++) {
		kfree(rx_ring->buffer_info[i].ps_pages);
	}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2217 2218 2219 2220 2221
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2222 2223 2224 2225 2226 2227
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2228 2229
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512)) {
			retval = low_latency;
		}
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35) {
				retval = low_latency;
			}
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2328 2329
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2330
		 * by adding intermediate steps when interrupt rate is
2331 2332
		 * increasing
		 */
2333 2334 2335 2336
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2337 2338 2339 2340 2341
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
			ew32(ITR, 1000000000 / (new_itr * 256));
2342 2343 2344
	}
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2367 2368
/**
 * e1000_clean - NAPI Rx polling callback
2369
 * @napi: struct associated with this polling callback
2370
 * @budget: amount of packets driver is allowed to process this poll
2371 2372 2373 2374
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2375
	struct e1000_hw *hw = &adapter->hw;
2376
	struct net_device *poll_dev = adapter->netdev;
2377
	int tx_cleaned = 1, work_done = 0;
2378

2379
	adapter = netdev_priv(poll_dev);
2380

2381 2382 2383 2384
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2385
	tx_cleaned = e1000_clean_tx_irq(adapter);
2386

2387
clean_rx:
2388
	adapter->clean_rx(adapter, &work_done, budget);
2389

2390
	if (!tx_cleaned)
2391
		work_done = budget;
2392

2393 2394
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2395 2396
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2397
		napi_complete(napi);
2398 2399 2400 2401 2402 2403
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	}

	return work_done;
}

static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
2420

2421
	/* add VID to filter table */
2422 2423 2424 2425 2426 2427
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2428 2429 2430 2431 2432 2433 2434 2435
}

static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

J
Jesse Brandeburg 已提交
2436 2437
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2438
	vlan_group_set_device(adapter->vlgrp, vid, NULL);
J
Jesse Brandeburg 已提交
2439 2440 2441

	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		e1000_release_hw_control(adapter);
		return;
	}

	/* remove VID from filter table */
2452 2453 2454 2455 2456 2457
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
}

static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (!adapter->vlgrp)
		return;

	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
		if (adapter->hw.mng_cookie.status &
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
			e1000_vlan_rx_add_vid(netdev, vid);
			adapter->mng_vlan_id = vid;
		}

		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
				(vid != old_vid) &&
		    !vlan_group_get_device(adapter->vlgrp, old_vid))
			e1000_vlan_rx_kill_vid(netdev, old_vid);
	} else {
		adapter->mng_vlan_id = vid;
	}
}


static void e1000_vlan_rx_register(struct net_device *netdev,
				   struct vlan_group *grp)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

J
Jesse Brandeburg 已提交
2494 2495
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			/* enable VLAN receive filtering */
			rctl = er32(RCTL);
			rctl &= ~E1000_RCTL_CFIEN;
			ew32(RCTL, rctl);
			e1000_update_mng_vlan(adapter);
		}
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			if (adapter->mng_vlan_id !=
			    (u16)E1000_MNG_VLAN_NONE) {
				e1000_vlan_rx_kill_vid(netdev,
						       adapter->mng_vlan_id);
				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
			}
		}
	}

J
Jesse Brandeburg 已提交
2527 2528
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (!adapter->vlgrp)
		return;

	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
		if (!vlan_group_get_device(adapter->vlgrp, vid))
			continue;
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
	}
}

2547
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2548 2549
{
	struct e1000_hw *hw = &adapter->hw;
2550
	u32 manc, manc2h, mdef, i, j;
2551 2552 2553 2554 2555 2556

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2557 2558
	/*
	 * enable receiving management packets to the host. this will probably
2559
	 * generate destination unreachable messages from the host OS, but
2560 2561
	 * the packets will be handled on SMBUS
	 */
2562 2563
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2579
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2628
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2650
	/* Tx irq moderation */
2651 2652 2653 2654 2655 2656 2657 2658 2659
	ew32(TADV, adapter->tx_abs_int_delay);

	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2660
		tarc = er32(TARC(0));
2661 2662 2663 2664
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2665 2666
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2667
		ew32(TARC(0), tarc);
2668 2669 2670 2671
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2672
		tarc = er32(TARC(0));
2673
		tarc |= 1;
2674 2675
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2676
		tarc |= 1;
2677
		ew32(TARC(1), tarc);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2692
	e1000e_config_collision_dist(hw);
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 psrctl = 0;
	u32 pages = 0;

	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2724 2725 2726 2727 2728 2729
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (rctl & E1000_RCTL_LPE)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
	}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2794
	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2795
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2796
		adapter->rx_ps_pages = pages;
2797 2798
	else
		adapter->rx_ps_pages = 0;
2799 2800 2801 2802 2803

	if (adapter->rx_ps_pages) {
		/* Configure extra packet-split registers */
		rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_EXTEN;
2804 2805 2806 2807
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2808 2809 2810 2811 2812
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

		ew32(RFCTL, rfctl);

A
Auke Kok 已提交
2813 2814
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

	ew32(RCTL, rctl);
2836 2837
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
			sizeof(union e1000_rx_desc_packet_split);
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2859 2860 2861 2862
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2863
	} else {
2864
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	e1e_flush();
	msleep(10);

	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
	if (adapter->itr_setting != 0)
2881
		ew32(ITR, 1000000000 / (adapter->itr * 256));
2882 2883 2884 2885 2886 2887 2888 2889

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

2890 2891 2892 2893
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
2894
	rdba = rx_ring->dma;
2895
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
		rxcsum |= E1000_RXCSUM_TUOFL;

2908 2909 2910 2911
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
2912 2913 2914 2915 2916 2917 2918 2919
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

2920 2921
	/*
	 * Enable early receives on supported devices, only takes effect when
2922
	 * packet size is equal or larger than the specified value (in 8 byte
2923 2924
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	if (adapter->flags & FLAG_HAS_ERT) {
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
			ew32(ERT, E1000_ERT_2048 | (1 << 13));
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
M
Mark Gross 已提交
2935
			pm_qos_update_request(
2936
				&adapter->netdev->pm_qos_req, 55);
2937
		} else {
M
Mark Gross 已提交
2938
			pm_qos_update_request(
2939
				&adapter->netdev->pm_qos_req,
M
Mark Gross 已提交
2940
				PM_QOS_DEFAULT_VALUE);
2941
		}
2942
	}
2943 2944 2945 2946 2947 2948

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
2949
 *  e1000_update_mc_addr_list - Update Multicast addresses
2950 2951 2952 2953
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
2954
 *  Updates the Multicast Table Array.
2955 2956
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
2957
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2958
				      u32 mc_addr_count)
2959
{
2960
	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2976
	struct netdev_hw_addr *ha;
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	u8  *mta_list;
	u32 rctl;
	int i;

	/* Check for Promiscuous and All Multicast modes */

	rctl = er32(RCTL);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2987
		rctl &= ~E1000_RCTL_VFE;
2988
	} else {
2989 2990 2991 2992 2993 2994
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else {
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
		}
2995
		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2996
			rctl |= E1000_RCTL_VFE;
2997 2998 2999 3000
	}

	ew32(RCTL, rctl);

3001 3002
	if (!netdev_mc_empty(netdev)) {
		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3003 3004 3005 3006
		if (!mta_list)
			return;

		/* prepare a packed array of only addresses. */
3007
		i = 0;
3008 3009
		netdev_for_each_mc_addr(ha, netdev)
			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3010

3011
		e1000_update_mc_addr_list(hw, mta_list, i);
3012 3013 3014 3015 3016 3017
		kfree(mta_list);
	} else {
		/*
		 * if we're called from probe, we might not have
		 * anything to do here, so clear out the list
		 */
3018
		e1000_update_mc_addr_list(hw, NULL, 0);
3019 3020 3021 3022
	}
}

/**
3023
 * e1000_configure - configure the hardware for Rx and Tx
3024 3025 3026 3027 3028 3029 3030
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
	e1000_set_multi(adapter->netdev);

	e1000_restore_vlan(adapter);
3031
	e1000_init_manageability_pt(adapter);
3032 3033 3034 3035

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3036
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3049 3050
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3051 3052 3053 3054 3055 3056 3057

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3058 3059
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3060 3061 3062 3063
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3064
	if (adapter->wol)
3065 3066
		return;

3067 3068
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3069 3070 3071 3072 3073 3074 3075 3076
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3077
 * properly configured for Rx, Tx etc.
3078 3079 3080 3081
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3082
	struct e1000_fc_info *fc = &adapter->hw.fc;
3083 3084
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3085
	u32 pba = adapter->pba;
3086 3087
	u16 hwm;

3088
	/* reset Packet Buffer Allocation to default */
3089
	ew32(PBA, pba);
3090

3091
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3092 3093
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3094 3095 3096 3097
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3098 3099
		 * expressed in KB.
		 */
3100
		pba = er32(PBA);
3101
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3102
		tx_space = pba >> 16;
3103
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3104
		pba &= 0xffff;
3105 3106 3107
		/*
		 * the Tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it
3108 3109
		 */
		min_tx_space = (adapter->max_frame_size +
3110 3111 3112 3113 3114
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3115
		min_rx_space = adapter->max_frame_size;
3116 3117 3118
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3119 3120
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3121
		 * and the min Tx FIFO size is less than the current Rx FIFO
3122 3123
		 * allocation, take space away from current Rx allocation
		 */
3124 3125 3126
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3127

3128 3129 3130 3131
			/*
			 * if short on Rx space, Rx wins and must trump tx
			 * adjustment or use Early Receive if available
			 */
3132
			if ((pba < min_rx_space) &&
3133 3134
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
3135
				pba = min_rx_space;
3136
		}
3137 3138

		ew32(PBA, pba);
3139 3140 3141
	}


3142 3143 3144
	/*
	 * flow control settings
	 *
3145
	 * The high water mark must be low enough to fit one full frame
3146 3147 3148 3149 3150
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3151
	 * - the full Rx FIFO size minus one full frame
3152
	 */
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
	default:
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3185
		fc->refresh_time = 0x1000;
3186 3187 3188 3189 3190 3191 3192
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
		break;
3193
	}
3194 3195 3196

	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3197 3198 3199 3200 3201

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3202
	if (adapter->flags & FLAG_HAS_AMT)
3203 3204
		e1000_get_hw_control(adapter);

3205 3206 3207
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3208
		e_err("Hardware Error\n");
3209 3210 3211 3212 3213 3214 3215 3216 3217

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
	e1000_get_phy_info(hw);

3218 3219
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3220
		u16 phy_data = 0;
3221 3222
		/*
		 * speed up time to link by disabling smart power down, ignore
3223
		 * the return value of this function because there is nothing
3224 3225
		 * different we would do if it failed
		 */
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);
3242 3243
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3244 3245
	e1000_irq_enable(adapter);

3246 3247
	netif_wake_queue(adapter->netdev);

3248
	/* fire a link change interrupt to start the watchdog */
3249 3250 3251 3252 3253
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3254 3255 3256 3257 3258 3259 3260 3261 3262
	return 0;
}

void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3263 3264 3265 3266
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3267 3268 3269 3270 3271 3272 3273
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

3274
	netif_stop_queue(netdev);
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
	/* flush both disables and wait for them to finish */
	e1e_flush();
	msleep(10);

	napi_disable(&adapter->napi);
	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3294 3295
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3329 3330
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3331

3332
	e1000e_set_interrupt_capability(adapter);
3333

3334 3335
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3336 3337 3338 3339 3340 3341 3342 3343

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3356
	e_dbg("icr is %08X\n", icr);
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3383
	e1000e_reset_interrupt_capability(adapter);
3384 3385 3386 3387 3388 3389 3390 3391 3392

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3393
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3414
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3415 3416 3417
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
	} else
		e_dbg("MSI interrupt test succeeded!\n");
3418 3419 3420 3421 3422

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3423
	e1000e_set_interrupt_capability(adapter);
3424
	return e1000_request_irq(adapter);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3443 3444 3445
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3446 3447 3448

	err = e1000_test_msi_interrupt(adapter);

3449 3450 3451 3452 3453 3454
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3455 3456 3457 3458

	return err;
}

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3475
	struct pci_dev *pdev = adapter->pdev;
3476 3477 3478 3479 3480 3481
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3482 3483
	pm_runtime_get_sync(&pdev->dev);

3484 3485
	netif_carrier_off(netdev);

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3496 3497 3498 3499 3500 3501 3502 3503 3504
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
		e1000_get_hw_control(adapter);
		e1000e_reset(adapter);
	}

3505 3506 3507 3508 3509 3510 3511
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3512 3513
	/* DMA latency requirement to workaround early-receive/jumbo issue */
	if (adapter->flags & FLAG_HAS_ERT)
3514 3515 3516
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3517

3518 3519
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3520 3521
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3522 3523
	 * clean_rx handler before we do so.
	 */
3524 3525 3526 3527 3528 3529
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3530 3531 3532 3533 3534
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3535
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3536 3537 3538 3539 3540 3541 3542
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3543 3544 3545 3546 3547 3548 3549
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3550
	netif_start_queue(netdev);
3551

3552 3553 3554
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3555
	/* fire a link status change interrupt to start the watchdog */
3556 3557 3558 3559
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

	return 0;

err_req_irq:
	e1000_release_hw_control(adapter);
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);
3571
	pm_runtime_put_sync(&pdev->dev);
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3590
	struct pci_dev *pdev = adapter->pdev;
3591 3592

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3593 3594 3595 3596 3597 3598 3599

	pm_runtime_get_sync(&pdev->dev);

	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3600 3601 3602 3603 3604
	e1000_power_down_phy(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3605 3606 3607 3608
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
3609 3610 3611 3612 3613 3614
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3615 3616 3617 3618
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
J
Jesse Brandeburg 已提交
3619
	if (adapter->flags & FLAG_HAS_AMT)
3620 3621
		e1000_release_hw_control(adapter);

3622 3623
	if (adapter->flags & FLAG_HAS_ERT)
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3624

3625 3626
	pm_runtime_put_sync(&pdev->dev);

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3653 3654
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3655 3656 3657 3658
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3659 3660
		 * RAR[14]
		 */
3661 3662 3663 3664 3665 3666 3667 3668
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
	e1000_get_phy_info(&adapter->hw);
}

3684 3685 3686 3687
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
3688 3689 3690
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3691
	schedule_work(&adapter->update_phy_task);
3692 3693
}

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	hw->phy.addr = 1;

#define HV_PHY_STATS_PAGE	778
	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
	if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (HV_PHY_STATS_PAGE <<
						     IGP_PAGE_SHIFT));
		if (ret_val)
			goto release;
	}

	/* Read/clear the upper 16-bit registers and read/accumulate lower */

	/* Single Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_LATECOL_LOWER &
					   MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
	e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
	e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
	e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

3798 3799 3800 3801 3802 3803
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
void e1000e_update_stats(struct e1000_adapter *adapter)
{
3804
	struct net_device *netdev = adapter->netdev;
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
3819 3820
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
3821 3822 3823 3824 3825
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
3845
	}
3846

3847 3848 3849 3850 3851
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
3852 3853
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
3872 3873
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3874 3875 3876

	/* Rx Errors */

3877 3878 3879 3880
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
3881
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3882 3883 3884
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3885
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3886
					      adapter->stats.roc;
3887 3888 3889
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3890 3891

	/* Tx Errors */
3892
	netdev->stats.tx_errors = adapter->stats.ecol +
3893
				       adapter->stats.latecol;
3894 3895 3896
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3897 3898 3899 3900 3901 3902 3903 3904 3905

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;
	int ret_val;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
3927
			e_warn("Error reading PHY register\n");
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

3947 3948 3949 3950 3951
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

3952 3953 3954 3955
	/* Link status message must follow this format for user tools */
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
	       "Flow Control: %s\n",
	       adapter->netdev->name,
3956 3957 3958 3959 3960 3961 3962
	       adapter->link_speed,
	       (adapter->link_duplex == FULL_DUPLEX) ?
	                        "Full Duplex" : "Half Duplex",
	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
	                        "RX/TX" :
	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3963 3964
}

3965
static bool e1000e_has_link(struct e1000_adapter *adapter)
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = 0;
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = 1;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4002
		e_info("Gigabit has been disabled, downgrading speed\n");
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4040
	struct e1000_phy_info *phy = &adapter->hw.phy;
4041 4042 4043 4044 4045
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;
	int tx_pending = 0;

4046
	link = e1000e_has_link(adapter);
4047
	if ((netif_carrier_ok(netdev)) && link) {
4048 4049 4050
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4051
		e1000e_enable_receives(adapter);
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			bool txb2b = 1;
4062 4063 4064 4065

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4066
			/* update snapshot of PHY registers on LSC */
4067
			e1000_phy_read_status(adapter);
4068 4069 4070 4071
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
					e_info("Autonegotiated half duplex but"
					       " link partner cannot autoneg. "
					       " Try forcing full duplex if "
					       "link gets many collisions.\n");
			}

4093
			/* adjust timeout factor according to speed/duplex */
4094 4095 4096 4097
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				txb2b = 0;
4098
				adapter->tx_timeout_factor = 16;
4099 4100 4101
				break;
			case SPEED_100:
				txb2b = 0;
4102
				adapter->tx_timeout_factor = 10;
4103 4104 4105
				break;
			}

4106 4107 4108 4109
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4110 4111 4112
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4113
				tarc0 = er32(TARC(0));
4114
				tarc0 &= ~SPEED_MODE_BIT;
4115
				ew32(TARC(0), tarc0);
4116 4117
			}

4118 4119 4120 4121
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4122 4123 4124 4125
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4126
					e_info("10/100 speed: disabling TSO\n");
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4140 4141 4142 4143
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4144 4145 4146 4147
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4148 4149 4150 4151 4152 4153 4154
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4165 4166 4167
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4168 4169 4170 4171 4172 4173 4174
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4175 4176 4177
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
		}
	}

link_up:
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4189 4190 4191 4192
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4193 4194 4195 4196 4197 4198 4199

	e1000e_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
			       tx_ring->count);
		if (tx_pending) {
4200 4201
			/*
			 * We've lost link, so the controller stops DMA,
4202 4203
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4204 4205
			 * (Do the reset outside of interrupt context).
			 */
4206 4207
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
4208 4209
			/* return immediately since reset is imminent */
			return;
4210 4211 4212
		}
	}

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4229
	/* Cause software interrupt to ensure Rx ring is cleaned */
4230 4231 4232 4233
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4234 4235 4236 4237

	/* Force detection of hung controller every watchdog period */
	adapter->detect_tx_hung = 1;

4238 4239 4240 4241
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;
	int err;

4270 4271
	if (!skb_is_gso(skb))
		return 0;
4272

4273 4274 4275 4276
	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
4277 4278
	}

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4289
	} else if (skb_is_gso_v6(skb)) {
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4328 4329 4330 4331 4332 4333 4334 4335 4336
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4337
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4338
	__be16 protocol;
4339

4340 4341
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4342

4343 4344 4345 4346 4347
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4348
	switch (protocol) {
4349
	case cpu_to_be16(ETH_P_IP):
4350 4351 4352
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4353
	case cpu_to_be16(ETH_P_IPV6):
4354 4355 4356 4357 4358 4359
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4360 4361
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4362
		break;
4363 4364
	}

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	css = skb_transport_offset(skb);

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
4399
	struct pci_dev *pdev = adapter->pdev;
4400
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4401
	unsigned int len = skb_headlen(skb);
4402
	unsigned int offset = 0, size, count = 0, i;
4403
	unsigned int f, bytecount, segs;
4404 4405 4406 4407

	i = tx_ring->next_to_use;

	while (len) {
4408
		buffer_info = &tx_ring->buffer_info[i];
4409 4410 4411 4412 4413
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4414 4415 4416
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
						  size,	DMA_TO_DEVICE);
4417
		buffer_info->mapped_as_page = false;
4418
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4419
			goto dma_error;
4420 4421 4422

		len -= size;
		offset += size;
4423
		count++;
4424 4425 4426 4427 4428 4429

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4430 4431 4432 4433 4434 4435 4436
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
4437
		offset = frag->page_offset;
4438 4439

		while (len) {
4440 4441 4442 4443
			i++;
			if (i == tx_ring->count)
				i = 0;

4444 4445 4446 4447 4448 4449
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4450
			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4451
							offset, size,
4452
							DMA_TO_DEVICE);
4453
			buffer_info->mapped_as_page = true;
4454
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4455
				goto dma_error;
4456 4457 4458 4459 4460 4461 4462

			len -= size;
			offset += size;
			count++;
		}
	}

4463 4464 4465 4466
	segs = skb_shinfo(skb)->gso_segs ?: 1;
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4467
	tx_ring->buffer_info[i].skb = skb;
4468 4469
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4470 4471 4472
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4473 4474 4475 4476

dma_error:
	dev_err(&pdev->dev, "TX DMA map failed\n");
	buffer_info->dma = 0;
4477
	if (count)
4478
		count--;
4479 4480 4481

	while (count--) {
		if (i==0)
4482
			i += tx_ring->count;
4483
		i--;
4484 4485 4486 4487 4488
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);;
	}

	return 0;
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
	}

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4536 4537
	/*
	 * Force memory writes to complete before letting h/w
4538 4539
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4540 4541
	 * such as IA-64).
	 */
4542 4543 4544 4545
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
4546 4547 4548 4549
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4561 4562
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4597 4598
	/*
	 * Herbert's original patch had:
4599
	 *  smp_mb__after_netif_stop_queue();
4600 4601
	 * but since that doesn't exist yet, just open code it.
	 */
4602 4603
	smp_mb();

4604 4605 4606 4607
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4627 4628
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4629 4630 4631 4632 4633 4634 4635
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
4636
	unsigned int len = skb_headlen(skb);
4637 4638
	unsigned int nr_frags;
	unsigned int mss;
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4654 4655
	/*
	 * The controller does a simple calculation to
4656 4657 4658 4659
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4660 4661
	 * drops.
	 */
4662 4663 4664 4665 4666
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4667 4668 4669 4670 4671
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4672
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4673 4674 4675 4676
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4677
		if (skb->data_len && (hdr_len == len)) {
4678 4679 4680 4681
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
4682
				e_err("__pskb_pull_tail failed.\n");
4683 4684 4685
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
4686
			len = skb_headlen(skb);
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

4705 4706 4707 4708
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
4709
	if (e1000_maybe_stop_tx(netdev, count + 2))
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		return NETDEV_TX_BUSY;

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

4730 4731
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4732
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4733 4734
	 * no longer assume, we must.
	 */
4735 4736 4737
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

4738
	/* if count is 0 then mapping error has occured */
4739
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4740 4741 4742 4743 4744 4745
	if (count) {
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
4746
		dev_kfree_skb_any(skb);
4747 4748
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

4772 4773
	e1000e_dump(adapter);
	e_err("Reset adapter\n");
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	e1000e_reinit_locked(adapter);
}

/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
{
	/* only return the current stats */
4787
	return &netdev->stats;
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

4802 4803 4804 4805
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
4806 4807 4808
		return -EINVAL;
	}

4809 4810 4811 4812
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
4813 4814 4815
		return -EINVAL;
	}

4816 4817 4818 4819 4820 4821 4822 4823
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

4824 4825
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
4826
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4827
	adapter->max_frame_size = max_frame;
4828 4829
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
4830 4831 4832
	if (netif_running(netdev))
		e1000e_down(adapter);

4833 4834
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4835 4836
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
4837
	 * i.e. RXBUFFER_2048 --> size-4096 slab
4838 4839
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
4840
	 */
4841

4842
	if (max_frame <= 2048)
4843 4844 4845 4846 4847 4848 4849 4850
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4851
					 + ETH_FCS_LEN;
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

4869
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
4870 4871 4872 4873 4874 4875 4876
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
4877 4878
		e1000_phy_read_status(adapter);

4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

4933 4934 4935 4936 4937 4938 4939 4940
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
	u16 phy_reg;
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
4941
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978

	/* copy MAC MTA to PHY MTA */
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* configure PHY Rx Control register */
	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);

	/* activate PHY wakeup */
4979
	retval = hw->phy.ops.acquire(hw);
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
	if (retval) {
		e_err("Could not read PHY page 769\n");
		goto out;
	}
	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
4996
	hw->phy.ops.release(hw);
4997 4998 4999 5000

	return retval;
}

5001 5002
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5003 5004 5005 5006 5007
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5008 5009
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5010 5011 5012 5013 5014 5015 5016 5017 5018
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5019
	e1000e_reset_interrupt_capability(adapter);
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5045 5046 5047
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5048 5049
		ew32(CTRL, ctrl);

5050 5051 5052
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5053 5054
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5055
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5056 5057 5058
			ew32(CTRL_EXT, ctrl_ext);
		}

5059 5060 5061
		if (adapter->flags & FLAG_IS_ICH)
			e1000e_disable_gig_wol_ich8lan(&adapter->hw);

5062 5063 5064
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5065
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5066 5067 5068 5069 5070 5071 5072 5073 5074
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5075 5076 5077 5078 5079
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5080 5081
	*enable_wake = !!wufc;

5082
	/* make sure adapter isn't asleep if manageability is enabled */
5083 5084
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5085
		*enable_wake = true;
5086 5087 5088 5089

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5090 5091 5092 5093
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5094 5095 5096 5097
	e1000_release_hw_control(adapter);

	pci_disable_device(pdev);

5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5133
		e1000_power_off(pdev, sleep, wake);
5134 5135 5136

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5137
		e1000_power_off(pdev, sleep, wake);
5138
	}
5139 5140
}

5141 5142 5143 5144 5145 5146 5147
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
	pci_disable_link_state(pdev, state);
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5148 5149
{
	int pos;
5150
	u16 reg16;
5151 5152

	/*
5153 5154
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5155
	 */
5156 5157 5158 5159 5160
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5161 5162 5163
	if (!pdev->bus->self)
		return;

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5177 5178
}

5179
#ifdef CONFIG_PM_OPS
5180
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5181
{
5182
	return !!adapter->tx_ring->buffer_info;
5183 5184
}

5185
static int __e1000_resume(struct pci_dev *pdev)
5186 5187 5188 5189 5190 5191 5192 5193
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5194
	pci_save_state(pdev);
5195 5196
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
T
Taku Izumi 已提交
5197

5198
	e1000e_set_interrupt_capability(adapter);
5199 5200 5201 5202 5203 5204 5205
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

	e1000e_power_up_phy(adapter);
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
				phy_data & E1000_WUS_LNKC ? "Link Status "
				" Change" : "other");
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5236 5237
	e1000e_reset(adapter);

5238
	e1000_init_manageability_pt(adapter);
5239 5240 5241 5242 5243 5244

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5245 5246
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5247
	 * is up.  For all other cases, let the f/w know that the h/w is now
5248 5249
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5250
	if (!(adapter->flags & FLAG_HAS_AMT))
5251 5252 5253 5254
		e1000_get_hw_control(adapter);

	return 0;
}
5255

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5329 5330
#endif /* CONFIG_PM_RUNTIME */
#endif /* CONFIG_PM_OPS */
5331 5332 5333

static void e1000_shutdown(struct pci_dev *pdev)
{
5334 5335
	bool wake = false;

5336
	__e1000_shutdown(pdev, &wake, false);
5337 5338 5339

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	disable_irq(adapter->pdev->irq);
	e1000_intr(adapter->pdev->irq, netdev);

	enable_irq(adapter->pdev->irq);
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5375 5376 5377
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
T
Taku Izumi 已提交
5398
	int err;
J
Jesse Brandeburg 已提交
5399
	pci_ers_result_t result;
5400

5401 5402
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5403
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5404
	if (err) {
5405 5406
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5407 5408 5409
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5410
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5411
		pci_restore_state(pdev);
5412

J
Jesse Brandeburg 已提交
5413 5414
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5415

J
Jesse Brandeburg 已提交
5416 5417 5418 5419
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5420

J
Jesse Brandeburg 已提交
5421 5422 5423
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5439
	e1000_init_manageability_pt(adapter);
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5451 5452
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5453
	 * is up.  For all other cases, let the f/w know that the h/w is now
5454 5455
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5456
	if (!(adapter->flags & FLAG_HAS_AMT))
5457 5458 5459 5460 5461 5462 5463 5464
		e1000_get_hw_control(adapter);

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
5465
	u32 pba_num;
5466 5467

	/* print bus type/speed/width info */
J
Johannes Berg 已提交
5468
	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5469 5470 5471 5472
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5473
	       netdev->dev_addr);
5474 5475
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
J
Jeff Kirsher 已提交
5476
	e1000e_read_pba_num(hw, &pba_num);
5477 5478
	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
5479 5480
}

5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5491
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5492
		/* Deep Smart Power Down (DSPD) */
5493 5494
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5495 5496 5497
	}
}

5498 5499 5500
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
5501
	.ndo_start_xmit		= e1000_xmit_frame,
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
	.ndo_get_stats		= e1000_get_stats,
	.ndo_set_multicast_list	= e1000_set_multi,
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
};

5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5536 5537
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
5538 5539 5540 5541 5542 5543

	static int cards_found;
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

5544 5545
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
T
Taku Izumi 已提交
5546

5547
	err = pci_enable_device_mem(pdev);
5548 5549 5550 5551
	if (err)
		return err;

	pci_using_dac = 0;
5552
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5553
	if (!err) {
5554
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5555 5556 5557
		if (!err)
			pci_using_dac = 1;
	} else {
5558
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5559
		if (err) {
5560 5561
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
5562 5563 5564 5565 5566 5567 5568 5569
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

5570
	err = pci_request_selected_regions_exclusive(pdev,
5571 5572
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
5573 5574 5575
	if (err)
		goto err_pci_reg;

5576
	/* AER (Advanced Error Reporting) hooks */
5577
	pci_enable_pcie_error_reporting(pdev);
5578

5579
	pci_set_master(pdev);
5580 5581 5582 5583
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
5584 5585 5586 5587 5588 5589 5590 5591

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

5592 5593
	netdev->irq = pdev->irq;

5594 5595 5596 5597 5598 5599 5600 5601
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
5602
	adapter->flags2 = ei->flags2;
5603 5604
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
5605
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
5626
	netdev->netdev_ops		= &e1000e_netdev_ops;
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

5637 5638
	e1000e_check_options(adapter);

5639 5640 5641 5642 5643 5644 5645 5646 5647
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
5648
	err = ei->get_variants(adapter);
5649 5650 5651
	if (err)
		goto err_hw_init;

5652 5653 5654 5655
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

5656 5657
	hw->mac.ops.get_bus_info(&adapter->hw);

5658
	adapter->hw.phy.autoneg_wait_to_complete = 0;
5659 5660

	/* Copper options */
5661
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5662 5663 5664 5665 5666 5667
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
5668
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680

	netdev->features = NETIF_F_SG |
			   NETIF_F_HW_CSUM |
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;

5681 5682 5683 5684 5685
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
	netdev->vlan_features |= NETIF_F_HW_CSUM;
	netdev->vlan_features |= NETIF_F_SG;

5686 5687 5688 5689 5690 5691
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

5692 5693 5694 5695
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
5706
			e_err("The NVM Checksum Is Not Valid\n");
5707 5708 5709 5710 5711
			err = -EIO;
			goto err_eeprom;
		}
	}

5712 5713
	e1000_eeprom_checks(adapter);

5714
	/* copy the MAC address */
5715
	if (e1000e_read_mac_addr(&adapter->hw))
5716
		e_err("NVM Read Error while reading MAC address\n");
5717 5718 5719 5720 5721

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
5722
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5723 5724 5725 5726 5727
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
5728
	adapter->watchdog_timer.function = e1000_watchdog;
5729 5730 5731
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
5732
	adapter->phy_info_timer.function = e1000_update_phy_info;
5733 5734 5735 5736
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5737 5738
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5739
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5740 5741 5742

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
5743
	adapter->fc_autoneg = 1;
5744 5745
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
5760 5761
		if (eeprom_data & E1000_WUC_PHY_WAKE)
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
5786
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5787

5788 5789 5790
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

5791 5792 5793
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

5794 5795
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5796
	 * is up.  For all other cases, let the f/w know that the h/w is now
5797 5798
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5799
	if (!(adapter->flags & FLAG_HAS_AMT))
5800 5801 5802 5803 5804 5805 5806
		e1000_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

5807 5808 5809
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

5810 5811
	e1000_print_device_info(adapter);

5812 5813
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
5814

5815 5816 5817
	return 0;

err_register:
J
Jesse Brandeburg 已提交
5818 5819
	if (!(adapter->flags & FLAG_HAS_AMT))
		e1000_release_hw_control(adapter);
5820 5821 5822
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
5823
err_hw_init:
5824 5825 5826 5827

	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
5828 5829
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5830
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
5831
err_flashmap:
5832 5833 5834 5835
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
5836 5837
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
5857 5858
	bool down = test_bit(__E1000_DOWN, &adapter->state);

5859 5860 5861 5862
	/*
	 * flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled
	 */
5863 5864
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
5865 5866 5867
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

5868 5869 5870 5871 5872
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
5873 5874
	flush_scheduled_work();

5875 5876 5877
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

5878 5879 5880
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
5881 5882
	unregister_netdev(netdev);

5883 5884
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
5885

5886 5887 5888 5889
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5890 5891
	e1000_release_hw_control(adapter);

5892
	e1000e_reset_interrupt_capability(adapter);
5893 5894 5895 5896 5897 5898
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5899 5900
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5901 5902 5903

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
5904
	/* AER disable */
5905
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
5906

5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

5917
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5918 5919 5920 5921 5922 5923
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5924 5925 5926
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5927

5928 5929 5930 5931
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5932

5933 5934 5935
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5936

5937
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5938
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5939
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5940

5941 5942 5943 5944 5945 5946 5947 5948
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
5949

5950 5951 5952 5953 5954 5955 5956
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
5957
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5958

5959 5960 5961 5962 5963
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5964
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5965 5966 5967 5968 5969 5970 5971
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5972

5973 5974
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5975
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
5976

5977 5978 5979 5980 5981
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

5982 5983 5984
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

5985 5986 5987 5988
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

5989
#ifdef CONFIG_PM_OPS
5990
static const struct dev_pm_ops e1000_pm_ops = {
5991 5992 5993
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
5994
};
5995
#endif
5996

5997 5998 5999 6000 6001 6002
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
6003
#ifdef CONFIG_PM_OPS
6004
	.driver.pm = &e1000_pm_ops,
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6019 6020
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
6021
	pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6022
	ret = pci_register_driver(&e1000_driver);
6023

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */