blk-mq.h 32.1 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4 5
#ifndef BLK_MQ_H
#define BLK_MQ_H

#include <linux/blkdev.h>
6
#include <linux/sbitmap.h>
7
#include <linux/srcu.h>
8
#include <linux/lockdep.h>
9
#include <linux/scatterlist.h>
10 11

struct blk_mq_tags;
12
struct blk_flush_queue;
13

14
#define BLKDEV_MIN_RQ	4
15
#define BLKDEV_DEFAULT_RQ	128
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

typedef void (rq_end_io_fn)(struct request *, blk_status_t);

/*
 * request flags */
typedef __u32 __bitwise req_flags_t;

/* drive already may have started this one */
#define RQF_STARTED		((__force req_flags_t)(1 << 1))
/* may not be passed by ioscheduler */
#define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
/* request for flush sequence */
#define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
/* merge of different types, fail separately */
#define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
/* track inflight for MQ */
#define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
/* don't call prep for this one */
#define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
/* vaguely specified driver internal error.  Ignored by the block layer */
#define RQF_FAILED		((__force req_flags_t)(1 << 10))
/* don't warn about errors */
#define RQF_QUIET		((__force req_flags_t)(1 << 11))
/* elevator private data attached */
#define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
/* account into disk and partition IO statistics */
#define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
/* runtime pm request */
#define RQF_PM			((__force req_flags_t)(1 << 15))
/* on IO scheduler merge hash */
#define RQF_HASHED		((__force req_flags_t)(1 << 16))
/* track IO completion time */
#define RQF_STATS		((__force req_flags_t)(1 << 17))
/* Look at ->special_vec for the actual data payload instead of the
   bio chain. */
#define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
/* The per-zone write lock is held for this request */
#define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
/* already slept for hybrid poll */
#define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
/* ->timeout has been called, don't expire again */
#define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
58 59
/* queue has elevator attached */
#define RQF_ELV			((__force req_flags_t)(1 << 22))
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

/* flags that prevent us from merging requests: */
#define RQF_NOMERGE_FLAGS \
	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)

enum mq_rq_state {
	MQ_RQ_IDLE		= 0,
	MQ_RQ_IN_FLIGHT		= 1,
	MQ_RQ_COMPLETE		= 2,
};

/*
 * Try to put the fields that are referenced together in the same cacheline.
 *
 * If you modify this structure, make sure to update blk_rq_init() and
 * especially blk_mq_rq_ctx_init() to take care of the added fields.
 */
struct request {
	struct request_queue *q;
	struct blk_mq_ctx *mq_ctx;
	struct blk_mq_hw_ctx *mq_hctx;

	unsigned int cmd_flags;		/* op and common flags */
	req_flags_t rq_flags;

	int tag;
	int internal_tag;

88 89
	unsigned int timeout;

90 91 92 93 94 95 96
	/* the following two fields are internal, NEVER access directly */
	unsigned int __data_len;	/* total data len */
	sector_t __sector;		/* sector cursor */

	struct bio *bio;
	struct bio *biotail;

97 98 99 100
	union {
		struct list_head queuelist;
		struct request *rq_next;
	};
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

	struct gendisk *rq_disk;
	struct block_device *part;
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	/* Time that the first bio started allocating this request. */
	u64 alloc_time_ns;
#endif
	/* Time that this request was allocated for this IO. */
	u64 start_time_ns;
	/* Time that I/O was submitted to the device. */
	u64 io_start_time_ns;

#ifdef CONFIG_BLK_WBT
	unsigned short wbt_flags;
#endif
	/*
	 * rq sectors used for blk stats. It has the same value
	 * with blk_rq_sectors(rq), except that it never be zeroed
	 * by completion.
	 */
	unsigned short stats_sectors;

	/*
	 * Number of scatter-gather DMA addr+len pairs after
	 * physical address coalescing is performed.
	 */
	unsigned short nr_phys_segments;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	unsigned short nr_integrity_segments;
#endif

#ifdef CONFIG_BLK_INLINE_ENCRYPTION
	struct bio_crypt_ctx *crypt_ctx;
	struct blk_ksm_keyslot *crypt_keyslot;
#endif

	unsigned short write_hint;
	unsigned short ioprio;

	enum mq_rq_state state;
	refcount_t ref;

	unsigned long deadline;

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	/*
	 * The hash is used inside the scheduler, and killed once the
	 * request reaches the dispatch list. The ipi_list is only used
	 * to queue the request for softirq completion, which is long
	 * after the request has been unhashed (and even removed from
	 * the dispatch list).
	 */
	union {
		struct hlist_node hash;	/* merge hash */
		struct llist_node ipi_list;
	};

	/*
	 * The rb_node is only used inside the io scheduler, requests
	 * are pruned when moved to the dispatch queue. So let the
	 * completion_data share space with the rb_node.
	 */
	union {
		struct rb_node rb_node;	/* sort/lookup */
		struct bio_vec special_vec;
		void *completion_data;
		int error_count; /* for legacy drivers, don't use */
	};


	/*
	 * Three pointers are available for the IO schedulers, if they need
	 * more they have to dynamically allocate it.  Flush requests are
	 * never put on the IO scheduler. So let the flush fields share
	 * space with the elevator data.
	 */
	union {
		struct {
			struct io_cq		*icq;
			void			*priv[2];
		} elv;

		struct {
			unsigned int		seq;
			struct list_head	list;
			rq_end_io_fn		*saved_end_io;
		} flush;
	};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	union {
		struct __call_single_data csd;
		u64 fifo_time;
	};

	/*
	 * completion callback.
	 */
	rq_end_io_fn *end_io;
	void *end_io_data;
};

#define req_op(req) \
	((req)->cmd_flags & REQ_OP_MASK)

static inline bool blk_rq_is_passthrough(struct request *rq)
{
	return blk_op_is_passthrough(req_op(rq));
}

static inline unsigned short req_get_ioprio(struct request *req)
{
	return req->ioprio;
}

#define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)

#define rq_dma_dir(rq) \
	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)

enum blk_eh_timer_return {
	BLK_EH_DONE,		/* drivers has completed the command */
	BLK_EH_RESET_TIMER,	/* reset timer and try again */
};

#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */

228
/**
229 230
 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
 * block device
231
 */
232 233
struct blk_mq_hw_ctx {
	struct {
234
		/** @lock: Protects the dispatch list. */
235
		spinlock_t		lock;
236 237 238 239 240 241 242
		/**
		 * @dispatch: Used for requests that are ready to be
		 * dispatched to the hardware but for some reason (e.g. lack of
		 * resources) could not be sent to the hardware. As soon as the
		 * driver can send new requests, requests at this list will
		 * be sent first for a fairer dispatch.
		 */
243
		struct list_head	dispatch;
244 245 246 247 248
		 /**
		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
		  * queue (active, scheduled to restart, stopped).
		  */
		unsigned long		state;
249 250
	} ____cacheline_aligned_in_smp;

251 252 253
	/**
	 * @run_work: Used for scheduling a hardware queue run at a later time.
	 */
254
	struct delayed_work	run_work;
255
	/** @cpumask: Map of available CPUs where this hctx can run. */
256
	cpumask_var_t		cpumask;
257 258 259 260
	/**
	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
	 * selection from @cpumask.
	 */
261
	int			next_cpu;
262 263 264 265
	/**
	 * @next_cpu_batch: Counter of how many works left in the batch before
	 * changing to the next CPU.
	 */
266
	int			next_cpu_batch;
267

268 269
	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
	unsigned long		flags;
270

271 272 273 274
	/**
	 * @sched_data: Pointer owned by the IO scheduler attached to a request
	 * queue. It's up to the IO scheduler how to use this pointer.
	 */
275
	void			*sched_data;
276 277 278
	/**
	 * @queue: Pointer to the request queue that owns this hardware context.
	 */
279
	struct request_queue	*queue;
280
	/** @fq: Queue of requests that need to perform a flush operation. */
281
	struct blk_flush_queue	*fq;
282

283 284 285 286
	/**
	 * @driver_data: Pointer to data owned by the block driver that created
	 * this hctx
	 */
287 288
	void			*driver_data;

289 290 291 292
	/**
	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
	 * pending request in that software queue.
	 */
293
	struct sbitmap		ctx_map;
294

295 296 297 298
	/**
	 * @dispatch_from: Software queue to be used when no scheduler was
	 * selected.
	 */
299
	struct blk_mq_ctx	*dispatch_from;
300 301 302 303 304
	/**
	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
	 * decide if the hw_queue is busy using Exponential Weighted Moving
	 * Average algorithm.
	 */
305
	unsigned int		dispatch_busy;
306

307
	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
308
	unsigned short		type;
309
	/** @nr_ctx: Number of software queues. */
310
	unsigned short		nr_ctx;
311
	/** @ctxs: Array of software queues. */
312
	struct blk_mq_ctx	**ctxs;
313

314
	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
315
	spinlock_t		dispatch_wait_lock;
316 317 318 319
	/**
	 * @dispatch_wait: Waitqueue to put requests when there is no tag
	 * available at the moment, to wait for another try in the future.
	 */
320
	wait_queue_entry_t	dispatch_wait;
321 322 323 324 325

	/**
	 * @wait_index: Index of next available dispatch_wait queue to insert
	 * requests.
	 */
326
	atomic_t		wait_index;
327

328 329 330 331
	/**
	 * @tags: Tags owned by the block driver. A tag at this set is only
	 * assigned when a request is dispatched from a hardware queue.
	 */
332
	struct blk_mq_tags	*tags;
333 334 335 336 337
	/**
	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
	 * scheduler associated with a request queue, a tag is assigned when
	 * that request is allocated. Else, this member is not used.
	 */
338
	struct blk_mq_tags	*sched_tags;
339

340
	/** @queued: Number of queued requests. */
341
	unsigned long		queued;
342
	/** @run: Number of dispatched requests. */
343
	unsigned long		run;
344
#define BLK_MQ_MAX_DISPATCH_ORDER	7
345
	/** @dispatched: Number of dispatch requests by queue. */
346 347
	unsigned long		dispatched[BLK_MQ_MAX_DISPATCH_ORDER];

348
	/** @numa_node: NUMA node the storage adapter has been connected to. */
349
	unsigned int		numa_node;
350
	/** @queue_num: Index of this hardware queue. */
351
	unsigned int		queue_num;
352

353 354 355 356
	/**
	 * @nr_active: Number of active requests. Only used when a tag set is
	 * shared across request queues.
	 */
357 358
	atomic_t		nr_active;

359 360
	/** @cpuhp_online: List to store request if CPU is going to die */
	struct hlist_node	cpuhp_online;
361
	/** @cpuhp_dead: List to store request if some CPU die. */
362
	struct hlist_node	cpuhp_dead;
363
	/** @kobj: Kernel object for sysfs. */
364
	struct kobject		kobj;
J
Jens Axboe 已提交
365

366
	/** @poll_considered: Count times blk_mq_poll() was called. */
367
	unsigned long		poll_considered;
368
	/** @poll_invoked: Count how many requests blk_mq_poll() polled. */
J
Jens Axboe 已提交
369
	unsigned long		poll_invoked;
370
	/** @poll_success: Count how many polled requests were completed. */
J
Jens Axboe 已提交
371
	unsigned long		poll_success;
372 373

#ifdef CONFIG_BLK_DEBUG_FS
374 375 376 377
	/**
	 * @debugfs_dir: debugfs directory for this hardware queue. Named
	 * as cpu<cpu_number>.
	 */
378
	struct dentry		*debugfs_dir;
379
	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
380
	struct dentry		*sched_debugfs_dir;
381
#endif
382

383 384 385 386
	/**
	 * @hctx_list: if this hctx is not in use, this is an entry in
	 * q->unused_hctx_list.
	 */
387 388
	struct list_head	hctx_list;

389 390 391 392 393
	/**
	 * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is
	 * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also
	 * blk_mq_hw_ctx_size().
	 */
394
	struct srcu_struct	srcu[];
395 396
};

397
/**
398
 * struct blk_mq_queue_map - Map software queues to hardware queues
399 400 401 402 403 404 405 406
 * @mq_map:       CPU ID to hardware queue index map. This is an array
 *	with nr_cpu_ids elements. Each element has a value in the range
 *	[@queue_offset, @queue_offset + @nr_queues).
 * @nr_queues:    Number of hardware queues to map CPU IDs onto.
 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
 *	driver to map each hardware queue type (enum hctx_type) onto a distinct
 *	set of hardware queues.
 */
J
Jens Axboe 已提交
407 408 409
struct blk_mq_queue_map {
	unsigned int *mq_map;
	unsigned int nr_queues;
410
	unsigned int queue_offset;
J
Jens Axboe 已提交
411 412
};

413 414 415 416 417 418 419
/**
 * enum hctx_type - Type of hardware queue
 * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
 * @HCTX_TYPE_READ:	Just for READ I/O.
 * @HCTX_TYPE_POLL:	Polled I/O of any kind.
 * @HCTX_MAX_TYPES:	Number of types of hctx.
 */
420
enum hctx_type {
421 422 423
	HCTX_TYPE_DEFAULT,
	HCTX_TYPE_READ,
	HCTX_TYPE_POLL,
424 425

	HCTX_MAX_TYPES,
J
Jens Axboe 已提交
426 427
};

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/**
 * struct blk_mq_tag_set - tag set that can be shared between request queues
 * @map:	   One or more ctx -> hctx mappings. One map exists for each
 *		   hardware queue type (enum hctx_type) that the driver wishes
 *		   to support. There are no restrictions on maps being of the
 *		   same size, and it's perfectly legal to share maps between
 *		   types.
 * @nr_maps:	   Number of elements in the @map array. A number in the range
 *		   [1, HCTX_MAX_TYPES].
 * @ops:	   Pointers to functions that implement block driver behavior.
 * @nr_hw_queues:  Number of hardware queues supported by the block driver that
 *		   owns this data structure.
 * @queue_depth:   Number of tags per hardware queue, reserved tags included.
 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
 *		   allocations.
 * @cmd_size:	   Number of additional bytes to allocate per request. The block
 *		   driver owns these additional bytes.
 * @numa_node:	   NUMA node the storage adapter has been connected to.
 * @timeout:	   Request processing timeout in jiffies.
 * @flags:	   Zero or more BLK_MQ_F_* flags.
 * @driver_data:   Pointer to data owned by the block driver that created this
 *		   tag set.
 * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
 *		   elements.
452 453 454
 * @shared_tags:
 *		   Shared set of tags. Has @nr_hw_queues elements. If set,
 *		   shared by all @tags.
455 456 457 458
 * @tag_list_lock: Serializes tag_list accesses.
 * @tag_list:	   List of the request queues that use this tag set. See also
 *		   request_queue.tag_set_list.
 */
459
struct blk_mq_tag_set {
J
Jens Axboe 已提交
460
	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
461
	unsigned int		nr_maps;
J
Jens Axboe 已提交
462
	const struct blk_mq_ops	*ops;
463 464
	unsigned int		nr_hw_queues;
	unsigned int		queue_depth;
465
	unsigned int		reserved_tags;
466
	unsigned int		cmd_size;
467 468
	int			numa_node;
	unsigned int		timeout;
469
	unsigned int		flags;
470 471 472
	void			*driver_data;

	struct blk_mq_tags	**tags;
473

474
	struct blk_mq_tags	*shared_tags;
475

476 477
	struct mutex		tag_list_lock;
	struct list_head	tag_list;
478 479
};

480 481 482 483 484 485
/**
 * struct blk_mq_queue_data - Data about a request inserted in a queue
 *
 * @rq:   Request pointer.
 * @last: If it is the last request in the queue.
 */
486 487 488 489 490
struct blk_mq_queue_data {
	struct request *rq;
	bool last;
};

491
typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
492
		bool);
493
typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
J
Jens Axboe 已提交
494

495 496 497 498
/**
 * struct blk_mq_ops - Callback functions that implements block driver
 * behaviour.
 */
499
struct blk_mq_ops {
500 501
	/**
	 * @queue_rq: Queue a new request from block IO.
502
	 */
503 504
	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
				 const struct blk_mq_queue_data *);
505

506 507 508 509
	/**
	 * @commit_rqs: If a driver uses bd->last to judge when to submit
	 * requests to hardware, it must define this function. In case of errors
	 * that make us stop issuing further requests, this hook serves the
J
Jens Axboe 已提交
510 511 512
	 * purpose of kicking the hardware (which the last request otherwise
	 * would have done).
	 */
513
	void (*commit_rqs)(struct blk_mq_hw_ctx *);
J
Jens Axboe 已提交
514

515 516
	/**
	 * @get_budget: Reserve budget before queue request, once .queue_rq is
517 518 519 520
	 * run, it is driver's responsibility to release the
	 * reserved budget. Also we have to handle failure case
	 * of .get_budget for avoiding I/O deadlock.
	 */
521
	int (*get_budget)(struct request_queue *);
522

523 524 525
	/**
	 * @put_budget: Release the reserved budget.
	 */
526
	void (*put_budget)(struct request_queue *, int);
527

528 529
	/**
	 * @set_rq_budget_token: store rq's budget token
530 531
	 */
	void (*set_rq_budget_token)(struct request *, int);
532 533
	/**
	 * @get_rq_budget_token: retrieve rq's budget token
534 535 536
	 */
	int (*get_rq_budget_token)(struct request *);

537 538
	/**
	 * @timeout: Called on request timeout.
539
	 */
540
	enum blk_eh_timer_return (*timeout)(struct request *, bool);
541

542 543
	/**
	 * @poll: Called to poll for completion of a specific tag.
J
Jens Axboe 已提交
544
	 */
545
	int (*poll)(struct blk_mq_hw_ctx *);
J
Jens Axboe 已提交
546

547 548 549
	/**
	 * @complete: Mark the request as complete.
	 */
550
	void (*complete)(struct request *);
551

552 553 554 555
	/**
	 * @init_hctx: Called when the block layer side of a hardware queue has
	 * been set up, allowing the driver to allocate/init matching
	 * structures.
556
	 */
557
	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
558 559 560
	/**
	 * @exit_hctx: Ditto for exit/teardown.
	 */
561
	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
562

563 564 565
	/**
	 * @init_request: Called for every command allocated by the block layer
	 * to allow the driver to set up driver specific data.
566 567 568
	 *
	 * Tag greater than or equal to queue_depth is for setting up
	 * flush request.
569
	 */
570 571
	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
			    unsigned int, unsigned int);
572 573 574
	/**
	 * @exit_request: Ditto for exit/teardown.
	 */
575 576
	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
			     unsigned int);
577 578 579 580

	/**
	 * @initialize_rq_fn: Called from inside blk_get_request().
	 */
581
	void (*initialize_rq_fn)(struct request *rq);
582

583 584 585
	/**
	 * @cleanup_rq: Called before freeing one request which isn't completed
	 * yet, and usually for freeing the driver private data.
M
Ming Lei 已提交
586
	 */
587
	void (*cleanup_rq)(struct request *);
M
Ming Lei 已提交
588

589 590
	/**
	 * @busy: If set, returns whether or not this queue currently is busy.
J
Jens Axboe 已提交
591
	 */
592
	bool (*busy)(struct request_queue *);
J
Jens Axboe 已提交
593

594 595 596 597
	/**
	 * @map_queues: This allows drivers specify their own queue mapping by
	 * overriding the setup-time function that builds the mq_map.
	 */
598
	int (*map_queues)(struct blk_mq_tag_set *set);
599 600

#ifdef CONFIG_BLK_DEBUG_FS
601 602
	/**
	 * @show_rq: Used by the debugfs implementation to show driver-specific
603 604 605 606
	 * information about a request.
	 */
	void (*show_rq)(struct seq_file *m, struct request *rq);
#endif
607 608 609 610
};

enum {
	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
611
	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
612 613 614 615 616
	/*
	 * Set when this device requires underlying blk-mq device for
	 * completing IO:
	 */
	BLK_MQ_F_STACKING	= 1 << 2,
617
	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
618
	BLK_MQ_F_BLOCKING	= 1 << 5,
619
	/* Do not allow an I/O scheduler to be configured. */
620
	BLK_MQ_F_NO_SCHED	= 1 << 6,
621 622 623 624 625
	/*
	 * Select 'none' during queue registration in case of a single hwq
	 * or shared hwqs instead of 'mq-deadline'.
	 */
	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
S
Shaohua Li 已提交
626 627
	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
628

629
	BLK_MQ_S_STOPPED	= 0,
630
	BLK_MQ_S_TAG_ACTIVE	= 1,
631
	BLK_MQ_S_SCHED_RESTART	= 2,
632

633 634 635
	/* hw queue is inactive after all its CPUs become offline */
	BLK_MQ_S_INACTIVE	= 3,

636
	BLK_MQ_MAX_DEPTH	= 10240,
637 638

	BLK_MQ_CPU_WORK_BATCH	= 8,
639
};
S
Shaohua Li 已提交
640 641 642 643 644 645
#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
646

647 648
#define BLK_MQ_NO_HCTX_IDX	(-1U)

649 650
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
		struct lock_class_key *lkclass);
651 652 653 654
#define blk_mq_alloc_disk(set, queuedata)				\
({									\
	static struct lock_class_key __key;				\
									\
655
	__blk_mq_alloc_disk(set, queuedata, &__key);			\
656
})
657
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
658 659
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
		struct request_queue *q);
660
void blk_mq_unregister_dev(struct device *, struct request_queue *);
661

662
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
663 664 665
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
		const struct blk_mq_ops *ops, unsigned int queue_depth,
		unsigned int set_flags);
666 667
void blk_mq_free_tag_set(struct blk_mq_tag_set *set);

668 669 670
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);

void blk_mq_free_request(struct request *rq);
671

672
bool blk_mq_queue_inflight(struct request_queue *q);
673

674
enum {
675 676 677 678
	/* return when out of requests */
	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
	/* allocate from reserved pool */
	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
679 680
	/* set RQF_PM */
	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
681 682
};

683
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
684
		blk_mq_req_flags_t flags);
685
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
686 687
		unsigned int op, blk_mq_req_flags_t flags,
		unsigned int hctx_idx);
688
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
689

B
Bart Van Assche 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
enum {
	BLK_MQ_UNIQUE_TAG_BITS = 16,
	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
};

u32 blk_mq_unique_tag(struct request *rq);

static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
{
	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
}

static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
{
	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
}

P
Pavel Begunkov 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/**
 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
 * @rq: target request.
 */
static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
{
	return READ_ONCE(rq->state);
}

static inline int blk_mq_request_started(struct request *rq)
{
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
}

static inline int blk_mq_request_completed(struct request *rq)
{
	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
}
725

726 727 728 729 730 731 732 733 734 735 736 737
/*
 * 
 * Set the state to complete when completing a request from inside ->queue_rq.
 * This is used by drivers that want to ensure special complete actions that
 * need access to the request are called on failure, e.g. by nvme for
 * multipathing.
 */
static inline void blk_mq_set_request_complete(struct request *rq)
{
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
}

738
void blk_mq_start_request(struct request *rq);
739 740
void blk_mq_end_request(struct request *rq, blk_status_t error);
void __blk_mq_end_request(struct request *rq, blk_status_t error);
741

742
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
743
void blk_mq_kick_requeue_list(struct request_queue *q);
744
void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
745
void blk_mq_complete_request(struct request *rq);
746
bool blk_mq_complete_request_remote(struct request *rq);
747
bool blk_mq_queue_stopped(struct request_queue *q);
748 749
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
750
void blk_mq_stop_hw_queues(struct request_queue *q);
751
void blk_mq_start_hw_queues(struct request_queue *q);
752
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
753
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
754
void blk_mq_quiesce_queue(struct request_queue *q);
755
void blk_mq_unquiesce_queue(struct request_queue *q);
756
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
757
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
758
void blk_mq_run_hw_queues(struct request_queue *q, bool async);
759
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
760 761
void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
		busy_tag_iter_fn *fn, void *priv);
762
void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
763
void blk_mq_freeze_queue(struct request_queue *q);
764
void blk_mq_unfreeze_queue(struct request_queue *q);
765
void blk_freeze_queue_start(struct request_queue *q);
766
void blk_mq_freeze_queue_wait(struct request_queue *q);
767 768
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout);
769

J
Jens Axboe 已提交
770
int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
K
Keith Busch 已提交
771 772
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);

773
void blk_mq_quiesce_queue_nowait(struct request_queue *q);
774

J
Jens Axboe 已提交
775 776
unsigned int blk_mq_rq_cpu(struct request *rq);

777 778 779 780 781 782 783 784 785
bool __blk_should_fake_timeout(struct request_queue *q);
static inline bool blk_should_fake_timeout(struct request_queue *q)
{
	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
		return __blk_should_fake_timeout(q);
	return false;
}

786 787 788 789 790 791
/**
 * blk_mq_rq_from_pdu - cast a PDU to a request
 * @pdu: the PDU (Protocol Data Unit) to be casted
 *
 * Return: request
 *
792
 * Driver command data is immediately after the request. So subtract request
793
 * size to get back to the original request.
794 795 796 797 798
 */
static inline struct request *blk_mq_rq_from_pdu(void *pdu)
{
	return pdu - sizeof(struct request);
}
799 800 801 802 803 804 805 806 807 808

/**
 * blk_mq_rq_to_pdu - cast a request to a PDU
 * @rq: the request to be casted
 *
 * Return: pointer to the PDU
 *
 * Driver command data is immediately after the request. So add request to get
 * the PDU.
 */
809 810
static inline void *blk_mq_rq_to_pdu(struct request *rq)
{
J
Jens Axboe 已提交
811
	return rq + 1;
812 813 814
}

#define queue_for_each_hw_ctx(q, hctx, i)				\
815 816
	for ((i) = 0; (i) < (q)->nr_hw_queues &&			\
	     ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
817 818

#define hctx_for_each_ctx(hctx, ctx, i)					\
819 820
	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
821

M
Ming Lei 已提交
822 823 824 825 826 827
static inline void blk_mq_cleanup_rq(struct request *rq)
{
	if (rq->q->mq_ops->cleanup_rq)
		rq->q->mq_ops->cleanup_rq(rq);
}

828 829 830 831 832 833 834 835
static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
{
	rq->nr_phys_segments = nr_segs;
	rq->__data_len = bio->bi_iter.bi_size;
	rq->bio = rq->biotail = bio;
	rq->ioprio = bio_prio(bio);

836 837
	if (bio->bi_bdev)
		rq->rq_disk = bio->bi_bdev->bd_disk;
838 839
}

840 841
void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
		struct lock_class_key *key);
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static inline bool rq_is_sync(struct request *rq)
{
	return op_is_sync(rq->cmd_flags);
}

void blk_rq_init(struct request_queue *q, struct request *rq);
void blk_put_request(struct request *rq);
struct request *blk_get_request(struct request_queue *q, unsigned int op,
		blk_mq_req_flags_t flags);
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
		struct bio_set *bs, gfp_t gfp_mask,
		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
void blk_rq_unprep_clone(struct request *rq);
blk_status_t blk_insert_cloned_request(struct request_queue *q,
		struct request *rq);

struct rq_map_data {
	struct page **pages;
	int page_order;
	int nr_entries;
	unsigned long offset;
	int null_mapped;
	int from_user;
};

int blk_rq_map_user(struct request_queue *, struct request *,
		struct rq_map_data *, void __user *, unsigned long, gfp_t);
int blk_rq_map_user_iov(struct request_queue *, struct request *,
		struct rq_map_data *, const struct iov_iter *, gfp_t);
int blk_rq_unmap_user(struct bio *);
int blk_rq_map_kern(struct request_queue *, struct request *, void *,
		unsigned int, gfp_t);
int blk_rq_append_bio(struct request *rq, struct bio *bio);
void blk_execute_rq_nowait(struct gendisk *, struct request *, int,
		rq_end_io_fn *);
blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq,
		int at_head);

struct req_iterator {
	struct bvec_iter iter;
	struct bio *bio;
};

#define __rq_for_each_bio(_bio, rq)	\
	if ((rq->bio))			\
		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)

#define rq_for_each_segment(bvl, _rq, _iter)			\
	__rq_for_each_bio(_iter.bio, _rq)			\
		bio_for_each_segment(bvl, _iter.bio, _iter.iter)

#define rq_for_each_bvec(bvl, _rq, _iter)			\
	__rq_for_each_bio(_iter.bio, _rq)			\
		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)

#define rq_iter_last(bvec, _iter)				\
		(_iter.bio->bi_next == NULL &&			\
		 bio_iter_last(bvec, _iter.iter))

/*
 * blk_rq_pos()			: the current sector
 * blk_rq_bytes()		: bytes left in the entire request
 * blk_rq_cur_bytes()		: bytes left in the current segment
 * blk_rq_err_bytes()		: bytes left till the next error boundary
 * blk_rq_sectors()		: sectors left in the entire request
 * blk_rq_cur_sectors()		: sectors left in the current segment
 * blk_rq_stats_sectors()	: sectors of the entire request used for stats
 */
static inline sector_t blk_rq_pos(const struct request *rq)
{
	return rq->__sector;
}

static inline unsigned int blk_rq_bytes(const struct request *rq)
{
	return rq->__data_len;
}

static inline int blk_rq_cur_bytes(const struct request *rq)
{
923 924 925 926 927
	if (!rq->bio)
		return 0;
	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
		return rq->bio->bi_iter.bi_size;
	return bio_iovec(rq->bio).bv_len;
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
}

unsigned int blk_rq_err_bytes(const struct request *rq);

static inline unsigned int blk_rq_sectors(const struct request *rq)
{
	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
}

static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
{
	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
}

static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
{
	return rq->stats_sectors;
}

/*
 * Some commands like WRITE SAME have a payload or data transfer size which
 * is different from the size of the request.  Any driver that supports such
 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
 * calculate the data transfer size.
 */
static inline unsigned int blk_rq_payload_bytes(struct request *rq)
{
	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
		return rq->special_vec.bv_len;
	return blk_rq_bytes(rq);
}

/*
 * Return the first full biovec in the request.  The caller needs to check that
 * there are any bvecs before calling this helper.
 */
static inline struct bio_vec req_bvec(struct request *rq)
{
	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
		return rq->special_vec;
	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
}

static inline unsigned int blk_rq_count_bios(struct request *rq)
{
	unsigned int nr_bios = 0;
	struct bio *bio;

	__rq_for_each_bio(bio, rq)
		nr_bios++;

	return nr_bios;
}

void blk_steal_bios(struct bio_list *list, struct request *rq);

/*
 * Request completion related functions.
 *
 * blk_update_request() completes given number of bytes and updates
 * the request without completing it.
 */
bool blk_update_request(struct request *rq, blk_status_t error,
			       unsigned int nr_bytes);
void blk_abort_request(struct request *);

/*
 * Number of physical segments as sent to the device.
 *
 * Normally this is the number of discontiguous data segments sent by the
 * submitter.  But for data-less command like discard we might have no
 * actual data segments submitted, but the driver might have to add it's
 * own special payload.  In that case we still return 1 here so that this
 * special payload will be mapped.
 */
static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
{
	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
		return 1;
	return rq->nr_phys_segments;
}

/*
 * Number of discard segments (or ranges) the driver needs to fill in.
 * Each discard bio merged into a request is counted as one segment.
 */
static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
{
	return max_t(unsigned short, rq->nr_phys_segments, 1);
}

int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
		struct scatterlist *sglist, struct scatterlist **last_sg);
static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
		struct scatterlist *sglist)
{
	struct scatterlist *last_sg = NULL;

	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
}
void blk_dump_rq_flags(struct request *, char *);

#ifdef CONFIG_BLK_DEV_ZONED
static inline unsigned int blk_rq_zone_no(struct request *rq)
{
	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
}

static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
{
	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
}

bool blk_req_needs_zone_write_lock(struct request *rq);
bool blk_req_zone_write_trylock(struct request *rq);
void __blk_req_zone_write_lock(struct request *rq);
void __blk_req_zone_write_unlock(struct request *rq);

static inline void blk_req_zone_write_lock(struct request *rq)
{
	if (blk_req_needs_zone_write_lock(rq))
		__blk_req_zone_write_lock(rq);
}

static inline void blk_req_zone_write_unlock(struct request *rq)
{
	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
		__blk_req_zone_write_unlock(rq);
}

static inline bool blk_req_zone_is_write_locked(struct request *rq)
{
	return rq->q->seq_zones_wlock &&
		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
}

static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
{
	if (!blk_req_needs_zone_write_lock(rq))
		return true;
	return !blk_req_zone_is_write_locked(rq);
}
#else /* CONFIG_BLK_DEV_ZONED */
static inline bool blk_req_needs_zone_write_lock(struct request *rq)
{
	return false;
}

static inline void blk_req_zone_write_lock(struct request *rq)
{
}

static inline void blk_req_zone_write_unlock(struct request *rq)
{
}
static inline bool blk_req_zone_is_write_locked(struct request *rq)
{
	return false;
}

static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
{
	return true;
}
#endif /* CONFIG_BLK_DEV_ZONED */

#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
# error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
1096
#endif
1097 1098 1099 1100 1101 1102 1103 1104
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void rq_flush_dcache_pages(struct request *rq);
#else
static inline void rq_flush_dcache_pages(struct request *rq)
{
}
#endif /* ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE */
#endif /* BLK_MQ_H */