dpu_encoder.c 61.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
 * Copyright (C) 2013 Red Hat
 * Author: Rob Clark <robdclark@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/kthread.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>

#include "msm_drv.h"
#include "dpu_kms.h"
#include <drm/drm_crtc.h>
27
#include <drm/drm_probe_helper.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_intf.h"
#include "dpu_hw_ctl.h"
#include "dpu_formats.h"
#include "dpu_encoder_phys.h"
#include "dpu_crtc.h"
#include "dpu_trace.h"
#include "dpu_core_irq.h"

#define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)

#define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)

#define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
		(p) ? (p)->parent->base.id : -1, \
		(p) ? (p)->intf_idx - INTF_0 : -1, \
		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
		##__VA_ARGS__)

#define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
		(p) ? (p)->parent->base.id : -1, \
		(p) ? (p)->intf_idx - INTF_0 : -1, \
		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
		##__VA_ARGS__)

/*
 * Two to anticipate panels that can do cmd/vid dynamic switching
 * plan is to create all possible physical encoder types, and switch between
 * them at runtime
 */
#define NUM_PHYS_ENCODER_TYPES 2

#define MAX_PHYS_ENCODERS_PER_VIRTUAL \
	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)

#define MAX_CHANNELS_PER_ENC 2

#define IDLE_SHORT_TIMEOUT	1

#define MAX_VDISPLAY_SPLIT 1080

/**
 * enum dpu_enc_rc_events - events for resource control state machine
 * @DPU_ENC_RC_EVENT_KICKOFF:
 *	This event happens at NORMAL priority.
 *	Event that signals the start of the transfer. When this event is
 *	received, enable MDP/DSI core clocks. Regardless of the previous
 *	state, the resource should be in ON state at the end of this event.
 * @DPU_ENC_RC_EVENT_FRAME_DONE:
 *	This event happens at INTERRUPT level.
 *	Event signals the end of the data transfer after the PP FRAME_DONE
 *	event. At the end of this event, a delayed work is scheduled to go to
 *	IDLE_PC state after IDLE_TIMEOUT time.
 * @DPU_ENC_RC_EVENT_PRE_STOP:
 *	This event happens at NORMAL priority.
 *	This event, when received during the ON state, leave the RC STATE
 *	in the PRE_OFF state. It should be followed by the STOP event as
 *	part of encoder disable.
 *	If received during IDLE or OFF states, it will do nothing.
 * @DPU_ENC_RC_EVENT_STOP:
 *	This event happens at NORMAL priority.
 *	When this event is received, disable all the MDP/DSI core clocks, and
 *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
 *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
 *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
 *	Resource state should be in OFF at the end of the event.
 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
 *	This event happens at NORMAL priority from a work item.
 *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
 *	This would disable MDP/DSI core clocks and change the resource state
 *	to IDLE.
 */
enum dpu_enc_rc_events {
	DPU_ENC_RC_EVENT_KICKOFF = 1,
	DPU_ENC_RC_EVENT_FRAME_DONE,
	DPU_ENC_RC_EVENT_PRE_STOP,
	DPU_ENC_RC_EVENT_STOP,
	DPU_ENC_RC_EVENT_ENTER_IDLE
};

/*
 * enum dpu_enc_rc_states - states that the resource control maintains
 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
 */
enum dpu_enc_rc_states {
	DPU_ENC_RC_STATE_OFF,
	DPU_ENC_RC_STATE_PRE_OFF,
	DPU_ENC_RC_STATE_ON,
	DPU_ENC_RC_STATE_IDLE
};

/**
 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
 *	encoders. Virtual encoder manages one "logical" display. Physical
 *	encoders manage one intf block, tied to a specific panel/sub-panel.
 *	Virtual encoder defers as much as possible to the physical encoders.
 *	Virtual encoder registers itself with the DRM Framework as the encoder.
 * @base:		drm_encoder base class for registration with DRM
S
Sean Paul 已提交
133
 * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
134
 * @bus_scaling_client:	Client handle to the bus scaling interface
135
 * @enabled:		True if the encoder is active, protected by enc_lock
136 137 138 139 140 141 142 143 144
 * @num_phys_encs:	Actual number of physical encoders contained.
 * @phys_encs:		Container of physical encoders managed.
 * @cur_master:		Pointer to the current master in this mode. Optimization
 *			Only valid after enable. Cleared as disable.
 * @hw_pp		Handle to the pingpong blocks used for the display. No.
 *			pingpong blocks can be different than num_phys_encs.
 * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
 *			for partial update right-only cases, such as pingpong
 *			split where virtual pingpong does not generate IRQs
145 146 147 148 149
 * @crtc:		Pointer to the currently assigned crtc. Normally you
 *			would use crtc->state->encoder_mask to determine the
 *			link between encoder/crtc. However in this case we need
 *			to track crtc in the disable() hook which is called
 *			_after_ encoder_mask is cleared.
150 151 152 153
 * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
 *				all CTL paths
 * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
 * @debugfs_root:		Debug file system root file node
154 155
 * @enc_lock:			Lock around physical encoder
 *				create/destroy/enable/disable
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
 * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
 *				busy processing current command.
 *				Bit0 = phys_encs[0] etc.
 * @crtc_frame_event_cb:	callback handler for frame event
 * @crtc_frame_event_cb_data:	callback handler private data
 * @frame_done_timeout:		frame done timeout in Hz
 * @frame_done_timer:		watchdog timer for frame done event
 * @vsync_event_timer:		vsync timer
 * @disp_info:			local copy of msm_display_info struct
 * @idle_pc_supported:		indicate if idle power collaps is supported
 * @rc_lock:			resource control mutex lock to protect
 *				virt encoder over various state changes
 * @rc_state:			resource controller state
 * @delayed_off_work:		delayed worker to schedule disabling of
 *				clks and resources after IDLE_TIMEOUT time.
 * @vsync_event_work:		worker to handle vsync event for autorefresh
 * @topology:                   topology of the display
 * @mode_set_complete:          flag to indicate modeset completion
 * @idle_timeout:		idle timeout duration in milliseconds
 */
struct dpu_encoder_virt {
	struct drm_encoder base;
	spinlock_t enc_spinlock;
	uint32_t bus_scaling_client;

181 182
	bool enabled;

183 184 185
	unsigned int num_phys_encs;
	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
	struct dpu_encoder_phys *cur_master;
186
	struct dpu_encoder_phys *cur_slave;
187 188 189 190
	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];

	bool intfs_swapped;

191
	struct drm_crtc *crtc;
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

	struct dentry *debugfs_root;
	struct mutex enc_lock;
	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
	void (*crtc_frame_event_cb)(void *, u32 event);
	void *crtc_frame_event_cb_data;

	atomic_t frame_done_timeout;
	struct timer_list frame_done_timer;
	struct timer_list vsync_event_timer;

	struct msm_display_info disp_info;

	bool idle_pc_supported;
	struct mutex rc_lock;
	enum dpu_enc_rc_states rc_state;
208
	struct delayed_work delayed_off_work;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	struct kthread_work vsync_event_work;
	struct msm_display_topology topology;
	bool mode_set_complete;

	u32 idle_timeout;
};

#define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)

void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
		enum dpu_intr_idx intr_idx)
{
	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);

	if (phys_enc->parent_ops->handle_frame_done)
		phys_enc->parent_ops->handle_frame_done(
				phys_enc->parent, phys_enc,
				DPU_ENCODER_FRAME_EVENT_ERROR);
}

231 232 233
static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
		int32_t hw_id, struct dpu_encoder_wait_info *info);

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
		enum dpu_intr_idx intr_idx,
		struct dpu_encoder_wait_info *wait_info)
{
	struct dpu_encoder_irq *irq;
	u32 irq_status;
	int ret;

	if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
		DPU_ERROR("invalid params\n");
		return -EINVAL;
	}
	irq = &phys_enc->irq[intr_idx];

	/* note: do master / slave checking outside */

	/* return EWOULDBLOCK since we know the wait isn't necessary */
	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
			  irq->irq_idx);
		return -EWOULDBLOCK;
	}

	if (irq->irq_idx < 0) {
		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
			      irq->name);
		return 0;
	}

	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
		      atomic_read(wait_info->atomic_cnt));

	ret = dpu_encoder_helper_wait_event_timeout(
			DRMID(phys_enc->parent),
			irq->hw_idx,
			wait_info);

	if (ret <= 0) {
		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
				irq->irq_idx, true);
		if (irq_status) {
			unsigned long flags;

			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
				      DRMID(phys_enc->parent), intr_idx,
				      irq->hw_idx, irq->irq_idx,
				      phys_enc->hw_pp->idx - PINGPONG_0,
				      atomic_read(wait_info->atomic_cnt));
			local_irq_save(flags);
			irq->cb.func(phys_enc, irq->irq_idx);
			local_irq_restore(flags);
			ret = 0;
		} else {
			ret = -ETIMEDOUT;
			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
				      DRMID(phys_enc->parent), intr_idx,
				      irq->hw_idx, irq->irq_idx,
				      phys_enc->hw_pp->idx - PINGPONG_0,
				      atomic_read(wait_info->atomic_cnt));
		}
	} else {
		ret = 0;
		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
			intr_idx, irq->hw_idx, irq->irq_idx,
			phys_enc->hw_pp->idx - PINGPONG_0,
			atomic_read(wait_info->atomic_cnt));
	}

	return ret;
}

int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
		enum dpu_intr_idx intr_idx)
{
	struct dpu_encoder_irq *irq;
	int ret = 0;

	if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
		DPU_ERROR("invalid params\n");
		return -EINVAL;
	}
	irq = &phys_enc->irq[intr_idx];

	if (irq->irq_idx >= 0) {
		DPU_DEBUG_PHYS(phys_enc,
				"skipping already registered irq %s type %d\n",
				irq->name, irq->intr_type);
		return 0;
	}

	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
			irq->intr_type, irq->hw_idx);
	if (irq->irq_idx < 0) {
		DPU_ERROR_PHYS(phys_enc,
			"failed to lookup IRQ index for %s type:%d\n",
			irq->name, irq->intr_type);
		return -EINVAL;
	}

	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
			&irq->cb);
	if (ret) {
		DPU_ERROR_PHYS(phys_enc,
			"failed to register IRQ callback for %s\n",
			irq->name);
		irq->irq_idx = -EINVAL;
		return ret;
	}

	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
	if (ret) {
		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
			  irq->irq_idx);
		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
				irq->irq_idx, &irq->cb);
		irq->irq_idx = -EINVAL;
		return ret;
	}

	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
				irq->hw_idx, irq->irq_idx);

	return ret;
}

int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
		enum dpu_intr_idx intr_idx)
{
	struct dpu_encoder_irq *irq;
	int ret;

	if (!phys_enc) {
		DPU_ERROR("invalid encoder\n");
		return -EINVAL;
	}
	irq = &phys_enc->irq[intr_idx];

	/* silently skip irqs that weren't registered */
	if (irq->irq_idx < 0) {
		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
			  irq->irq_idx);
		return 0;
	}

	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
	if (ret) {
388
		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
			  irq->irq_idx, ret);
	}

	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
			&irq->cb);
	if (ret) {
		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
			  irq->irq_idx, ret);
	}

	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
					     irq->hw_idx, irq->irq_idx);

	irq->irq_idx = -EINVAL;

	return 0;
}

void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
410
				  struct dpu_encoder_hw_resources *hw_res)
411 412 413 414 415 416 417 418 419 420 421 422 423 424
{
	struct dpu_encoder_virt *dpu_enc = NULL;
	int i = 0;

	dpu_enc = to_dpu_encoder_virt(drm_enc);
	DPU_DEBUG_ENC(dpu_enc, "\n");

	/* Query resources used by phys encs, expected to be without overlap */
	memset(hw_res, 0, sizeof(*hw_res));

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys && phys->ops.get_hw_resources)
425
			phys->ops.get_hw_resources(phys, hw_res);
426 427 428
	}
}

429
static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
{
	struct dpu_encoder_virt *dpu_enc = NULL;
	int i = 0;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}

	dpu_enc = to_dpu_encoder_virt(drm_enc);
	DPU_DEBUG_ENC(dpu_enc, "\n");

	mutex_lock(&dpu_enc->enc_lock);

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys && phys->ops.destroy) {
			phys->ops.destroy(phys);
			--dpu_enc->num_phys_encs;
			dpu_enc->phys_encs[i] = NULL;
		}
	}

	if (dpu_enc->num_phys_encs)
		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
				dpu_enc->num_phys_encs);
	dpu_enc->num_phys_encs = 0;
	mutex_unlock(&dpu_enc->enc_lock);

	drm_encoder_cleanup(drm_enc);
	mutex_destroy(&dpu_enc->enc_lock);
}

void dpu_encoder_helper_split_config(
		struct dpu_encoder_phys *phys_enc,
		enum dpu_intf interface)
{
	struct dpu_encoder_virt *dpu_enc;
	struct split_pipe_cfg cfg = { 0 };
	struct dpu_hw_mdp *hw_mdptop;
	struct msm_display_info *disp_info;

	if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
		return;
	}

	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
	hw_mdptop = phys_enc->hw_mdptop;
	disp_info = &dpu_enc->disp_info;

482
	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		return;

	/**
	 * disable split modes since encoder will be operating in as the only
	 * encoder, either for the entire use case in the case of, for example,
	 * single DSI, or for this frame in the case of left/right only partial
	 * update.
	 */
	if (phys_enc->split_role == ENC_ROLE_SOLO) {
		if (hw_mdptop->ops.setup_split_pipe)
			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
		return;
	}

	cfg.en = true;
	cfg.mode = phys_enc->intf_mode;
	cfg.intf = interface;

	if (cfg.en && phys_enc->ops.needs_single_flush &&
			phys_enc->ops.needs_single_flush(phys_enc))
		cfg.split_flush_en = true;

	if (phys_enc->split_role == ENC_ROLE_MASTER) {
		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);

		if (hw_mdptop->ops.setup_split_pipe)
			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
	}
}

static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
		struct drm_display_mode *adj_mode)
{
	struct drm_display_mode *cur_mode;

	if (!connector || !adj_mode)
		return;

	list_for_each_entry(cur_mode, &connector->modes, head) {
		if (cur_mode->vdisplay == adj_mode->vdisplay &&
523 524
		    cur_mode->hdisplay == adj_mode->hdisplay &&
		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
			adj_mode->private = cur_mode->private;
			adj_mode->private_flags |= cur_mode->private_flags;
		}
	}
}

static struct msm_display_topology dpu_encoder_get_topology(
			struct dpu_encoder_virt *dpu_enc,
			struct dpu_kms *dpu_kms,
			struct drm_display_mode *mode)
{
	struct msm_display_topology topology;
	int i, intf_count = 0;

	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
		if (dpu_enc->phys_encs[i])
			intf_count++;

	/* User split topology for width > 1080 */
	topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
	topology.num_enc = 0;
	topology.num_intf = intf_count;

	return topology;
}
static int dpu_encoder_virt_atomic_check(
		struct drm_encoder *drm_enc,
		struct drm_crtc_state *crtc_state,
		struct drm_connector_state *conn_state)
{
	struct dpu_encoder_virt *dpu_enc;
	struct msm_drm_private *priv;
	struct dpu_kms *dpu_kms;
	const struct drm_display_mode *mode;
	struct drm_display_mode *adj_mode;
	struct msm_display_topology topology;
	int i = 0;
	int ret = 0;

	if (!drm_enc || !crtc_state || !conn_state) {
		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
				drm_enc != 0, crtc_state != 0, conn_state != 0);
		return -EINVAL;
	}

	dpu_enc = to_dpu_encoder_virt(drm_enc);
	DPU_DEBUG_ENC(dpu_enc, "\n");

	priv = drm_enc->dev->dev_private;
	dpu_kms = to_dpu_kms(priv->kms);
	mode = &crtc_state->mode;
	adj_mode = &crtc_state->adjusted_mode;
	trace_dpu_enc_atomic_check(DRMID(drm_enc));

	/*
	 * display drivers may populate private fields of the drm display mode
	 * structure while registering possible modes of a connector with DRM.
	 * These private fields are not populated back while DRM invokes
	 * the mode_set callbacks. This module retrieves and populates the
	 * private fields of the given mode.
	 */
	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);

	/* perform atomic check on the first physical encoder (master) */
	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys && phys->ops.atomic_check)
			ret = phys->ops.atomic_check(phys, crtc_state,
					conn_state);
		else if (phys && phys->ops.mode_fixup)
			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
				ret = -EINVAL;

		if (ret) {
			DPU_ERROR_ENC(dpu_enc,
					"mode unsupported, phys idx %d\n", i);
			break;
		}
	}

	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);

	/* Reserve dynamic resources now. Indicating AtomicTest phase */
	if (!ret) {
		/*
		 * Avoid reserving resources when mode set is pending. Topology
		 * info may not be available to complete reservation.
		 */
		if (drm_atomic_crtc_needs_modeset(crtc_state)
				&& dpu_enc->mode_set_complete) {
			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
617
					     topology, true);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
			dpu_enc->mode_set_complete = false;
		}
	}

	if (!ret)
		drm_mode_set_crtcinfo(adj_mode, 0);

	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
			adj_mode->private_flags);

	return ret;
}

static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
			struct msm_display_info *disp_info)
{
	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
	struct msm_drm_private *priv;
	struct dpu_kms *dpu_kms;
	struct dpu_hw_mdp *hw_mdptop;
	struct drm_encoder *drm_enc;
	int i;

	if (!dpu_enc || !disp_info) {
		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
					dpu_enc != NULL, disp_info != NULL);
		return;
	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
		DPU_ERROR("invalid num phys enc %d/%d\n",
				dpu_enc->num_phys_encs,
				(int) ARRAY_SIZE(dpu_enc->hw_pp));
		return;
	}

	drm_enc = &dpu_enc->base;
	/* this pointers are checked in virt_enable_helper */
	priv = drm_enc->dev->dev_private;

	dpu_kms = to_dpu_kms(priv->kms);
	if (!dpu_kms) {
		DPU_ERROR("invalid dpu_kms\n");
		return;
	}

	hw_mdptop = dpu_kms->hw_mdp;
	if (!hw_mdptop) {
		DPU_ERROR("invalid mdptop\n");
		return;
	}

	if (hw_mdptop->ops.setup_vsync_source &&
			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
		for (i = 0; i < dpu_enc->num_phys_encs; i++)
			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;

		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
		if (disp_info->is_te_using_watchdog_timer)
			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
		else
			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;

		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
	}
}

static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
{
	struct dpu_encoder_virt *dpu_enc;
	int i;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}

	dpu_enc = to_dpu_encoder_virt(drm_enc);

	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys && phys->ops.irq_control)
			phys->ops.irq_control(phys, enable);
	}

}

static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
		bool enable)
{
	struct msm_drm_private *priv;
	struct dpu_kms *dpu_kms;
	struct dpu_encoder_virt *dpu_enc;

	dpu_enc = to_dpu_encoder_virt(drm_enc);
	priv = drm_enc->dev->dev_private;
	dpu_kms = to_dpu_kms(priv->kms);

	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);

	if (!dpu_enc->cur_master) {
		DPU_ERROR("encoder master not set\n");
		return;
	}

	if (enable) {
		/* enable DPU core clks */
		pm_runtime_get_sync(&dpu_kms->pdev->dev);

		/* enable all the irq */
		_dpu_encoder_irq_control(drm_enc, true);

	} else {
		/* disable all the irq */
		_dpu_encoder_irq_control(drm_enc, false);

		/* disable DPU core clks */
		pm_runtime_put_sync(&dpu_kms->pdev->dev);
	}

}

static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
		u32 sw_event)
{
	struct dpu_encoder_virt *dpu_enc;
	struct msm_drm_private *priv;
	bool is_vid_mode = false;

	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
			!drm_enc->crtc) {
		DPU_ERROR("invalid parameters\n");
		return -EINVAL;
	}
	dpu_enc = to_dpu_encoder_virt(drm_enc);
	priv = drm_enc->dev->dev_private;
	is_vid_mode = dpu_enc->disp_info.capabilities &
						MSM_DISPLAY_CAP_VID_MODE;

	/*
	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
	 * events and return early for other events (ie wb display).
	 */
	if (!dpu_enc->idle_pc_supported &&
			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
			sw_event != DPU_ENC_RC_EVENT_STOP &&
			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
		return 0;

	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
			 dpu_enc->rc_state, "begin");

	switch (sw_event) {
	case DPU_ENC_RC_EVENT_KICKOFF:
		/* cancel delayed off work, if any */
773
		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
					sw_event);

		mutex_lock(&dpu_enc->rc_lock);

		/* return if the resource control is already in ON state */
		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
				      DRMID(drm_enc), sw_event);
			mutex_unlock(&dpu_enc->rc_lock);
			return 0;
		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
				      DRMID(drm_enc), sw_event,
				      dpu_enc->rc_state);
			mutex_unlock(&dpu_enc->rc_lock);
			return -EINVAL;
		}

		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
			_dpu_encoder_irq_control(drm_enc, true);
		else
			_dpu_encoder_resource_control_helper(drm_enc, true);

		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;

		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
				 "kickoff");

		mutex_unlock(&dpu_enc->rc_lock);
		break;

	case DPU_ENC_RC_EVENT_FRAME_DONE:
		/*
		 * mutex lock is not used as this event happens at interrupt
		 * context. And locking is not required as, the other events
		 * like KICKOFF and STOP does a wait-for-idle before executing
		 * the resource_control
		 */
		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
				      DRMID(drm_enc), sw_event,
				      dpu_enc->rc_state);
			return -EINVAL;
		}

		/*
		 * schedule off work item only when there are no
		 * frames pending
		 */
		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
			DRM_DEBUG_KMS("id:%d skip schedule work\n",
				      DRMID(drm_enc));
			return 0;
		}

832 833
		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
				   msecs_to_jiffies(dpu_enc->idle_timeout));
834 835 836 837 838 839 840 841

		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
				 "frame done");
		break;

	case DPU_ENC_RC_EVENT_PRE_STOP:
		/* cancel delayed off work, if any */
842
		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
					sw_event);

		mutex_lock(&dpu_enc->rc_lock);

		if (is_vid_mode &&
			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
			_dpu_encoder_irq_control(drm_enc, true);
		}
		/* skip if is already OFF or IDLE, resources are off already */
		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
				      DRMID(drm_enc), sw_event,
				      dpu_enc->rc_state);
			mutex_unlock(&dpu_enc->rc_lock);
			return 0;
		}

		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;

		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
				 "pre stop");

		mutex_unlock(&dpu_enc->rc_lock);
		break;

	case DPU_ENC_RC_EVENT_STOP:
		mutex_lock(&dpu_enc->rc_lock);

		/* return if the resource control is already in OFF state */
		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
				      DRMID(drm_enc), sw_event);
			mutex_unlock(&dpu_enc->rc_lock);
			return 0;
		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
			mutex_unlock(&dpu_enc->rc_lock);
			return -EINVAL;
		}

		/**
		 * expect to arrive here only if in either idle state or pre-off
		 * and in IDLE state the resources are already disabled
		 */
		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
			_dpu_encoder_resource_control_helper(drm_enc, false);

		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;

		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
				 "stop");

		mutex_unlock(&dpu_enc->rc_lock);
		break;

	case DPU_ENC_RC_EVENT_ENTER_IDLE:
		mutex_lock(&dpu_enc->rc_lock);

		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
			mutex_unlock(&dpu_enc->rc_lock);
			return 0;
		}

		/*
		 * if we are in ON but a frame was just kicked off,
		 * ignore the IDLE event, it's probably a stale timer event
		 */
		if (dpu_enc->frame_busy_mask[0]) {
			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
			mutex_unlock(&dpu_enc->rc_lock);
			return 0;
		}

		if (is_vid_mode)
			_dpu_encoder_irq_control(drm_enc, false);
		else
			_dpu_encoder_resource_control_helper(drm_enc, false);

		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;

		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
				 "idle");

		mutex_unlock(&dpu_enc->rc_lock);
		break;

	default:
		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
			  sw_event);
		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
				 "error");
		break;
	}

	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
			 "end");
	return 0;
}

static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
				      struct drm_display_mode *mode,
				      struct drm_display_mode *adj_mode)
{
	struct dpu_encoder_virt *dpu_enc;
	struct msm_drm_private *priv;
	struct dpu_kms *dpu_kms;
	struct list_head *connector_list;
	struct drm_connector *conn = NULL, *conn_iter;
962
	struct dpu_rm_hw_iter pp_iter, ctl_iter;
963
	struct msm_display_topology topology;
964
	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	int i = 0, ret;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}

	dpu_enc = to_dpu_encoder_virt(drm_enc);
	DPU_DEBUG_ENC(dpu_enc, "\n");

	priv = drm_enc->dev->dev_private;
	dpu_kms = to_dpu_kms(priv->kms);
	connector_list = &dpu_kms->dev->mode_config.connector_list;

	trace_dpu_enc_mode_set(DRMID(drm_enc));

	list_for_each_entry(conn_iter, connector_list, head)
		if (conn_iter->encoder == drm_enc)
			conn = conn_iter;

	if (!conn) {
		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
		return;
	} else if (!conn->state) {
		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
		return;
	}

	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);

	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state,
997
			     topology, false);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	if (ret) {
		DPU_ERROR_ENC(dpu_enc,
				"failed to reserve hw resources, %d\n", ret);
		return;
	}

	dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
		dpu_enc->hw_pp[i] = NULL;
		if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter))
			break;
		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw;
	}

1012 1013 1014 1015 1016 1017 1018
	dpu_rm_init_hw_iter(&ctl_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
		if (!dpu_rm_get_hw(&dpu_kms->rm, &ctl_iter))
			break;
		hw_ctl[i] = (struct dpu_hw_ctl *)ctl_iter.hw;
	}

1019 1020 1021 1022 1023
	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys) {
			if (!dpu_enc->hw_pp[i]) {
1024 1025
				DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
					     "at idx: %d\n", i);
1026 1027
				return;
			}
1028 1029 1030 1031 1032 1033 1034

			if (!hw_ctl[i]) {
				DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
					     "at idx: %d\n", i);
				return;
			}

1035
			phys->hw_pp = dpu_enc->hw_pp[i];
1036 1037
			phys->hw_ctl = hw_ctl[i];

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			phys->connector = conn->state->connector;
			if (phys->ops.mode_set)
				phys->ops.mode_set(phys, mode, adj_mode);
		}
	}

	dpu_enc->mode_set_complete = true;
}

static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
{
	struct dpu_encoder_virt *dpu_enc = NULL;
	struct msm_drm_private *priv;
	struct dpu_kms *dpu_kms;

	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
		DPU_ERROR("invalid parameters\n");
		return;
	}

	priv = drm_enc->dev->dev_private;
	dpu_kms = to_dpu_kms(priv->kms);
	if (!dpu_kms) {
		DPU_ERROR("invalid dpu_kms\n");
		return;
	}

	dpu_enc = to_dpu_encoder_virt(drm_enc);
	if (!dpu_enc || !dpu_enc->cur_master) {
		DPU_ERROR("invalid dpu encoder/master\n");
		return;
	}

	if (dpu_enc->cur_master->hw_mdptop &&
			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
				dpu_enc->cur_master->hw_mdptop,
				dpu_kms->catalog);

	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
}

1080
void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1081
{
1082
	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1083

1084
	mutex_lock(&dpu_enc->enc_lock);
1085

1086 1087
	if (!dpu_enc->enabled)
		goto out;
1088

1089 1090
	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1091 1092 1093 1094
	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);

	_dpu_encoder_virt_enable_helper(drm_enc);
1095 1096 1097

out:
	mutex_unlock(&dpu_enc->enc_lock);
1098 1099 1100 1101 1102
}

static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
{
	struct dpu_encoder_virt *dpu_enc = NULL;
1103
	int ret = 0;
1104 1105 1106 1107 1108 1109 1110
	struct drm_display_mode *cur_mode = NULL;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}
	dpu_enc = to_dpu_encoder_virt(drm_enc);
1111 1112

	mutex_lock(&dpu_enc->enc_lock);
1113 1114 1115 1116 1117
	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;

	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
			     cur_mode->vdisplay);

1118 1119 1120
	/* always enable slave encoder before master */
	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1121

1122 1123
	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1124 1125 1126 1127 1128

	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
	if (ret) {
		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
				ret);
1129
		goto out;
1130 1131 1132
	}

	_dpu_encoder_virt_enable_helper(drm_enc);
1133 1134 1135 1136 1137

	dpu_enc->enabled = true;

out:
	mutex_unlock(&dpu_enc->enc_lock);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
}

static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
{
	struct dpu_encoder_virt *dpu_enc = NULL;
	struct msm_drm_private *priv;
	struct dpu_kms *dpu_kms;
	struct drm_display_mode *mode;
	int i = 0;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	} else if (!drm_enc->dev) {
		DPU_ERROR("invalid dev\n");
		return;
	} else if (!drm_enc->dev->dev_private) {
		DPU_ERROR("invalid dev_private\n");
		return;
	}

	dpu_enc = to_dpu_encoder_virt(drm_enc);
	DPU_DEBUG_ENC(dpu_enc, "\n");

1162 1163 1164 1165 1166
	mutex_lock(&dpu_enc->enc_lock);
	dpu_enc->enabled = false;

	mode = &drm_enc->crtc->state->adjusted_mode;

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	priv = drm_enc->dev->dev_private;
	dpu_kms = to_dpu_kms(priv->kms);

	trace_dpu_enc_disable(DRMID(drm_enc));

	/* wait for idle */
	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);

	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys && phys->ops.disable)
			phys->ops.disable(phys);
	}

	/* after phys waits for frame-done, should be no more frames pending */
	if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
		del_timer_sync(&dpu_enc->frame_done_timer);
	}

	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		if (dpu_enc->phys_encs[i])
			dpu_enc->phys_encs[i]->connector = NULL;
	}

	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");

	dpu_rm_release(&dpu_kms->rm, drm_enc);
1200 1201

	mutex_unlock(&dpu_enc->enc_lock);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
}

static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
		enum dpu_intf_type type, u32 controller_id)
{
	int i = 0;

	for (i = 0; i < catalog->intf_count; i++) {
		if (catalog->intf[i].type == type
		    && catalog->intf[i].controller_id == controller_id) {
			return catalog->intf[i].id;
		}
	}

	return INTF_MAX;
}

static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
		struct dpu_encoder_phys *phy_enc)
{
	struct dpu_encoder_virt *dpu_enc = NULL;
	unsigned long lock_flags;

	if (!drm_enc || !phy_enc)
		return;

	DPU_ATRACE_BEGIN("encoder_vblank_callback");
	dpu_enc = to_dpu_encoder_virt(drm_enc);

	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1232 1233
	if (dpu_enc->crtc)
		dpu_crtc_vblank_callback(dpu_enc->crtc);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);

	atomic_inc(&phy_enc->vsync_cnt);
	DPU_ATRACE_END("encoder_vblank_callback");
}

static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
		struct dpu_encoder_phys *phy_enc)
{
	if (!phy_enc)
		return;

	DPU_ATRACE_BEGIN("encoder_underrun_callback");
	atomic_inc(&phy_enc->underrun_cnt);
	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
				  atomic_read(&phy_enc->underrun_cnt));
	DPU_ATRACE_END("encoder_underrun_callback");
}

1253
void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1254 1255 1256 1257 1258
{
	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
	unsigned long lock_flags;

	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1259 1260 1261
	/* crtc should always be cleared before re-assigning */
	WARN_ON(crtc && dpu_enc->crtc);
	dpu_enc->crtc = crtc;
1262
	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1263 1264 1265 1266 1267 1268 1269 1270
}

void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
					struct drm_crtc *crtc, bool enable)
{
	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
	unsigned long lock_flags;
	int i;
1271 1272 1273 1274

	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);

	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1275 1276 1277 1278
	if (dpu_enc->crtc != crtc) {
		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
		return;
	}
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys && phys->ops.control_vblank_irq)
			phys->ops.control_vblank_irq(phys, enable);
	}
}

void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
		void (*frame_event_cb)(void *, u32 event),
		void *frame_event_cb_data)
{
	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
	unsigned long lock_flags;
	bool enable;

	enable = frame_event_cb ? true : false;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}
	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);

	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
	dpu_enc->crtc_frame_event_cb = frame_event_cb;
	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}

static void dpu_encoder_frame_done_callback(
		struct drm_encoder *drm_enc,
		struct dpu_encoder_phys *ready_phys, u32 event)
{
	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
	unsigned int i;

	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
			| DPU_ENCODER_FRAME_EVENT_ERROR
			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {

		if (!dpu_enc->frame_busy_mask[0]) {
			/**
			 * suppress frame_done without waiter,
			 * likely autorefresh
			 */
			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
					event, ready_phys->intf_idx);
			return;
		}

		/* One of the physical encoders has become idle */
		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
			if (dpu_enc->phys_encs[i] == ready_phys) {
				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
						dpu_enc->frame_busy_mask[0]);
1337
				clear_bit(i, dpu_enc->frame_busy_mask);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
			}
		}

		if (!dpu_enc->frame_busy_mask[0]) {
			atomic_set(&dpu_enc->frame_done_timeout, 0);
			del_timer(&dpu_enc->frame_done_timer);

			dpu_encoder_resource_control(drm_enc,
					DPU_ENC_RC_EVENT_FRAME_DONE);

			if (dpu_enc->crtc_frame_event_cb)
				dpu_enc->crtc_frame_event_cb(
					dpu_enc->crtc_frame_event_cb_data,
					event);
		}
	} else {
		if (dpu_enc->crtc_frame_event_cb)
			dpu_enc->crtc_frame_event_cb(
				dpu_enc->crtc_frame_event_cb_data, event);
	}
}

1360
static void dpu_encoder_off_work(struct work_struct *work)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
{
	struct dpu_encoder_virt *dpu_enc = container_of(work,
			struct dpu_encoder_virt, delayed_off_work.work);

	if (!dpu_enc) {
		DPU_ERROR("invalid dpu encoder\n");
		return;
	}

	dpu_encoder_resource_control(&dpu_enc->base,
						DPU_ENC_RC_EVENT_ENTER_IDLE);

	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
				DPU_ENCODER_FRAME_EVENT_IDLE);
}

/**
 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
 * drm_enc: Pointer to drm encoder structure
 * phys: Pointer to physical encoder structure
 * extra_flush_bits: Additional bit mask to include in flush trigger
 */
1383
static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1384 1385
		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits,
		bool async)
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	struct dpu_hw_ctl *ctl;
	int pending_kickoff_cnt;
	u32 ret = UINT_MAX;

	if (!drm_enc || !phys) {
		DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
				drm_enc != 0, phys != 0);
		return;
	}

	if (!phys->hw_pp) {
		DPU_ERROR("invalid pingpong hw\n");
		return;
	}

	ctl = phys->hw_ctl;
	if (!ctl || !ctl->ops.trigger_flush) {
		DPU_ERROR("missing trigger cb\n");
		return;
	}

1408 1409 1410 1411
	if (!async)
		pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
	else
		pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	if (extra_flush_bits && ctl->ops.update_pending_flush)
		ctl->ops.update_pending_flush(ctl, extra_flush_bits);

	ctl->ops.trigger_flush(ctl);

	if (ctl->ops.get_pending_flush)
		ret = ctl->ops.get_pending_flush(ctl);

	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1422 1423
				    pending_kickoff_cnt, ctl->idx,
				    extra_flush_bits, ret);
1424 1425 1426 1427 1428 1429
}

/**
 * _dpu_encoder_trigger_start - trigger start for a physical encoder
 * phys: Pointer to physical encoder structure
 */
1430
static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
{
	if (!phys) {
		DPU_ERROR("invalid argument(s)\n");
		return;
	}

	if (!phys->hw_pp) {
		DPU_ERROR("invalid pingpong hw\n");
		return;
	}

	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
		phys->ops.trigger_start(phys);
}

void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
{
	struct dpu_hw_ctl *ctl;

	if (!phys_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}

	ctl = phys_enc->hw_ctl;
	if (ctl && ctl->ops.trigger_start) {
		ctl->ops.trigger_start(ctl);
		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
	}
}

1462
static int dpu_encoder_helper_wait_event_timeout(
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		int32_t drm_id,
		int32_t hw_id,
		struct dpu_encoder_wait_info *info)
{
	int rc = 0;
	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
	s64 time;

	do {
		rc = wait_event_timeout(*(info->wq),
				atomic_read(info->atomic_cnt) == 0, jiffies);
		time = ktime_to_ms(ktime_get());

		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
						 expected_time,
						 atomic_read(info->atomic_cnt));
	/* If we timed out, counter is valid and time is less, wait again */
	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
			(time < expected_time));

	return rc;
}

1487
static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
{
	struct dpu_encoder_virt *dpu_enc;
	struct dpu_hw_ctl *ctl;
	int rc;

	if (!phys_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}
	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
	ctl = phys_enc->hw_ctl;

	if (!ctl || !ctl->ops.reset)
		return;

	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
		      ctl->idx);

	rc = ctl->ops.reset(ctl);
J
Jordan Crouse 已提交
1507
	if (rc)
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);

	phys_enc->enable_state = DPU_ENC_ENABLED;
}

/**
 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
 *	Iterate through the physical encoders and perform consolidated flush
 *	and/or control start triggering as needed. This is done in the virtual
 *	encoder rather than the individual physical ones in order to handle
 *	use cases that require visibility into multiple physical encoders at
 *	a time.
 * dpu_enc: Pointer to virtual encoder structure
 */
1522 1523
static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc,
				      bool async)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
{
	struct dpu_hw_ctl *ctl;
	uint32_t i, pending_flush;
	unsigned long lock_flags;

	if (!dpu_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}

	pending_flush = 0x0;

	/* update pending counts and trigger kickoff ctl flush atomically */
	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);

	/* don't perform flush/start operations for slave encoders */
	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (!phys || phys->enable_state == DPU_ENC_DISABLED)
			continue;

		ctl = phys->hw_ctl;
		if (!ctl)
			continue;

		if (phys->split_role != ENC_ROLE_SLAVE)
			set_bit(i, dpu_enc->frame_busy_mask);
		if (!phys->ops.needs_single_flush ||
				!phys->ops.needs_single_flush(phys))
1554 1555
			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0,
						   async);
1556 1557 1558 1559 1560 1561 1562 1563 1564
		else if (ctl->ops.get_pending_flush)
			pending_flush |= ctl->ops.get_pending_flush(ctl);
	}

	/* for split flush, combine pending flush masks and send to master */
	if (pending_flush && dpu_enc->cur_master) {
		_dpu_encoder_trigger_flush(
				&dpu_enc->base,
				dpu_enc->cur_master,
1565
				pending_flush, async);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	}

	_dpu_encoder_trigger_start(dpu_enc->cur_master);

	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}

void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
{
	struct dpu_encoder_virt *dpu_enc;
	struct dpu_encoder_phys *phys;
	unsigned int i;
	struct dpu_hw_ctl *ctl;
	struct msm_display_info *disp_info;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}
	dpu_enc = to_dpu_encoder_virt(drm_enc);
	disp_info = &dpu_enc->disp_info;

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		phys = dpu_enc->phys_encs[i];

		if (phys && phys->hw_ctl) {
			ctl = phys->hw_ctl;
			if (ctl->ops.clear_pending_flush)
				ctl->ops.clear_pending_flush(ctl);

			/* update only for command mode primary ctl */
			if ((phys == dpu_enc->cur_master) &&
			   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
			    && ctl->ops.trigger_pending)
				ctl->ops.trigger_pending(ctl);
		}
	}
}

static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
		struct drm_display_mode *mode)
{
	u64 pclk_rate;
	u32 pclk_period;
	u32 line_time;

	/*
	 * For linetime calculation, only operate on master encoder.
	 */
	if (!dpu_enc->cur_master)
		return 0;

	if (!dpu_enc->cur_master->ops.get_line_count) {
		DPU_ERROR("get_line_count function not defined\n");
		return 0;
	}

	pclk_rate = mode->clock; /* pixel clock in kHz */
	if (pclk_rate == 0) {
		DPU_ERROR("pclk is 0, cannot calculate line time\n");
		return 0;
	}

	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
	if (pclk_period == 0) {
		DPU_ERROR("pclk period is 0\n");
		return 0;
	}

	/*
	 * Line time calculation based on Pixel clock and HTOTAL.
	 * Final unit is in ns.
	 */
	line_time = (pclk_period * mode->htotal) / 1000;
	if (line_time == 0) {
		DPU_ERROR("line time calculation is 0\n");
		return 0;
	}

	DPU_DEBUG_ENC(dpu_enc,
			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
			pclk_rate, pclk_period, line_time);

	return line_time;
}

static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc,
		ktime_t *wakeup_time)
{
	struct drm_display_mode *mode;
	struct dpu_encoder_virt *dpu_enc;
	u32 cur_line;
	u32 line_time;
	u32 vtotal, time_to_vsync;
	ktime_t cur_time;

	dpu_enc = to_dpu_encoder_virt(drm_enc);

	if (!drm_enc->crtc || !drm_enc->crtc->state) {
		DPU_ERROR("crtc/crtc state object is NULL\n");
		return -EINVAL;
	}
	mode = &drm_enc->crtc->state->adjusted_mode;

	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
	if (!line_time)
		return -EINVAL;

	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);

	vtotal = mode->vtotal;
	if (cur_line >= vtotal)
		time_to_vsync = line_time * vtotal;
	else
		time_to_vsync = line_time * (vtotal - cur_line);

	if (time_to_vsync == 0) {
		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
				vtotal);
		return -EINVAL;
	}

	cur_time = ktime_get();
	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);

	DPU_DEBUG_ENC(dpu_enc,
			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
			cur_line, vtotal, time_to_vsync,
			ktime_to_ms(cur_time),
			ktime_to_ms(*wakeup_time));
	return 0;
}

static void dpu_encoder_vsync_event_handler(struct timer_list *t)
{
	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
			vsync_event_timer);
	struct drm_encoder *drm_enc = &dpu_enc->base;
	struct msm_drm_private *priv;
	struct msm_drm_thread *event_thread;

	if (!drm_enc->dev || !drm_enc->dev->dev_private ||
			!drm_enc->crtc) {
		DPU_ERROR("invalid parameters\n");
		return;
	}

	priv = drm_enc->dev->dev_private;

	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
		DPU_ERROR("invalid crtc index\n");
		return;
	}
	event_thread = &priv->event_thread[drm_enc->crtc->index];
	if (!event_thread) {
		DPU_ERROR("event_thread not found for crtc:%d\n",
				drm_enc->crtc->index);
		return;
	}

	del_timer(&dpu_enc->vsync_event_timer);
}

static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
{
	struct dpu_encoder_virt *dpu_enc = container_of(work,
			struct dpu_encoder_virt, vsync_event_work);
	ktime_t wakeup_time;

	if (!dpu_enc) {
		DPU_ERROR("invalid dpu encoder\n");
		return;
	}

	if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time))
		return;

	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
	mod_timer(&dpu_enc->vsync_event_timer,
			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
}

1748
void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async)
1749 1750 1751 1752 1753 1754
{
	struct dpu_encoder_virt *dpu_enc;
	struct dpu_encoder_phys *phys;
	bool needs_hw_reset = false;
	unsigned int i;

1755
	if (!drm_enc) {
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		DPU_ERROR("invalid args\n");
		return;
	}
	dpu_enc = to_dpu_encoder_virt(drm_enc);

	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));

	/* prepare for next kickoff, may include waiting on previous kickoff */
	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		phys = dpu_enc->phys_encs[i];
		if (phys) {
			if (phys->ops.prepare_for_kickoff)
1769
				phys->ops.prepare_for_kickoff(phys);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
			if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
				needs_hw_reset = true;
		}
	}
	DPU_ATRACE_END("enc_prepare_for_kickoff");

	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);

	/* if any phys needs reset, reset all phys, in-order */
	if (needs_hw_reset) {
		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1782
			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1783 1784 1785 1786
		}
	}
}

1787
void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async)
1788 1789 1790
{
	struct dpu_encoder_virt *dpu_enc;
	struct dpu_encoder_phys *phys;
1791
	unsigned long timeout_ms;
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	ktime_t wakeup_time;
	unsigned int i;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}
	DPU_ATRACE_BEGIN("encoder_kickoff");
	dpu_enc = to_dpu_encoder_virt(drm_enc);

	trace_dpu_enc_kickoff(DRMID(drm_enc));

1804 1805 1806 1807 1808 1809
	timeout_ms = DPU_FRAME_DONE_TIMEOUT * 1000 /
		drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);

	atomic_set(&dpu_enc->frame_done_timeout, timeout_ms);
	mod_timer(&dpu_enc->frame_done_timer,
		  jiffies + msecs_to_jiffies(timeout_ms));
1810 1811

	/* All phys encs are ready to go, trigger the kickoff */
1812
	_dpu_encoder_kickoff_phys(dpu_enc, async);
1813 1814 1815 1816 1817 1818 1819 1820

	/* allow phys encs to handle any post-kickoff business */
	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		phys = dpu_enc->phys_encs[i];
		if (phys && phys->ops.handle_post_kickoff)
			phys->ops.handle_post_kickoff(phys);
	}

1821
	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
			!_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) {
		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
					    ktime_to_ms(wakeup_time));
		mod_timer(&dpu_enc->vsync_event_timer,
				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
	}

	DPU_ATRACE_END("encoder_kickoff");
}

void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
{
	struct dpu_encoder_virt *dpu_enc;
	struct dpu_encoder_phys *phys;
	int i;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return;
	}
	dpu_enc = to_dpu_encoder_virt(drm_enc);

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		phys = dpu_enc->phys_encs[i];
		if (phys && phys->ops.prepare_commit)
			phys->ops.prepare_commit(phys);
	}
}

#ifdef CONFIG_DEBUG_FS
static int _dpu_encoder_status_show(struct seq_file *s, void *data)
{
1854
	struct dpu_encoder_virt *dpu_enc = s->private;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	int i;

	mutex_lock(&dpu_enc->enc_lock);
	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (!phys)
			continue;

		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
				phys->intf_idx - INTF_0,
				atomic_read(&phys->vsync_cnt),
				atomic_read(&phys->underrun_cnt));

		switch (phys->intf_mode) {
		case INTF_MODE_VIDEO:
			seq_puts(s, "mode: video\n");
			break;
		case INTF_MODE_CMD:
			seq_puts(s, "mode: command\n");
			break;
		default:
			seq_puts(s, "mode: ???\n");
			break;
		}
	}
	mutex_unlock(&dpu_enc->enc_lock);

	return 0;
}

static int _dpu_encoder_debugfs_status_open(struct inode *inode,
		struct file *file)
{
	return single_open(file, _dpu_encoder_status_show, inode->i_private);
}

static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
1894
	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	struct msm_drm_private *priv;
	struct dpu_kms *dpu_kms;
	int i;

	static const struct file_operations debugfs_status_fops = {
		.open =		_dpu_encoder_debugfs_status_open,
		.read =		seq_read,
		.llseek =	seq_lseek,
		.release =	single_release,
	};

	char name[DPU_NAME_SIZE];

1908
	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		DPU_ERROR("invalid encoder or kms\n");
		return -EINVAL;
	}

	priv = drm_enc->dev->dev_private;
	dpu_kms = to_dpu_kms(priv->kms);

	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);

	/* create overall sub-directory for the encoder */
	dpu_enc->debugfs_root = debugfs_create_dir(name,
			drm_enc->dev->primary->debugfs_root);
	if (!dpu_enc->debugfs_root)
		return -ENOMEM;

	/* don't error check these */
	debugfs_create_file("status", 0600,
		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);

	for (i = 0; i < dpu_enc->num_phys_encs; i++)
		if (dpu_enc->phys_encs[i] &&
				dpu_enc->phys_encs[i]->ops.late_register)
			dpu_enc->phys_encs[i]->ops.late_register(
					dpu_enc->phys_encs[i],
					dpu_enc->debugfs_root);

	return 0;
}
#else
static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
{
	return 0;
}
#endif

static int dpu_encoder_late_register(struct drm_encoder *encoder)
{
	return _dpu_encoder_init_debugfs(encoder);
}

static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
{
1951 1952 1953
	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);

	debugfs_remove_recursive(dpu_enc->debugfs_root);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
}

static int dpu_encoder_virt_add_phys_encs(
		u32 display_caps,
		struct dpu_encoder_virt *dpu_enc,
		struct dpu_enc_phys_init_params *params)
{
	struct dpu_encoder_phys *enc = NULL;

	DPU_DEBUG_ENC(dpu_enc, "\n");

	/*
	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
	 * in this function, check up-front.
	 */
	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
			ARRAY_SIZE(dpu_enc->phys_encs)) {
		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
			  dpu_enc->num_phys_encs);
		return -EINVAL;
	}

	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
		enc = dpu_encoder_phys_vid_init(params);

		if (IS_ERR_OR_NULL(enc)) {
			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
				PTR_ERR(enc));
			return enc == 0 ? -EINVAL : PTR_ERR(enc);
		}

		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
		++dpu_enc->num_phys_encs;
	}

	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
		enc = dpu_encoder_phys_cmd_init(params);

		if (IS_ERR_OR_NULL(enc)) {
			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
				PTR_ERR(enc));
			return enc == 0 ? -EINVAL : PTR_ERR(enc);
		}

		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
		++dpu_enc->num_phys_encs;
	}

2002 2003 2004 2005 2006
	if (params->split_role == ENC_ROLE_SLAVE)
		dpu_enc->cur_slave = enc;
	else
		dpu_enc->cur_master = enc;

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	return 0;
}

static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
	.handle_vblank_virt = dpu_encoder_vblank_callback,
	.handle_underrun_virt = dpu_encoder_underrun_callback,
	.handle_frame_done = dpu_encoder_frame_done_callback,
};

static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
				 struct dpu_kms *dpu_kms,
2018
				 struct msm_display_info *disp_info)
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
{
	int ret = 0;
	int i = 0;
	enum dpu_intf_type intf_type;
	struct dpu_enc_phys_init_params phys_params;

	if (!dpu_enc || !dpu_kms) {
		DPU_ERROR("invalid arg(s), enc %d kms %d\n",
				dpu_enc != 0, dpu_kms != 0);
		return -EINVAL;
	}

2031 2032
	dpu_enc->cur_master = NULL;

2033 2034 2035 2036 2037 2038 2039 2040
	memset(&phys_params, 0, sizeof(phys_params));
	phys_params.dpu_kms = dpu_kms;
	phys_params.parent = &dpu_enc->base;
	phys_params.parent_ops = &dpu_encoder_parent_ops;
	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;

	DPU_DEBUG("\n");

2041
	switch (disp_info->intf_type) {
2042
	case DRM_MODE_ENCODER_DSI:
2043
		intf_type = INTF_DSI;
2044 2045
		break;
	default:
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
		return -EINVAL;
	}

	WARN_ON(disp_info->num_of_h_tiles < 1);

	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);

	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
		dpu_enc->idle_pc_supported =
				dpu_kms->catalog->caps->has_idle_pc;

	mutex_lock(&dpu_enc->enc_lock);
	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
		/*
		 * Left-most tile is at index 0, content is controller id
		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
		 */
		u32 controller_id = disp_info->h_tile_instance[i];

		if (disp_info->num_of_h_tiles > 1) {
			if (i == 0)
				phys_params.split_role = ENC_ROLE_MASTER;
			else
				phys_params.split_role = ENC_ROLE_SLAVE;
		} else {
			phys_params.split_role = ENC_ROLE_SOLO;
		}

		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
				i, controller_id, phys_params.split_role);

		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
													intf_type,
													controller_id);
		if (phys_params.intf_idx == INTF_MAX) {
			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
						  intf_type, controller_id);
			ret = -EINVAL;
		}

		if (!ret) {
			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
												 dpu_enc,
												 &phys_params);
			if (ret)
				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
		}
	}

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys) {
			atomic_set(&phys->vsync_cnt, 0);
			atomic_set(&phys->underrun_cnt, 0);
		}
	}
	mutex_unlock(&dpu_enc->enc_lock);

	return ret;
}

static void dpu_encoder_frame_done_timeout(struct timer_list *t)
{
	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
			frame_done_timer);
	struct drm_encoder *drm_enc = &dpu_enc->base;
	struct msm_drm_private *priv;
	u32 event;

	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
		DPU_ERROR("invalid parameters\n");
		return;
	}
	priv = drm_enc->dev->dev_private;

	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
		return;
	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
		return;
	}

	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");

	event = DPU_ENCODER_FRAME_EVENT_ERROR;
	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
}

static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
	.mode_set = dpu_encoder_virt_mode_set,
	.disable = dpu_encoder_virt_disable,
	.enable = dpu_kms_encoder_enable,
	.atomic_check = dpu_encoder_virt_atomic_check,

	/* This is called by dpu_kms_encoder_enable */
	.commit = dpu_encoder_virt_enable,
};

static const struct drm_encoder_funcs dpu_encoder_funcs = {
		.destroy = dpu_encoder_destroy,
		.late_register = dpu_encoder_late_register,
		.early_unregister = dpu_encoder_early_unregister,
};

int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
		struct msm_display_info *disp_info)
{
	struct msm_drm_private *priv = dev->dev_private;
	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
	struct drm_encoder *drm_enc = NULL;
	struct dpu_encoder_virt *dpu_enc = NULL;
	int ret = 0;

	dpu_enc = to_dpu_encoder_virt(enc);

	mutex_init(&dpu_enc->enc_lock);
2169
	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2170 2171 2172 2173 2174 2175 2176 2177 2178
	if (ret)
		goto fail;

	spin_lock_init(&dpu_enc->enc_spinlock);

	atomic_set(&dpu_enc->frame_done_timeout, 0);
	timer_setup(&dpu_enc->frame_done_timer,
			dpu_encoder_frame_done_timeout, 0);

2179
	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2180 2181 2182 2183 2184 2185
		timer_setup(&dpu_enc->vsync_event_timer,
				dpu_encoder_vsync_event_handler,
				0);


	mutex_init(&dpu_enc->rc_lock);
2186
	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
			dpu_encoder_off_work);
	dpu_enc->idle_timeout = IDLE_TIMEOUT;

	kthread_init_work(&dpu_enc->vsync_event_work,
			dpu_encoder_vsync_event_work_handler);

	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));

	DPU_DEBUG_ENC(dpu_enc, "created\n");

	return ret;

fail:
	DPU_ERROR("failed to create encoder\n");
	if (drm_enc)
		dpu_encoder_destroy(drm_enc);

	return ret;


}

struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
		int drm_enc_mode)
{
	struct dpu_encoder_virt *dpu_enc = NULL;
	int rc = 0;

	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
	if (!dpu_enc)
		return ERR_PTR(ENOMEM);

	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
			drm_enc_mode, NULL);
	if (rc) {
		devm_kfree(dev->dev, dpu_enc);
		return ERR_PTR(rc);
	}

	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);

2228 2229
	dpu_enc->enabled = false;

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	return &dpu_enc->base;
}

int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
	enum msm_event_wait event)
{
	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
	struct dpu_encoder_virt *dpu_enc = NULL;
	int i, ret = 0;

	if (!drm_enc) {
		DPU_ERROR("invalid encoder\n");
		return -EINVAL;
	}
	dpu_enc = to_dpu_encoder_virt(drm_enc);
	DPU_DEBUG_ENC(dpu_enc, "\n");

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2249 2250
		if (!phys)
			continue;
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

		switch (event) {
		case MSM_ENC_COMMIT_DONE:
			fn_wait = phys->ops.wait_for_commit_done;
			break;
		case MSM_ENC_TX_COMPLETE:
			fn_wait = phys->ops.wait_for_tx_complete;
			break;
		case MSM_ENC_VBLANK:
			fn_wait = phys->ops.wait_for_vblank;
			break;
		default:
			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
					event);
			return -EINVAL;
		};

2268
		if (fn_wait) {
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
			DPU_ATRACE_BEGIN("wait_for_completion_event");
			ret = fn_wait(phys);
			DPU_ATRACE_END("wait_for_completion_event");
			if (ret)
				return ret;
		}
	}

	return ret;
}

enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
{
	struct dpu_encoder_virt *dpu_enc = NULL;
	int i;

	if (!encoder) {
		DPU_ERROR("invalid encoder\n");
		return INTF_MODE_NONE;
	}
	dpu_enc = to_dpu_encoder_virt(encoder);

	if (dpu_enc->cur_master)
		return dpu_enc->cur_master->intf_mode;

	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];

		if (phys)
			return phys->intf_mode;
	}

	return INTF_MODE_NONE;
}