marvell_nand.c 85.5 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
/*
 * Marvell NAND flash controller driver
 *
 * Copyright (C) 2017 Marvell
 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
 *
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 *
 * This NAND controller driver handles two versions of the hardware,
 * one is called NFCv1 and is available on PXA SoCs and the other is
 * called NFCv2 and is available on Armada SoCs.
 *
 * The main visible difference is that NFCv1 only has Hamming ECC
 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
 * is not used with NFCv2.
 *
 * The ECC layouts are depicted in details in Marvell AN-379, but here
 * is a brief description.
 *
 * When using Hamming, the data is split in 512B chunks (either 1, 2
 * or 4) and each chunk will have its own ECC "digest" of 6B at the
 * beginning of the OOB area and eventually the remaining free OOB
 * bytes (also called "spare" bytes in the driver). This engine
 * corrects up to 1 bit per chunk and detects reliably an error if
 * there are at most 2 bitflips. Here is the page layout used by the
 * controller when Hamming is chosen:
 *
 * +-------------------------------------------------------------+
 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
 * +-------------------------------------------------------------+
 *
 * When using the BCH engine, there are N identical (data + free OOB +
 * ECC) sections and potentially an extra one to deal with
 * configurations where the chosen (data + free OOB + ECC) sizes do
 * not align with the page (data + OOB) size. ECC bytes are always
 * 30B per ECC chunk. Here is the page layout used by the controller
 * when BCH is chosen:
 *
 * +-----------------------------------------
 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
 * +-----------------------------------------
 *
 *      -------------------------------------------
 *       ... | Data N | Free OOB bytes N | ECC N |
 *      -------------------------------------------
 *
 *           --------------------------------------------+
 *            Last Data | Last Free OOB bytes | Last ECC |
 *           --------------------------------------------+
 *
 * In both cases, the layout seen by the user is always: all data
 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
 * ECC bytes are 30B long and are padded with 0xFF to align on 32
 * bytes.
 *
 * The controller has certain limitations that are handled by the
 * driver:
 *   - It can only read 2k at a time. To overcome this limitation, the
 *     driver issues data cycles on the bus, without issuing new
 *     CMD + ADDR cycles. The Marvell term is "naked" operations.
 *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
 *     bits. What can be tuned is the ECC block size as long as it
 *     stays between 512B and 2kiB. It's usually chosen based on the
 *     chip ECC requirements. For instance, using 2kiB ECC chunks
 *     provides 4b/512B correctability.
 *   - The controller will always treat data bytes, free OOB bytes
 *     and ECC bytes in that order, no matter what the real layout is
 *     (which is usually all data then all OOB bytes). The
 *     marvell_nfc_layouts array below contains the currently
 *     supported layouts.
 *   - Because of these weird layouts, the Bad Block Markers can be
 *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
 *     option must be set to prevent scanning/writing bad block
 *     markers.
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
 */

#include <linux/module.h>
#include <linux/clk.h>
#include <linux/mtd/rawnand.h>
#include <linux/of_platform.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <asm/unaligned.h>

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/pxa-dma.h>
#include <linux/platform_data/mtd-nand-pxa3xx.h>

/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
#define FIFO_DEPTH		8
#define FIFO_REP(x)		(x / sizeof(u32))
#define BCH_SEQ_READS		(32 / FIFO_DEPTH)
/* NFC does not support transfers of larger chunks at a time */
#define MAX_CHUNK_SIZE		2112
/* NFCv1 cannot read more that 7 bytes of ID */
#define NFCV1_READID_LEN	7
/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
#define POLL_PERIOD		0
#define POLL_TIMEOUT		100000
/* Interrupt maximum wait period in ms */
#define IRQ_TIMEOUT		1000
/* Latency in clock cycles between SoC pins and NFC logic */
#define MIN_RD_DEL_CNT		3
/* Maximum number of contiguous address cycles */
#define MAX_ADDRESS_CYC_NFCV1	5
#define MAX_ADDRESS_CYC_NFCV2	7
/* System control registers/bits to enable the NAND controller on some SoCs */
#define GENCONF_SOC_DEVICE_MUX	0x208
#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
#define GENCONF_CLK_GATING_CTRL	0x220
#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
#define GENCONF_ND_CLK_CTRL	0x700
#define GENCONF_ND_CLK_CTRL_EN	BIT(0)

/* NAND controller data flash control register */
#define NDCR			0x00
#define NDCR_ALL_INT		GENMASK(11, 0)
#define NDCR_CS1_CMDDM		BIT(7)
#define NDCR_CS0_CMDDM		BIT(8)
#define NDCR_RDYM		BIT(11)
#define NDCR_ND_ARB_EN		BIT(12)
#define NDCR_RA_START		BIT(15)
#define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
#define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
#define NDCR_DWIDTH_M		BIT(26)
#define NDCR_DWIDTH_C		BIT(27)
#define NDCR_ND_RUN		BIT(28)
#define NDCR_DMA_EN		BIT(29)
#define NDCR_ECC_EN		BIT(30)
#define NDCR_SPARE_EN		BIT(31)
#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))

/* NAND interface timing parameter 0 register */
#define NDTR0			0x04
#define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
#define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
#define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
#define NDTR0_SEL_NRE_EDGE	BIT(7)
#define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
#define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
#define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
#define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
#define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
#define NDTR0_SELCNTR		BIT(26)
#define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)

/* NAND interface timing parameter 1 register */
#define NDTR1			0x0C
#define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
#define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
#define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
#define NDTR1_PRESCALE		BIT(14)
#define NDTR1_WAIT_MODE		BIT(15)
#define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)

/* NAND controller status register */
#define NDSR			0x14
#define NDSR_WRCMDREQ		BIT(0)
#define NDSR_RDDREQ		BIT(1)
#define NDSR_WRDREQ		BIT(2)
#define NDSR_CORERR		BIT(3)
#define NDSR_UNCERR		BIT(4)
#define NDSR_CMDD(cs)		BIT(8 - cs)
#define NDSR_RDY(rb)		BIT(11 + rb)
#define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)

/* NAND ECC control register */
#define NDECCCTRL		0x28
#define NDECCCTRL_BCH_EN	BIT(0)

/* NAND controller data buffer register */
#define NDDB			0x40

/* NAND controller command buffer 0 register */
#define NDCB0			0x48
#define NDCB0_CMD1(x)		((x & 0xFF) << 0)
#define NDCB0_CMD2(x)		((x & 0xFF) << 8)
#define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
#define NDCB0_DBC		BIT(19)
#define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
#define NDCB0_CSEL		BIT(24)
#define NDCB0_RDY_BYP		BIT(27)
#define NDCB0_LEN_OVRD		BIT(28)
#define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)

/* NAND controller command buffer 1 register */
#define NDCB1			0x4C
#define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
#define NDCB1_ADDRS_PAGE(x)	(x << 16)

/* NAND controller command buffer 2 register */
#define NDCB2			0x50
#define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
#define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)

/* NAND controller command buffer 3 register */
#define NDCB3			0x54
#define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
#define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)

/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
#define TYPE_READ		0
#define TYPE_WRITE		1
#define TYPE_ERASE		2
#define TYPE_READ_ID		3
#define TYPE_STATUS		4
#define TYPE_RESET		5
#define TYPE_NAKED_CMD		6
#define TYPE_NAKED_ADDR		7
#define TYPE_MASK		7
#define XTYPE_MONOLITHIC_RW	0
#define XTYPE_LAST_NAKED_RW	1
#define XTYPE_FINAL_COMMAND	3
#define XTYPE_READ		4
#define XTYPE_WRITE_DISPATCH	4
#define XTYPE_NAKED_RW		5
#define XTYPE_COMMAND_DISPATCH	6
#define XTYPE_MASK		7

/**
 * Marvell ECC engine works differently than the others, in order to limit the
 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
 * per subpage, and depending on a the desired strength needed by the NAND chip,
 * a particular layout mixing data/spare/ecc is defined, with a possible last
 * chunk smaller that the others.
 *
 * @writesize:		Full page size on which the layout applies
 * @chunk:		Desired ECC chunk size on which the layout applies
 * @strength:		Desired ECC strength (per chunk size bytes) on which the
 *			layout applies
 * @nchunks:		Total number of chunks
 * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
 *			repetitions of the pattern:
 *			(data_bytes + spare_bytes + ecc_bytes).
 * @data_bytes:		Number of data bytes per chunk
 * @spare_bytes:	Number of spare bytes per chunk
 * @ecc_bytes:		Number of ecc bytes per chunk
 * @last_data_bytes:	Number of data bytes in the last chunk
 * @last_spare_bytes:	Number of spare bytes in the last chunk
 * @last_ecc_bytes:	Number of ecc bytes in the last chunk
 */
struct marvell_hw_ecc_layout {
	/* Constraints */
	int writesize;
	int chunk;
	int strength;
	/* Corresponding layout */
	int nchunks;
	int full_chunk_cnt;
	int data_bytes;
	int spare_bytes;
	int ecc_bytes;
	int last_data_bytes;
	int last_spare_bytes;
	int last_ecc_bytes;
};

#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
	{								\
		.writesize = ws,					\
		.chunk = dc,						\
		.strength = ds,						\
		.nchunks = nc,						\
		.full_chunk_cnt = fcc,					\
		.data_bytes = db,					\
		.spare_bytes = sb,					\
		.ecc_bytes = eb,					\
		.last_data_bytes = ldb,					\
		.last_spare_bytes = lsb,				\
		.last_ecc_bytes = leb,					\
	}

/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
};

/**
 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
 * The datasheet describes the logic with an error: ADDR5 field is once
 * declared at the beginning of NDCB2, and another time at its end. Because the
 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
 * to use the last bit of this field instead of the first ones.
 *
 * @cs:			Wanted CE lane.
 * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
 *			selecting the wanted CE lane. This is set once when
 *			the Device Tree is probed.
 * @rb:			Ready/Busy pin for the flash chip
 */
struct marvell_nand_chip_sel {
	unsigned int cs;
	u32 ndcb0_csel;
	unsigned int rb;
};

/**
 * NAND chip structure: stores NAND chip device related information
 *
 * @chip:		Base NAND chip structure
 * @node:		Used to store NAND chips into a list
 * @layout		NAND layout when using hardware ECC
 * @ndcr:		Controller register value for this NAND chip
 * @ndtr0:		Timing registers 0 value for this NAND chip
 * @ndtr1:		Timing registers 1 value for this NAND chip
 * @selected_die:	Current active CS
 * @nsels:		Number of CS lines required by the NAND chip
 * @sels:		Array of CS lines descriptions
 */
struct marvell_nand_chip {
	struct nand_chip chip;
	struct list_head node;
	const struct marvell_hw_ecc_layout *layout;
	u32 ndcr;
	u32 ndtr0;
	u32 ndtr1;
	int addr_cyc;
	int selected_die;
	unsigned int nsels;
	struct marvell_nand_chip_sel sels[0];
};

static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
{
	return container_of(chip, struct marvell_nand_chip, chip);
}

static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
							*nand)
{
	return &nand->sels[nand->selected_die];
}

/**
 * NAND controller capabilities for distinction between compatible strings
 *
 * @max_cs_nb:		Number of Chip Select lines available
 * @max_rb_nb:		Number of Ready/Busy lines available
 * @need_system_controller: Indicates if the SoC needs to have access to the
 *                      system controller (ie. to enable the NAND controller)
 * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
 *			fashion way
 * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
 *			BCH error detection and correction algorithm,
 *			NDCB3 register has been added
 * @use_dma:		Use dma for data transfers
 */
struct marvell_nfc_caps {
	unsigned int max_cs_nb;
	unsigned int max_rb_nb;
	bool need_system_controller;
	bool legacy_of_bindings;
	bool is_nfcv2;
	bool use_dma;
};

/**
 * NAND controller structure: stores Marvell NAND controller information
 *
 * @controller:		Base controller structure
 * @dev:		Parent device (used to print error messages)
 * @regs:		NAND controller registers
377
 * @core_clk:		Core clock
378
 * @reg_clk:		Regiters clock
379 380 381 382 383 384 385 386 387
 * @complete:		Completion object to wait for NAND controller events
 * @assigned_cs:	Bitmask describing already assigned CS lines
 * @chips:		List containing all the NAND chips attached to
 *			this NAND controller
 * @caps:		NAND controller capabilities for each compatible string
 * @dma_chan:		DMA channel (NFCv1 only)
 * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
 */
struct marvell_nfc {
388
	struct nand_controller controller;
389 390
	struct device *dev;
	void __iomem *regs;
391
	struct clk *core_clk;
392
	struct clk *reg_clk;
393 394 395 396 397 398 399 400 401 402 403 404
	struct completion complete;
	unsigned long assigned_cs;
	struct list_head chips;
	struct nand_chip *selected_chip;
	const struct marvell_nfc_caps *caps;

	/* DMA (NFCv1 only) */
	bool use_dma;
	struct dma_chan *dma_chan;
	u8 *dma_buf;
};

405
static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
{
	return container_of(ctrl, struct marvell_nfc, controller);
}

/**
 * NAND controller timings expressed in NAND Controller clock cycles
 *
 * @tRP:		ND_nRE pulse width
 * @tRH:		ND_nRE high duration
 * @tWP:		ND_nWE pulse time
 * @tWH:		ND_nWE high duration
 * @tCS:		Enable signal setup time
 * @tCH:		Enable signal hold time
 * @tADL:		Address to write data delay
 * @tAR:		ND_ALE low to ND_nRE low delay
 * @tWHR:		ND_nWE high to ND_nRE low for status read
 * @tRHW:		ND_nRE high duration, read to write delay
 * @tR:			ND_nWE high to ND_nRE low for read
 */
struct marvell_nfc_timings {
	/* NDTR0 fields */
	unsigned int tRP;
	unsigned int tRH;
	unsigned int tWP;
	unsigned int tWH;
	unsigned int tCS;
	unsigned int tCH;
	unsigned int tADL;
	/* NDTR1 fields */
	unsigned int tAR;
	unsigned int tWHR;
	unsigned int tRHW;
	unsigned int tR;
};

/**
 * Derives a duration in numbers of clock cycles.
 *
 * @ps: Duration in pico-seconds
 * @period_ns:  Clock period in nano-seconds
 *
 * Convert the duration in nano-seconds, then divide by the period and
 * return the number of clock periods.
 */
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
451 452
#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
						     period_ns))
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

/**
 * NAND driver structure filled during the parsing of the ->exec_op() subop
 * subset of instructions.
 *
 * @ndcb:		Array of values written to NDCBx registers
 * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
 * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
 * @rdy_delay_ns:	Optional delay after waiting for the RB pin
 * @data_delay_ns:	Optional delay after the data xfer
 * @data_instr_idx:	Index of the data instruction in the subop
 * @data_instr:		Pointer to the data instruction in the subop
 */
struct marvell_nfc_op {
	u32 ndcb[4];
	unsigned int cle_ale_delay_ns;
	unsigned int rdy_timeout_ms;
	unsigned int rdy_delay_ns;
	unsigned int data_delay_ns;
	unsigned int data_instr_idx;
	const struct nand_op_instr *data_instr;
};

/*
 * Internal helper to conditionnally apply a delay (from the above structure,
 * most of the time).
 */
static void cond_delay(unsigned int ns)
{
	if (!ns)
		return;

	if (ns < 10000)
		ndelay(ns);
	else
		udelay(DIV_ROUND_UP(ns, 1000));
}

/*
 * The controller has many flags that could generate interrupts, most of them
 * are disabled and polling is used. For the very slow signals, using interrupts
 * may relax the CPU charge.
 */
static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
{
	u32 reg;

	/* Writing 1 disables the interrupt */
	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
}

static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
{
	u32 reg;

	/* Writing 0 enables the interrupt */
	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
}

static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
{
	writel_relaxed(int_mask, nfc->regs + NDSR);
}

static void marvell_nfc_force_byte_access(struct nand_chip *chip,
					  bool force_8bit)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr;

	/*
	 * Callers of this function do not verify if the NAND is using a 16-bit
	 * an 8-bit bus for normal operations, so we need to take care of that
	 * here by leaving the configuration unchanged if the NAND does not have
	 * the NAND_BUSWIDTH_16 flag set.
	 */
	if (!(chip->options & NAND_BUSWIDTH_16))
		return;

	ndcr = readl_relaxed(nfc->regs + NDCR);

	if (force_8bit)
		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
	else
		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;

	writel_relaxed(ndcr, nfc->regs + NDCR);
}

static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 val;
	int ret;

	/*
	 * The command is being processed, wait for the ND_RUN bit to be
	 * cleared by the NFC. If not, we must clear it by hand.
	 */
	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
					 (val & NDCR_ND_RUN) == 0,
					 POLL_PERIOD, POLL_TIMEOUT);
	if (ret) {
		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
			       nfc->regs + NDCR);
		return ret;
	}

	return 0;
}

/*
 * Any time a command has to be sent to the controller, the following sequence
 * has to be followed:
 * - call marvell_nfc_prepare_cmd()
 *      -> activate the ND_RUN bit that will kind of 'start a job'
 *      -> wait the signal indicating the NFC is waiting for a command
 * - send the command (cmd and address cycles)
 * - enventually send or receive the data
 * - call marvell_nfc_end_cmd() with the corresponding flag
 *      -> wait the flag to be triggered or cancel the job with a timeout
 *
 * The following helpers are here to factorize the code a bit so that
 * specialized functions responsible for executing the actual NAND
 * operations do not have to replicate the same code blocks.
 */
static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr, val;
	int ret;

	/* Poll ND_RUN and clear NDSR before issuing any command */
	ret = marvell_nfc_wait_ndrun(chip);
	if (ret) {
591
		dev_err(nfc->dev, "Last operation did not succeed\n");
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		return ret;
	}

	ndcr = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);

	/* Assert ND_RUN bit and wait the NFC to be ready */
	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
					 val & NDSR_WRCMDREQ,
					 POLL_PERIOD, POLL_TIMEOUT);
	if (ret) {
		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
		return -ETIMEDOUT;
	}

	/* Command may be written, clear WRCMDREQ status bit */
	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);

	return 0;
}

static void marvell_nfc_send_cmd(struct nand_chip *chip,
				 struct marvell_nfc_op *nfc_op)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);

	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
		       nfc->regs + NDCB0);
	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);

	/*
	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
	 * fields are used (only available on NFCv2).
	 */
	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
	}
}

static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
			       const char *label)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 val;
	int ret;

	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
					 val & flag,
					 POLL_PERIOD, POLL_TIMEOUT);

	if (ret) {
		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
			label, val);
		if (nfc->dma_chan)
			dmaengine_terminate_all(nfc->dma_chan);
		return ret;
	}

	/*
	 * DMA function uses this helper to poll on CMDD bits without wanting
	 * them to be cleared.
	 */
	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
		return 0;

	writel_relaxed(flag, nfc->regs + NDSR);

	return 0;
}

static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);

	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
}

static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	int ret;

	/* Timeout is expressed in ms */
	if (!timeout_ms)
		timeout_ms = IRQ_TIMEOUT;

	init_completion(&nfc->complete);

	marvell_nfc_enable_int(nfc, NDCR_RDYM);
	ret = wait_for_completion_timeout(&nfc->complete,
					  msecs_to_jiffies(timeout_ms));
	marvell_nfc_disable_int(nfc, NDCR_RDYM);
	marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
	if (!ret) {
		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
		return -ETIMEDOUT;
	}

	return 0;
}

704
static void marvell_nfc_select_chip(struct nand_chip *chip, int die_nr)
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr_generic;

	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
		return;

	if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
		nfc->selected_chip = NULL;
		marvell_nand->selected_die = -1;
		return;
	}

	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);

	/*
	 * Reset the NDCR register to a clean state for this particular chip,
	 * also clear ND_RUN bit.
	 */
	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);

	/* Also reset the interrupt status register */
	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);

	nfc->selected_chip = chip;
	marvell_nand->selected_die = die_nr;
}

static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
{
	struct marvell_nfc *nfc = dev_id;
	u32 st = readl_relaxed(nfc->regs + NDSR);
	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;

	/*
	 * RDY interrupt mask is one bit in NDCR while there are two status
	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
	 */
	if (st & NDSR_RDY(1))
		st |= NDSR_RDY(0);

	if (!(st & ien))
		return IRQ_NONE;

	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);

	if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
		complete(&nfc->complete);

	return IRQ_HANDLED;
}

/* HW ECC related functions */
static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr = readl_relaxed(nfc->regs + NDCR);

	if (!(ndcr & NDCR_ECC_EN)) {
		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);

		/*
		 * When enabling BCH, set threshold to 0 to always know the
		 * number of corrected bitflips.
		 */
		if (chip->ecc.algo == NAND_ECC_BCH)
			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
	}
}

static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr = readl_relaxed(nfc->regs + NDCR);

	if (ndcr & NDCR_ECC_EN) {
		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
		if (chip->ecc.algo == NAND_ECC_BCH)
			writel_relaxed(0, nfc->regs + NDECCCTRL);
	}
}

/* DMA related helpers */
static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
{
	u32 reg;

	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
}

static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
{
	u32 reg;

	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
}

/* Read/write PIO/DMA accessors */
static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
				     enum dma_data_direction direction,
				     unsigned int len)
{
	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
	struct dma_async_tx_descriptor *tx;
	struct scatterlist sg;
	dma_cookie_t cookie;
	int ret;

	marvell_nfc_enable_dma(nfc);
	/* Prepare the DMA transfer */
	sg_init_one(&sg, nfc->dma_buf, dma_len);
	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
				     direction == DMA_FROM_DEVICE ?
				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
				     DMA_PREP_INTERRUPT);
	if (!tx) {
		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
		return -ENXIO;
	}

	/* Do the task and wait for it to finish */
	cookie = dmaengine_submit(tx);
	ret = dma_submit_error(cookie);
	if (ret)
		return -EIO;

	dma_async_issue_pending(nfc->dma_chan);
	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
	marvell_nfc_disable_dma(nfc);
	if (ret) {
		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
		dmaengine_terminate_all(nfc->dma_chan);
		return -ETIMEDOUT;
	}

	return 0;
}

static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
					unsigned int len)
{
	unsigned int last_len = len % FIFO_DEPTH;
	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
	int i;

	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));

	if (last_len) {
		u8 tmp_buf[FIFO_DEPTH];

		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
		memcpy(in + last_full_offset, tmp_buf, last_len);
	}

	return 0;
}

static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
					 unsigned int len)
{
	unsigned int last_len = len % FIFO_DEPTH;
	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
	int i;

	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));

	if (last_len) {
		u8 tmp_buf[FIFO_DEPTH];

		memcpy(tmp_buf, out + last_full_offset, last_len);
		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
	}

	return 0;
}

static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
					  u8 *data, int data_len,
					  u8 *spare, int spare_len,
					  u8 *ecc, int ecc_len,
					  unsigned int *max_bitflips)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int bf;

	/*
	 * Blank pages (all 0xFF) that have not been written may be recognized
	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
	 * check if the entire page (with ECC bytes) is actually blank or not.
	 */
	if (!data)
		data_len = 0;
	if (!spare)
		spare_len = 0;
	if (!ecc)
		ecc_len = 0;

	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
					 spare, spare_len, chip->ecc.strength);
	if (bf < 0) {
		mtd->ecc_stats.failed++;
		return;
	}

	/* Update the stats and max_bitflips */
	mtd->ecc_stats.corrected += bf;
	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
}

/*
 * Check a chunk is correct or not according to hardware ECC engine.
 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
 * value indicating that a check on the emptyness of the subpage must be
 * performed before declaring the subpage corrupted.
 */
static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
				      unsigned int *max_bitflips)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	int bf = 0;
	u32 ndsr;

	ndsr = readl_relaxed(nfc->regs + NDSR);

	/* Check uncorrectable error flag */
	if (ndsr & NDSR_UNCERR) {
		writel_relaxed(ndsr, nfc->regs + NDSR);

		/*
		 * Do not increment ->ecc_stats.failed now, instead, return a
		 * non-zero value to indicate that this chunk was apparently
		 * bad, and it should be check to see if it empty or not. If
		 * the chunk (with ECC bytes) is not declared empty, the calling
		 * function must increment the failure count.
		 */
		return -EBADMSG;
	}

	/* Check correctable error flag */
	if (ndsr & NDSR_CORERR) {
		writel_relaxed(ndsr, nfc->regs + NDSR);

		if (chip->ecc.algo == NAND_ECC_BCH)
			bf = NDSR_ERRCNT(ndsr);
		else
			bf = 1;
	}

	/* Update the stats and max_bitflips */
	mtd->ecc_stats.corrected += bf;
	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);

	return 0;
}

/* Hamming read helpers */
static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
					       u8 *data_buf, u8 *oob_buf,
					       bool raw, int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
			   NDCB0_DBC |
			   NDCB0_CMD1(NAND_CMD_READ0) |
			   NDCB0_CMD2(NAND_CMD_READSTART),
		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
	};
	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
	int ret;

	/* NFCv2 needs more information about the operation being executed */
	if (nfc->caps->is_nfcv2)
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				  "RDDREQ while draining FIFO (data/oob)");
	if (ret)
		return ret;

	/*
	 * Read the page then the OOB area. Unlike what is shown in current
	 * documentation, spare bytes are protected by the ECC engine, and must
	 * be at the beginning of the OOB area or running this driver on legacy
	 * systems will prevent the discovery of the BBM/BBT.
	 */
	if (nfc->use_dma) {
		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
					  lt->data_bytes + oob_bytes);
		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
	} else {
		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
	}

	ret = marvell_nfc_wait_cmdd(chip);

	return ret;
}

1028
static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1029 1030 1031 1032 1033 1034
						int oob_required, int page)
{
	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
						   true, page);
}

1035 1036
static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
					    int oob_required, int page)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
{
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
	int max_bitflips = 0, ret;
	u8 *raw_buf;

	marvell_nfc_enable_hw_ecc(chip);
	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
					    page);
	ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
	marvell_nfc_disable_hw_ecc(chip);

	if (!ret)
		return max_bitflips;

	/*
	 * When ECC failures are detected, check if the full page has been
	 * written or not. Ignore the failure if it is actually empty.
	 */
	raw_buf = kmalloc(full_sz, GFP_KERNEL);
	if (!raw_buf)
		return -ENOMEM;

	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
					    lt->data_bytes, true, page);
	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
				      &max_bitflips);
	kfree(raw_buf);

	return max_bitflips;
}

/*
 * Spare area in Hamming layouts is not protected by the ECC engine (even if
 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
 * also stands for ->read_oob().
 */
1074
static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
{
	/* Invalidate page cache */
	chip->pagebuf = -1;

	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
						   chip->oob_poi, true, page);
}

/* Hamming write helpers */
static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
						const u8 *data_buf,
						const u8 *oob_buf, bool raw,
						int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
			   NDCB0_CMD1(NAND_CMD_SEQIN) |
			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
			   NDCB0_DBC,
		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
	};
	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
	int ret;

	/* NFCv2 needs more information about the operation being executed */
	if (nfc->caps->is_nfcv2)
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
				  "WRDREQ while loading FIFO (data)");
	if (ret)
		return ret;

	/* Write the page then the OOB area */
	if (nfc->use_dma) {
		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
					  lt->ecc_bytes + lt->spare_bytes);
	} else {
		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
	}

	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	ret = marvell_nfc_wait_op(chip,
1134
				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1135 1136 1137
	return ret;
}

1138
static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1139 1140 1141 1142 1143 1144 1145
						 const u8 *buf,
						 int oob_required, int page)
{
	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
						    true, page);
}

1146
static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
					     const u8 *buf,
					     int oob_required, int page)
{
	int ret;

	marvell_nfc_enable_hw_ecc(chip);
	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
						   false, page);
	marvell_nfc_disable_hw_ecc(chip);

	return ret;
}

/*
 * Spare area in Hamming layouts is not protected by the ECC engine (even if
 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
 * also stands for ->write_oob().
 */
1165
static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1166 1167
						int page)
{
1168 1169
	struct mtd_info *mtd = nand_to_mtd(chip);

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	/* Invalidate page cache */
	chip->pagebuf = -1;

	memset(chip->data_buf, 0xFF, mtd->writesize);

	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
						    chip->oob_poi, true, page);
}

/* BCH read helpers */
1180
static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1181 1182
						int oob_required, int page)
{
1183
	struct mtd_info *mtd = nand_to_mtd(chip);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	u8 *oob = chip->oob_poi;
	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
		lt->last_spare_bytes;
	int data_len = lt->data_bytes;
	int spare_len = lt->spare_bytes;
	int ecc_len = lt->ecc_bytes;
	int chunk;

	if (oob_required)
		memset(chip->oob_poi, 0xFF, mtd->oobsize);

	nand_read_page_op(chip, page, 0, NULL, 0);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		/* Update last chunk length */
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
			ecc_len = lt->last_ecc_bytes;
		}

		/* Read data bytes*/
		nand_change_read_column_op(chip, chunk * chunk_size,
					   buf + (lt->data_bytes * chunk),
					   data_len, false);

		/* Read spare bytes */
		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
				  spare_len, false);

		/* Read ECC bytes */
		nand_read_data_op(chip, oob + ecc_offset +
				  (ALIGN(lt->ecc_bytes, 32) * chunk),
				  ecc_len, false);
	}

	return 0;
}

static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
					      u8 *data, unsigned int data_len,
					      u8 *spare, unsigned int spare_len,
					      int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	int i, ret;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
			   NDCB0_LEN_OVRD,
		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
		.ndcb[3] = data_len + spare_len,
	};

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return;

	if (chunk == 0)
		nfc_op.ndcb[0] |= NDCB0_DBC |
				  NDCB0_CMD1(NAND_CMD_READ0) |
				  NDCB0_CMD2(NAND_CMD_READSTART);

	/*
1253 1254
	 * Trigger the monolithic read on the first chunk, then naked read on
	 * intermediate chunks and finally a last naked read on the last chunk.
1255
	 */
1256
	if (chunk == 0)
1257
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1258 1259
	else if (chunk < lt->nchunks - 1)
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	else
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);

	marvell_nfc_send_cmd(chip, &nfc_op);

	/*
	 * According to the datasheet, when reading from NDDB
	 * with BCH enabled, after each 32 bytes reads, we
	 * have to make sure that the NDSR.RDDREQ bit is set.
	 *
	 * Drain the FIFO, 8 32-bit reads at a time, and skip
	 * the polling on the last read.
	 *
	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
	 */
	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				    "RDDREQ while draining FIFO (data)");
		marvell_nfc_xfer_data_in_pio(nfc, data,
					     FIFO_DEPTH * BCH_SEQ_READS);
		data += FIFO_DEPTH * BCH_SEQ_READS;
	}

	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				    "RDDREQ while draining FIFO (OOB)");
		marvell_nfc_xfer_data_in_pio(nfc, spare,
					     FIFO_DEPTH * BCH_SEQ_READS);
		spare += FIFO_DEPTH * BCH_SEQ_READS;
	}
}

1292
static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1293 1294 1295
					    u8 *buf, int oob_required,
					    int page)
{
1296
	struct mtd_info *mtd = nand_to_mtd(chip);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
	u8 *data = buf, *spare = chip->oob_poi, *ecc;
	int max_bitflips = 0;
	u32 failure_mask = 0;
	int chunk, ecc_offset_in_page, ret;

	/*
	 * With BCH, OOB is not fully used (and thus not read entirely), not
	 * expected bytes could show up at the end of the OOB buffer if not
	 * explicitly erased.
	 */
	if (oob_required)
		memset(chip->oob_poi, 0xFF, mtd->oobsize);

	marvell_nfc_enable_hw_ecc(chip);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		/* Update length for the last chunk */
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
		}

		/* Read the chunk and detect number of bitflips */
		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
						  spare, spare_len, page);
		ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
		if (ret)
			failure_mask |= BIT(chunk);

		data += data_len;
		spare += spare_len;
	}

	marvell_nfc_disable_hw_ecc(chip);

	if (!failure_mask)
		return max_bitflips;

	/*
	 * Please note that dumping the ECC bytes during a normal read with OOB
	 * area would add a significant overhead as ECC bytes are "consumed" by
	 * the controller in normal mode and must be re-read in raw mode. To
	 * avoid dropping the performances, we prefer not to include them. The
	 * user should re-read the page in raw mode if ECC bytes are required.
	 *
	 * However, for any subpage read error reported by ->correct(), the ECC
	 * bytes must be read in raw mode and the full subpage must be checked
	 * to see if it is entirely empty of if there was an actual error.
	 */
	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		/* No failure reported for this chunk, move to the next one */
		if (!(failure_mask & BIT(chunk)))
			continue;

		/* Derive ECC bytes positions (in page/buffer) and length */
		ecc = chip->oob_poi +
			(lt->full_chunk_cnt * lt->spare_bytes) +
			lt->last_spare_bytes +
			(chunk * ALIGN(lt->ecc_bytes, 32));
		ecc_offset_in_page =
			(chunk * (lt->data_bytes + lt->spare_bytes +
				  lt->ecc_bytes)) +
			(chunk < lt->full_chunk_cnt ?
			 lt->data_bytes + lt->spare_bytes :
			 lt->last_data_bytes + lt->last_spare_bytes);
		ecc_len = chunk < lt->full_chunk_cnt ?
			lt->ecc_bytes : lt->last_ecc_bytes;

		/* Do the actual raw read of the ECC bytes */
		nand_change_read_column_op(chip, ecc_offset_in_page,
					   ecc, ecc_len, false);

		/* Derive data/spare bytes positions (in buffer) and length */
		data = buf + (chunk * lt->data_bytes);
		data_len = chunk < lt->full_chunk_cnt ?
			lt->data_bytes : lt->last_data_bytes;
		spare = chip->oob_poi + (chunk * (lt->spare_bytes +
						  lt->ecc_bytes));
		spare_len = chunk < lt->full_chunk_cnt ?
			lt->spare_bytes : lt->last_spare_bytes;

		/* Check the entire chunk (data + spare + ecc) for emptyness */
		marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
					      spare_len, ecc, ecc_len,
					      &max_bitflips);
	}

	return max_bitflips;
}

1389
static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1390 1391 1392 1393
{
	/* Invalidate page cache */
	chip->pagebuf = -1;

1394
	return chip->ecc.read_page_raw(chip, chip->data_buf, true, page);
1395 1396
}

1397
static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1398 1399 1400 1401
{
	/* Invalidate page cache */
	chip->pagebuf = -1;

1402
	return chip->ecc.read_page(chip, chip->data_buf, true, page);
1403 1404 1405
}

/* BCH write helpers */
1406
static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
						 const u8 *buf,
						 int oob_required, int page)
{
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
	int data_len = lt->data_bytes;
	int spare_len = lt->spare_bytes;
	int ecc_len = lt->ecc_bytes;
	int spare_offset = 0;
	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
		lt->last_spare_bytes;
	int chunk;

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
			ecc_len = lt->last_ecc_bytes;
		}

		/* Point to the column of the next chunk */
		nand_change_write_column_op(chip, chunk * full_chunk_size,
					    NULL, 0, false);

		/* Write the data */
		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
				   data_len, false);

		if (!oob_required)
			continue;

		/* Write the spare bytes */
		if (spare_len)
			nand_write_data_op(chip, chip->oob_poi + spare_offset,
					   spare_len, false);

		/* Write the ECC bytes */
		if (ecc_len)
			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
					   ecc_len, false);

		spare_offset += spare_len;
		ecc_offset += ALIGN(ecc_len, 32);
	}

	return nand_prog_page_end_op(chip);
}

static int
marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
				   const u8 *data, unsigned int data_len,
				   const u8 *spare, unsigned int spare_len,
				   int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1466
	u32 xtype;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	int ret;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
		.ndcb[3] = data_len + spare_len,
	};

	/*
	 * First operation dispatches the CMD_SEQIN command, issue the address
	 * cycles and asks for the first chunk of data.
	 * All operations in the middle (if any) will issue a naked write and
	 * also ask for data.
	 * Last operation (if any) asks for the last chunk of data through a
	 * last naked write.
	 */
	if (chunk == 0) {
1482 1483 1484 1485 1486 1487
		if (lt->nchunks == 1)
			xtype = XTYPE_MONOLITHIC_RW;
		else
			xtype = XTYPE_WRITE_DISPATCH;

		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
				  NDCB0_CMD1(NAND_CMD_SEQIN);
		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
	} else if (chunk < lt->nchunks - 1) {
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
	} else {
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
	}

	/* Always dispatch the PAGEPROG command on the last chunk */
	if (chunk == lt->nchunks - 1)
		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
				  "WRDREQ while loading FIFO (data)");
	if (ret)
		return ret;

	/* Transfer the contents */
	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));

	return 0;
}

1519
static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1520 1521 1522
					     const u8 *buf,
					     int oob_required, int page)
{
1523
	struct mtd_info *mtd = nand_to_mtd(chip);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	const u8 *data = buf;
	const u8 *spare = chip->oob_poi;
	int data_len = lt->data_bytes;
	int spare_len = lt->spare_bytes;
	int chunk, ret;

	/* Spare data will be written anyway, so clear it to avoid garbage */
	if (!oob_required)
		memset(chip->oob_poi, 0xFF, mtd->oobsize);

	marvell_nfc_enable_hw_ecc(chip);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
		}

		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
						   spare, spare_len, page);
		data += data_len;
		spare += spare_len;

		/*
		 * Waiting only for CMDD or PAGED is not enough, ECC are
		 * partially written. No flag is set once the operation is
		 * really finished but the ND_RUN bit is cleared, so wait for it
		 * before stepping into the next command.
		 */
		marvell_nfc_wait_ndrun(chip);
	}

	ret = marvell_nfc_wait_op(chip,
1558
				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1559 1560 1561 1562 1563 1564 1565 1566 1567

	marvell_nfc_disable_hw_ecc(chip);

	if (ret)
		return ret;

	return 0;
}

1568
static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1569 1570
						int page)
{
1571 1572
	struct mtd_info *mtd = nand_to_mtd(chip);

1573 1574 1575 1576 1577
	/* Invalidate page cache */
	chip->pagebuf = -1;

	memset(chip->data_buf, 0xFF, mtd->writesize);

1578
	return chip->ecc.write_page_raw(chip, chip->data_buf, true, page);
1579 1580
}

1581
static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1582
{
1583 1584
	struct mtd_info *mtd = nand_to_mtd(chip);

1585 1586 1587 1588 1589
	/* Invalidate page cache */
	chip->pagebuf = -1;

	memset(chip->data_buf, 0xFF, mtd->writesize);

1590
	return chip->ecc.write_page(chip, chip->data_buf, true, page);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
}

/* NAND framework ->exec_op() hooks and related helpers */
static void marvell_nfc_parse_instructions(struct nand_chip *chip,
					   const struct nand_subop *subop,
					   struct marvell_nfc_op *nfc_op)
{
	const struct nand_op_instr *instr = NULL;
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	bool first_cmd = true;
	unsigned int op_id;
	int i;

	/* Reset the input structure as most of its fields will be OR'ed */
	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));

	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
		unsigned int offset, naddrs;
		const u8 *addrs;
		int len = nand_subop_get_data_len(subop, op_id);

		instr = &subop->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			if (first_cmd)
				nfc_op->ndcb[0] |=
					NDCB0_CMD1(instr->ctx.cmd.opcode);
			else
				nfc_op->ndcb[0] |=
					NDCB0_CMD2(instr->ctx.cmd.opcode) |
					NDCB0_DBC;

			nfc_op->cle_ale_delay_ns = instr->delay_ns;
			first_cmd = false;
			break;

		case NAND_OP_ADDR_INSTR:
			offset = nand_subop_get_addr_start_off(subop, op_id);
			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
			addrs = &instr->ctx.addr.addrs[offset];

			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);

			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
				nfc_op->ndcb[1] |= addrs[i] << (8 * i);

			if (naddrs >= 5)
				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
			if (naddrs >= 6)
				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
			if (naddrs == 7)
				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);

			nfc_op->cle_ale_delay_ns = instr->delay_ns;
			break;

		case NAND_OP_DATA_IN_INSTR:
			nfc_op->data_instr = instr;
			nfc_op->data_instr_idx = op_id;
			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
			if (nfc->caps->is_nfcv2) {
				nfc_op->ndcb[0] |=
					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
					NDCB0_LEN_OVRD;
				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
			}
			nfc_op->data_delay_ns = instr->delay_ns;
			break;

		case NAND_OP_DATA_OUT_INSTR:
			nfc_op->data_instr = instr;
			nfc_op->data_instr_idx = op_id;
			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
			if (nfc->caps->is_nfcv2) {
				nfc_op->ndcb[0] |=
					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
					NDCB0_LEN_OVRD;
				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
			}
			nfc_op->data_delay_ns = instr->delay_ns;
			break;

		case NAND_OP_WAITRDY_INSTR:
			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
			nfc_op->rdy_delay_ns = instr->delay_ns;
			break;
		}
	}
}

static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
				     const struct nand_subop *subop,
				     struct marvell_nfc_op *nfc_op)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct nand_op_instr *instr = nfc_op->data_instr;
	unsigned int op_id = nfc_op->data_instr_idx;
	unsigned int len = nand_subop_get_data_len(subop, op_id);
	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
	int ret;

	if (instr->ctx.data.force_8bit)
		marvell_nfc_force_byte_access(chip, true);

	if (reading) {
		u8 *in = instr->ctx.data.buf.in + offset;

		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
	} else {
		const u8 *out = instr->ctx.data.buf.out + offset;

		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
	}

	if (instr->ctx.data.force_8bit)
		marvell_nfc_force_byte_access(chip, false);

	return ret;
}

static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
					      const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	bool reading;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
				  "RDDREQ/WRDREQ while draining raw data");
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	if (reading) {
		if (nfc_op.rdy_timeout_ms) {
			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
			if (ret)
				return ret;
		}

		cond_delay(nfc_op.rdy_delay_ns);
	}

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.data_delay_ns);

	if (!reading) {
		if (nfc_op.rdy_timeout_ms) {
			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
			if (ret)
				return ret;
		}

		cond_delay(nfc_op.rdy_delay_ns);
	}

	/*
	 * NDCR ND_RUN bit should be cleared automatically at the end of each
	 * operation but experience shows that the behavior is buggy when it
	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
	 */
	if (!reading) {
		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
			       nfc->regs + NDCR);
	}

	return 0;
}

static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
					 const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);

	/*
	 * Naked access are different in that they need to be flagged as naked
	 * by the controller. Reset the controller registers fields that inform
	 * on the type and refill them according to the ongoing operation.
	 */
	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
			    NDCB0_CMD_XTYPE(XTYPE_MASK));
	switch (subop->instrs[0].type) {
	case NAND_OP_CMD_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
		break;
	case NAND_OP_ADDR_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
		break;
	case NAND_OP_DATA_IN_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
		break;
	case NAND_OP_DATA_OUT_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
		break;
	default:
		/* This should never happen */
		break;
	}

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);

	if (!nfc_op.data_instr) {
		ret = marvell_nfc_wait_cmdd(chip);
		cond_delay(nfc_op.cle_ale_delay_ns);
		return ret;
	}

	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
				  "RDDREQ/WRDREQ while draining raw data");
	if (ret)
		return ret;

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	/*
	 * NDCR ND_RUN bit should be cleared automatically at the end of each
	 * operation but experience shows that the behavior is buggy when it
	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
	 */
	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
			       nfc->regs + NDCR);
	}

	return 0;
}

static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
					  const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);

	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
	cond_delay(nfc_op.rdy_delay_ns);

	return ret;
}

static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
					 const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				  "RDDREQ while reading ID");
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	if (nfc_op.rdy_timeout_ms) {
		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
		if (ret)
			return ret;
	}

	cond_delay(nfc_op.rdy_delay_ns);

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.data_delay_ns);

	return 0;
}

static int marvell_nfc_read_status_exec(struct nand_chip *chip,
					const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				  "RDDREQ while reading status");
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	if (nfc_op.rdy_timeout_ms) {
		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
		if (ret)
			return ret;
	}

	cond_delay(nfc_op.rdy_delay_ns);

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.data_delay_ns);

	return 0;
}

static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
					   const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
	if (ret)
		return ret;

	cond_delay(nfc_op.rdy_delay_ns);

	return 0;
}

static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
					   const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
	if (ret)
		return ret;

	cond_delay(nfc_op.rdy_delay_ns);

	return 0;
}

static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
	/* Monolithic reads/writes */
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_monolithic_access_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_monolithic_access_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	/* Naked commands */
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_waitrdy_exec,
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	);

static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
	/* Naked commands not supported, use a function for each pattern */
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_read_id_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_erase_cmd_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_read_status_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_reset_cmd_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_waitrdy_exec,
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	);

static int marvell_nfc_exec_op(struct nand_chip *chip,
			       const struct nand_operation *op,
			       bool check_only)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

	if (nfc->caps->is_nfcv2)
		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
					      op, check_only);
	else
		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
					      op, check_only);
}

/*
 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
 * usable.
 */
static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
				      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;

	if (section)
		return -ERANGE;

	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
			    lt->last_ecc_bytes;
	oobregion->offset = mtd->oobsize - oobregion->length;

	return 0;
}

static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
				       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;

	if (section)
		return -ERANGE;

	/*
	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
	 * 4KB page / 4bit BCH combination.
	 */
	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
		oobregion->offset = 6;
	else
		oobregion->offset = 2;

	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
			    lt->last_spare_bytes - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
	.ecc = marvell_nand_ooblayout_ecc,
	.free = marvell_nand_ooblayout_free,
};

static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
					 struct nand_ecc_ctrl *ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *l;
	int i;

	if (!nfc->caps->is_nfcv2 &&
	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
		dev_err(nfc->dev,
			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
		return -ENOTSUPP;
	}

	to_marvell_nand(chip)->layout = NULL;
	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
		l = &marvell_nfc_layouts[i];
		if (mtd->writesize == l->writesize &&
		    ecc->size == l->chunk && ecc->strength == l->strength) {
			to_marvell_nand(chip)->layout = l;
			break;
		}
	}

	if (!to_marvell_nand(chip)->layout ||
	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
		dev_err(nfc->dev,
			"ECC strength %d at page size %d is not supported\n",
			ecc->strength, mtd->writesize);
		return -ENOTSUPP;
	}

	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
	ecc->steps = l->nchunks;
	ecc->size = l->data_bytes;

	if (ecc->strength == 1) {
		chip->ecc.algo = NAND_ECC_HAMMING;
		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
		ecc->read_oob = ecc->read_oob_raw;
		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
		ecc->write_oob = ecc->write_oob_raw;
	} else {
		chip->ecc.algo = NAND_ECC_BCH;
		ecc->strength = 16;
		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
	}

	return 0;
}

static int marvell_nand_ecc_init(struct mtd_info *mtd,
				 struct nand_ecc_ctrl *ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	int ret;

	if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
		if (chip->ecc_step_ds && chip->ecc_strength_ds) {
			ecc->size = chip->ecc_step_ds;
			ecc->strength = chip->ecc_strength_ds;
		} else {
			dev_info(nfc->dev,
				 "No minimum ECC strength, using 1b/512B\n");
			ecc->size = 512;
			ecc->strength = 1;
		}
	}

	switch (ecc->mode) {
	case NAND_ECC_HW:
		ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
		if (ret)
			return ret;
		break;
	case NAND_ECC_NONE:
	case NAND_ECC_SOFT:
2215
	case NAND_ECC_ON_DIE:
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
		    mtd->writesize != SZ_2K) {
			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
				mtd->writesize);
			return -EINVAL;
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	8,
	.len = 6,
	.veroffs = 14,
	.maxblocks = 8,	/* Last 8 blocks in each chip */
	.pattern = bbt_pattern
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	8,
	.len = 6,
	.veroffs = 14,
	.maxblocks = 8,	/* Last 8 blocks in each chip */
	.pattern = bbt_mirror_pattern
};

static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
					    const struct nand_data_interface
					    *conf)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2260
	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	const struct nand_sdr_timings *sdr;
	struct marvell_nfc_timings nfc_tmg;
	int read_delay;

	sdr = nand_get_sdr_timings(conf);
	if (IS_ERR(sdr))
		return PTR_ERR(sdr);

	/*
	 * SDR timings are given in pico-seconds while NFC timings must be
	 * expressed in NAND controller clock cycles, which is half of the
	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
	 * This is not written anywhere in the datasheet but was observed
	 * with an oscilloscope.
	 *
	 * NFC datasheet gives equations from which thoses calculations
	 * are derived, they tend to be slightly more restrictives than the
	 * given core timings and may improve the overall speed.
	 */
	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
	nfc_tmg.tRH = nfc_tmg.tRP;
	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
	nfc_tmg.tWH = nfc_tmg.tWP;
	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
	/*
	 * Read delay is the time of propagation from SoC pins to NFC internal
	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
	 * EDO mode, an additional delay of tRH must be taken into account so
	 * the data is sampled on the falling edge instead of the rising edge.
	 */
	read_delay = sdr->tRC_min >= 30000 ?
		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;

	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
	/*
	 * tWHR and tRHW are supposed to be read to write delays (and vice
	 * versa) but in some cases, ie. when doing a change column, they must
	 * be greater than that to be sure tCCS delay is respected.
	 */
	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
				 period_ns) - 2,
	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
				 period_ns);

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
	 * NFCv1: No WAIT_MODE, tR must be maximal.
	 */
	if (nfc->caps->is_nfcv2) {
		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
	} else {
		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
					 period_ns);
		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
			nfc_tmg.tR = nfc_tmg.tCH - 3;
		else
			nfc_tmg.tR = 0;
	}
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

	if (chipnr < 0)
		return 0;

	marvell_nand->ndtr0 =
		NDTR0_TRP(nfc_tmg.tRP) |
		NDTR0_TRH(nfc_tmg.tRH) |
		NDTR0_ETRP(nfc_tmg.tRP) |
		NDTR0_TWP(nfc_tmg.tWP) |
		NDTR0_TWH(nfc_tmg.tWH) |
		NDTR0_TCS(nfc_tmg.tCS) |
2332
		NDTR0_TCH(nfc_tmg.tCH);
2333 2334 2335 2336 2337 2338

	marvell_nand->ndtr1 =
		NDTR1_TAR(nfc_tmg.tAR) |
		NDTR1_TWHR(nfc_tmg.tWHR) |
		NDTR1_TR(nfc_tmg.tR);

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	if (nfc->caps->is_nfcv2) {
		marvell_nand->ndtr0 |=
			NDTR0_RD_CNT_DEL(read_delay) |
			NDTR0_SELCNTR |
			NDTR0_TADL(nfc_tmg.tADL);

		marvell_nand->ndtr1 |=
			NDTR1_TRHW(nfc_tmg.tRHW) |
			NDTR1_WAIT_MODE;
	}

2350 2351 2352
	return 0;
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
static int marvell_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
	int ret;

	if (pdata && pdata->flash_bbt)
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
		/*
		 * We'll use a bad block table stored in-flash and don't
		 * allow writing the bad block marker to the flash.
		 */
		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
		chip->bbt_td = &bbt_main_descr;
		chip->bbt_md = &bbt_mirror_descr;
	}

	/* Save the chip-specific fields of NDCR */
	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
	if (chip->options & NAND_BUSWIDTH_16)
		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;

	/*
	 * On small page NANDs, only one cycle is needed to pass the
	 * column address.
	 */
	if (mtd->writesize <= 512) {
		marvell_nand->addr_cyc = 1;
	} else {
		marvell_nand->addr_cyc = 2;
		marvell_nand->ndcr |= NDCR_RA_START;
	}

	/*
	 * Now add the number of cycles needed to pass the row
	 * address.
	 *
	 * Addressing a chip using CS 2 or 3 should also need the third row
	 * cycle but due to inconsistance in the documentation and lack of
	 * hardware to test this situation, this case is not supported.
	 */
	if (chip->options & NAND_ROW_ADDR_3)
		marvell_nand->addr_cyc += 3;
	else
		marvell_nand->addr_cyc += 2;

	if (pdata) {
		chip->ecc.size = pdata->ecc_step_size;
		chip->ecc.strength = pdata->ecc_strength;
	}

	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
	if (ret) {
		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
		return ret;
	}

	if (chip->ecc.mode == NAND_ECC_HW) {
		/*
		 * Subpage write not available with hardware ECC, prohibit also
		 * subpage read as in userspace subpage access would still be
		 * allowed and subpage write, if used, would lead to numerous
		 * uncorrectable ECC errors.
		 */
		chip->options |= NAND_NO_SUBPAGE_WRITE;
	}

	if (pdata || nfc->caps->legacy_of_bindings) {
		/*
		 * We keep the MTD name unchanged to avoid breaking platforms
		 * where the MTD cmdline parser is used and the bootloader
		 * has not been updated to use the new naming scheme.
		 */
		mtd->name = "pxa3xx_nand-0";
	} else if (!mtd->name) {
		/*
		 * If the new bindings are used and the bootloader has not been
		 * updated to pass a new mtdparts parameter on the cmdline, you
		 * should define the following property in your NAND node, ie:
		 *
		 *	label = "main-storage";
		 *
		 * This way, mtd->name will be set by the core when
		 * nand_set_flash_node() is called.
		 */
		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
					   "%s:nand.%d", dev_name(nfc->dev),
					   marvell_nand->sels[0].cs);
		if (!mtd->name) {
			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
			return -ENOMEM;
		}
	}

	return 0;
}

static const struct nand_controller_ops marvell_nand_controller_ops = {
	.attach_chip = marvell_nand_attach_chip,
};

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
				  struct device_node *np)
{
	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
	struct marvell_nand_chip *marvell_nand;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	int nsels, ret, i;
	u32 cs, rb;

	/*
	 * The legacy "num-cs" property indicates the number of CS on the only
	 * chip connected to the controller (legacy bindings does not support
2471
	 * more than one chip). The CS and RB pins are always the #0.
2472 2473 2474 2475 2476
	 *
	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
	 * properties must be filled. For each chip, expressed as a subnode,
	 * "reg" points to the CS lines and "nand-rb" to the RB line.
	 */
2477
	if (pdata || nfc->caps->legacy_of_bindings) {
2478
		nsels = 1;
2479 2480 2481 2482 2483 2484
	} else {
		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
		if (nsels <= 0) {
			dev_err(dev, "missing/invalid reg property\n");
			return -EINVAL;
		}
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	}

	/* Alloc the nand chip structure */
	marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
				    (nsels *
				     sizeof(struct marvell_nand_chip_sel)),
				    GFP_KERNEL);
	if (!marvell_nand) {
		dev_err(dev, "could not allocate chip structure\n");
		return -ENOMEM;
	}

	marvell_nand->nsels = nsels;
	marvell_nand->selected_die = -1;

	for (i = 0; i < nsels; i++) {
		if (pdata || nfc->caps->legacy_of_bindings) {
			/*
			 * Legacy bindings use the CS lines in natural
			 * order (0, 1, ...)
			 */
			cs = i;
		} else {
			/* Retrieve CS id */
			ret = of_property_read_u32_index(np, "reg", i, &cs);
			if (ret) {
				dev_err(dev, "could not retrieve reg property: %d\n",
					ret);
				return ret;
			}
		}

		if (cs >= nfc->caps->max_cs_nb) {
			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
				cs, nfc->caps->max_cs_nb);
			return -EINVAL;
		}

		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
			dev_err(dev, "CS %d already assigned\n", cs);
			return -EINVAL;
		}

		/*
		 * The cs variable represents the chip select id, which must be
		 * converted in bit fields for NDCB0 and NDCB2 to select the
		 * right chip. Unfortunately, due to a lack of information on
		 * the subject and incoherent documentation, the user should not
		 * use CS1 and CS3 at all as asserting them is not supported in
		 * a reliable way (due to multiplexing inside ADDR5 field).
		 */
		marvell_nand->sels[i].cs = cs;
		switch (cs) {
		case 0:
		case 2:
			marvell_nand->sels[i].ndcb0_csel = 0;
			break;
		case 1:
		case 3:
			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
			break;
		default:
			return -EINVAL;
		}

		/* Retrieve RB id */
		if (pdata || nfc->caps->legacy_of_bindings) {
			/* Legacy bindings always use RB #0 */
			rb = 0;
		} else {
			ret = of_property_read_u32_index(np, "nand-rb", i,
							 &rb);
			if (ret) {
				dev_err(dev,
					"could not retrieve RB property: %d\n",
					ret);
				return ret;
			}
		}

		if (rb >= nfc->caps->max_rb_nb) {
			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
				rb, nfc->caps->max_rb_nb);
			return -EINVAL;
		}

		marvell_nand->sels[i].rb = rb;
	}

	chip = &marvell_nand->chip;
	chip->controller = &nfc->controller;
	nand_set_flash_node(chip, np);

	chip->exec_op = marvell_nfc_exec_op;
	chip->select_chip = marvell_nfc_select_chip;
2580
	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		chip->setup_data_interface = marvell_nfc_setup_data_interface;

	mtd = nand_to_mtd(chip);
	mtd->dev.parent = dev;

	/*
	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
	 * in the DT node, this entry will be overwritten in nand_scan_ident().
	 */
	chip->ecc.mode = NAND_ECC_HW;

	/*
	 * Save a reference value for timing registers before
	 * ->setup_data_interface() is called.
	 */
	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);

	chip->options |= NAND_BUSWIDTH_AUTO;

2601
	ret = nand_scan(chip, marvell_nand->nsels);
2602
	if (ret) {
2603
		dev_err(dev, "could not scan the nand chip\n");
2604 2605 2606 2607 2608
		return ret;
	}

	if (pdata)
		/* Legacy bindings support only one chip */
2609
		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2610 2611 2612 2613
	else
		ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		dev_err(dev, "failed to register mtd device: %d\n", ret);
2614
		nand_release(chip);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		return ret;
	}

	list_add_tail(&marvell_nand->node, &nfc->chips);

	return 0;
}

static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
{
	struct device_node *np = dev->of_node;
	struct device_node *nand_np;
	int max_cs = nfc->caps->max_cs_nb;
	int nchips;
	int ret;

	if (!np)
		nchips = 1;
	else
		nchips = of_get_child_count(np);

	if (nchips > max_cs) {
		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
			max_cs);
		return -EINVAL;
	}

	/*
	 * Legacy bindings do not use child nodes to exhibit NAND chip
	 * properties and layout. Instead, NAND properties are mixed with the
	 * controller ones, and partitions are defined as direct subnodes of the
	 * NAND controller node.
	 */
	if (nfc->caps->legacy_of_bindings) {
		ret = marvell_nand_chip_init(dev, nfc, np);
		return ret;
	}

	for_each_child_of_node(np, nand_np) {
		ret = marvell_nand_chip_init(dev, nfc, nand_np);
		if (ret) {
			of_node_put(nand_np);
			return ret;
		}
	}

	return 0;
}

static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
{
	struct marvell_nand_chip *entry, *temp;

	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2669
		nand_release(&entry->chip);
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		list_del(&entry->node);
	}
}

static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
{
	struct platform_device *pdev = container_of(nfc->dev,
						    struct platform_device,
						    dev);
	struct dma_slave_config config = {};
	struct resource *r;
	int ret;

	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
		dev_warn(nfc->dev,
			 "DMA not enabled in configuration\n");
		return -ENOTSUPP;
	}

	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

2693
	nfc->dma_chan =	dma_request_slave_channel(nfc->dev, "data");
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	if (!nfc->dma_chan) {
		dev_err(nfc->dev,
			"Unable to request data DMA channel\n");
		return -ENODEV;
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!r)
		return -ENXIO;

	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	config.src_addr = r->start + NDDB;
	config.dst_addr = r->start + NDDB;
	config.src_maxburst = 32;
	config.dst_maxburst = 32;
	ret = dmaengine_slave_config(nfc->dma_chan, &config);
	if (ret < 0) {
		dev_err(nfc->dev, "Failed to configure DMA channel\n");
		return ret;
	}

	/*
	 * DMA must act on length multiple of 32 and this length may be
	 * bigger than the destination buffer. Use this buffer instead
	 * for DMA transfers and then copy the desired amount of data to
	 * the provided buffer.
	 */
2722
	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2723 2724 2725 2726 2727 2728 2729 2730
	if (!nfc->dma_buf)
		return -ENOMEM;

	nfc->use_dma = true;

	return 0;
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
static void marvell_nfc_reset(struct marvell_nfc *nfc)
{
	/*
	 * ECC operations and interruptions are only enabled when specifically
	 * needed. ECC shall not be activated in the early stages (fails probe).
	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
	 * offset in the read page and this will fail the protection.
	 */
	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
	writel_relaxed(0, nfc->regs + NDECCCTRL);
}

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
static int marvell_nfc_init(struct marvell_nfc *nfc)
{
	struct device_node *np = nfc->dev->of_node;

	/*
	 * Some SoCs like A7k/A8k need to enable manually the NAND
	 * controller, gated clocks and reset bits to avoid being bootloader
	 * dependent. This is done through the use of the System Functions
	 * registers.
	 */
	if (nfc->caps->need_system_controller) {
		struct regmap *sysctrl_base =
			syscon_regmap_lookup_by_phandle(np,
							"marvell,system-controller");

		if (IS_ERR(sysctrl_base))
			return PTR_ERR(sysctrl_base);

2764 2765 2766 2767 2768
		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2769

2770 2771 2772
		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
				   GENCONF_CLK_GATING_CTRL_ND_GATE,
				   GENCONF_CLK_GATING_CTRL_ND_GATE);
2773

2774 2775 2776
		regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
				   GENCONF_ND_CLK_CTRL_EN,
				   GENCONF_ND_CLK_CTRL_EN);
2777 2778 2779 2780 2781 2782
	}

	/* Configure the DMA if appropriate */
	if (!nfc->caps->is_nfcv2)
		marvell_nfc_init_dma(nfc);

2783
	marvell_nfc_reset(nfc);
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	return 0;
}

static int marvell_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *r;
	struct marvell_nfc *nfc;
	int ret;
	int irq;

	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
			   GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = dev;
2802
	nand_controller_init(&nfc->controller);
2803
	nfc->controller.ops = &marvell_nand_controller_ops;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	INIT_LIST_HEAD(&nfc->chips);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(dev, r);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(dev, "failed to retrieve irq\n");
		return irq;
	}

2817
	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2818 2819

	/* Managed the legacy case (when the first clock was not named) */
2820 2821
	if (nfc->core_clk == ERR_PTR(-ENOENT))
		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2822

2823 2824
	if (IS_ERR(nfc->core_clk))
		return PTR_ERR(nfc->core_clk);
2825

2826
	ret = clk_prepare_enable(nfc->core_clk);
2827 2828 2829
	if (ret)
		return ret;

2830
	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2831 2832
	if (IS_ERR(nfc->reg_clk)) {
		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2833
			ret = PTR_ERR(nfc->reg_clk);
2834
			goto unprepare_core_clk;
2835
		}
2836 2837

		nfc->reg_clk = NULL;
2838 2839
	}

2840 2841 2842 2843
	ret = clk_prepare_enable(nfc->reg_clk);
	if (ret)
		goto unprepare_core_clk;

2844 2845 2846 2847 2848
	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
			       0, "marvell-nfc", nfc);
	if (ret)
2849
		goto unprepare_reg_clk;
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

	/* Get NAND controller capabilities */
	if (pdev->id_entry)
		nfc->caps = (void *)pdev->id_entry->driver_data;
	else
		nfc->caps = of_device_get_match_data(&pdev->dev);

	if (!nfc->caps) {
		dev_err(dev, "Could not retrieve NFC caps\n");
		ret = -EINVAL;
2860
		goto unprepare_reg_clk;
2861 2862 2863 2864 2865
	}

	/* Init the controller and then probe the chips */
	ret = marvell_nfc_init(nfc);
	if (ret)
2866
		goto unprepare_reg_clk;
2867 2868 2869 2870 2871

	platform_set_drvdata(pdev, nfc);

	ret = marvell_nand_chips_init(dev, nfc);
	if (ret)
2872
		goto unprepare_reg_clk;
2873 2874 2875

	return 0;

2876 2877
unprepare_reg_clk:
	clk_disable_unprepare(nfc->reg_clk);
2878 2879
unprepare_core_clk:
	clk_disable_unprepare(nfc->core_clk);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894

	return ret;
}

static int marvell_nfc_remove(struct platform_device *pdev)
{
	struct marvell_nfc *nfc = platform_get_drvdata(pdev);

	marvell_nand_chips_cleanup(nfc);

	if (nfc->use_dma) {
		dmaengine_terminate_all(nfc->dma_chan);
		dma_release_channel(nfc->dma_chan);
	}

2895
	clk_disable_unprepare(nfc->reg_clk);
2896
	clk_disable_unprepare(nfc->core_clk);
2897 2898 2899 2900

	return 0;
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
static int __maybe_unused marvell_nfc_suspend(struct device *dev)
{
	struct marvell_nfc *nfc = dev_get_drvdata(dev);
	struct marvell_nand_chip *chip;

	list_for_each_entry(chip, &nfc->chips, node)
		marvell_nfc_wait_ndrun(&chip->chip);

	clk_disable_unprepare(nfc->reg_clk);
	clk_disable_unprepare(nfc->core_clk);

	return 0;
}

static int __maybe_unused marvell_nfc_resume(struct device *dev)
{
	struct marvell_nfc *nfc = dev_get_drvdata(dev);
	int ret;

	ret = clk_prepare_enable(nfc->core_clk);
	if (ret < 0)
		return ret;

2924 2925 2926
	ret = clk_prepare_enable(nfc->reg_clk);
	if (ret < 0)
		return ret;
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

	/*
	 * Reset nfc->selected_chip so the next command will cause the timing
	 * registers to be restored in marvell_nfc_select_chip().
	 */
	nfc->selected_chip = NULL;

	/* Reset registers that have lost their contents */
	marvell_nfc_reset(nfc);

	return 0;
}

static const struct dev_pm_ops marvell_nfc_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
};

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.need_system_controller = true,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
	.max_cs_nb = 2,
	.max_rb_nb = 1,
	.use_dma = true,
};

static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.need_system_controller = true,
	.legacy_of_bindings = true,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.legacy_of_bindings = true,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
	.max_cs_nb = 2,
	.max_rb_nb = 1,
	.legacy_of_bindings = true,
	.use_dma = true,
};

static const struct platform_device_id marvell_nfc_platform_ids[] = {
	{
		.name = "pxa3xx-nand",
		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
	},
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);

static const struct of_device_id marvell_nfc_of_ids[] = {
	{
		.compatible = "marvell,armada-8k-nand-controller",
		.data = &marvell_armada_8k_nfc_caps,
	},
	{
		.compatible = "marvell,armada370-nand-controller",
		.data = &marvell_armada370_nfc_caps,
	},
	{
		.compatible = "marvell,pxa3xx-nand-controller",
		.data = &marvell_pxa3xx_nfc_caps,
	},
	/* Support for old/deprecated bindings: */
	{
		.compatible = "marvell,armada-8k-nand",
		.data = &marvell_armada_8k_nfc_legacy_caps,
	},
	{
		.compatible = "marvell,armada370-nand",
		.data = &marvell_armada370_nfc_legacy_caps,
	},
	{
		.compatible = "marvell,pxa3xx-nand",
		.data = &marvell_pxa3xx_nfc_legacy_caps,
	},
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);

static struct platform_driver marvell_nfc_driver = {
	.driver	= {
		.name		= "marvell-nfc",
		.of_match_table = marvell_nfc_of_ids,
3028
		.pm		= &marvell_nfc_pm_ops,
3029 3030 3031 3032 3033 3034 3035 3036 3037
	},
	.id_table = marvell_nfc_platform_ids,
	.probe = marvell_nfc_probe,
	.remove	= marvell_nfc_remove,
};
module_platform_driver(marvell_nfc_driver);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Marvell NAND controller driver");