f_fs.c 87.1 KB
Newer Older
1
/*
2
 * f_fs.c -- user mode file system API for USB composite function controllers
3 4
 *
 * Copyright (C) 2010 Samsung Electronics
5
 * Author: Michal Nazarewicz <mina86@mina86.com>
6
 *
7
 * Based on inode.c (GadgetFS) which was:
8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
22
#include <linux/pagemap.h>
23
#include <linux/export.h>
24
#include <linux/hid.h>
25
#include <linux/module.h>
26
#include <linux/uio.h>
27 28 29 30 31
#include <asm/unaligned.h>

#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

32 33
#include <linux/aio.h>
#include <linux/mmu_context.h>
34
#include <linux/poll.h>
35
#include <linux/eventfd.h>
36

37
#include "u_fs.h"
38
#include "u_f.h"
39
#include "u_os_desc.h"
40
#include "configfs.h"
41 42 43 44 45 46 47 48 49 50 51 52 53

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

54
/* Called with ffs->mutex held; take over ownership of data. */
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


84 85 86 87 88 89 90 91
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


92 93 94 95 96 97 98 99 100
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
101
static bool ffs_func_req_match(struct usb_function *,
102 103
			       const struct usb_ctrlrequest *,
			       bool config0);
104 105 106 107 108 109 110 111 112 113 114 115 116 117
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

118 119
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;
	wait_queue_head_t		wait;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

136 137 138
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
190
	 */
191 192
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193

194 195 196 197 198 199 200 201
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

202 203 204 205 206 207
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

208 209 210 211 212 213 214
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
215 216 217
	struct iov_iter data;
	const void *to_free;
	char *buf;
218 219 220 221 222 223

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
224 225

	struct ffs_data *ffs;
226 227
};

228 229 230 231 232 233
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

234 235 236
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
237
static struct dentry *
238
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
239
		   const struct file_operations *fops);
240

241 242 243
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
244
EXPORT_SYMBOL_GPL(ffs_lock);
245

246 247
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
248
static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
249
static void _ffs_free_dev(struct ffs_dev *dev);
250 251 252 253
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
254 255 256 257 258

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
259
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 261 262 263 264 265 266 267 268
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

269
	complete(&ffs->ep0req_completion);
270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

284 285 286 287 288 289 290 291
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

292
	reinit_completion(&ffs->ep0req_completion);
293 294 295 296 297 298 299 300 301 302 303 304

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
305
	return req->status ? req->status : req->actual;
306 307 308 309 310
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
311
		pr_vdebug("ep0 stall\n");
312 313 314 315
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
316
		pr_debug("bogus ep0 stall!\n");
317 318 319 320 321 322 323 324 325 326 327 328 329 330
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
331
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
350
		if (IS_ERR(data)) {
351 352 353 354 355 356
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
357
			pr_info("read descriptors\n");
358 359 360 361 362 363 364
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
365
			pr_info("read strings\n");
366 367 368 369 370 371 372 373 374 375 376 377 378
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

379
			ret = ffs_ready(ffs);
380 381 382 383 384 385 386 387 388 389 390
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
391 392 393 394
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
395
		spin_lock_irq(&ffs->ev.waitq.lock);
396
		switch (ffs_setup_state_clear_cancelled(ffs)) {
397
		case FFS_SETUP_CANCELLED:
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
422
		if (IS_ERR(data)) {
423 424 425 426 427 428
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

429 430
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
431
		 * but the state of setup could have changed from
432
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433
		 * to check for that.  If that happened we copied data
434 435 436
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
437 438
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
439 440
		 * mutex.
		 */
441 442
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

462
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 464 465
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
{
466
	/*
467 468 469
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
470
	 */
471 472
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
473 474
	unsigned i = 0;

475
	memset(events, 0, size);
476 477 478 479 480 481 482 483 484

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

485 486
	ffs->ev.count -= n;
	if (ffs->ev.count)
487 488 489 490 491 492
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

493
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 495 496 497 498 499 500 501 502 503 504 505 506
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
507
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 509 510 511 512 513 514 515 516 517 518 519 520
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

521 522 523 524
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
525 526
	spin_lock_irq(&ffs->ev.waitq.lock);

527
	switch (ffs_setup_state_clear_cancelled(ffs)) {
528
	case FFS_SETUP_CANCELLED:
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

544 545
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
			ret = -EINTR;
			break;
		}

		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
575 576
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
577 578 579 580 581 582
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
583
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636
	} else if (gadget && gadget->ops->ioctl) {
637 638 639 640 641 642 643 644
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
{
	struct ffs_data *ffs = file->private_data;
	unsigned int mask = POLLWRNORM;
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		mask |= POLLOUT;
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
				mask |= POLLIN;
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
			mask |= (POLLIN | POLLOUT);
			break;
		}
	case FFS_CLOSING:
		break;
677 678
	case FFS_DEACTIVATED:
		break;
679 680 681 682 683 684 685
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

686 687 688 689 690 691 692 693
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
694
	.poll =		ffs_ep0_poll,
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
737 738 739 740 741
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
742 743 744 745 746 747 748 749 750 751 752
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

753 754 755 756 757 758
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
759
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760 761 762

	if (io_data->read && ret > 0) {
		use_mm(io_data->mm);
763
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
764 765 766
		unuse_mm(io_data->mm);
	}

767
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
768

769
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
770 771
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

772 773 774
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
775
		kfree(io_data->to_free);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	kfree(io_data->buf);
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
	schedule_work(&io_data->work);
}

791 792 793 794 795 796 797 798 799 800 801
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

802 803 804 805
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
806 807 808 809 810 811
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
812
	ssize_t ret;
813
	if (!buf || buf == READ_BUFFER_DROP)
814 815 816 817 818
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
819 820 821 822
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
823 824 825 826 827
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
828 829 830 831

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
855 856
	if (!buf)
		return -ENOMEM;
857 858 859
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
860 861 862 863 864 865 866 867 868

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
869 870 871 872

	return ret;
}

873
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
874 875
{
	struct ffs_epfile *epfile = file->private_data;
876
	struct usb_request *req;
877 878
	struct ffs_ep *ep;
	char *data = NULL;
879
	ssize_t ret, data_len = -EINVAL;
880 881
	int halt;

882
	/* Are we still active? */
883 884
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
885

886 887 888
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
889 890
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
891

892
		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
893 894
		if (ret)
			return -EINTR;
895
	}
896

897
	/* Do we halt? */
898
	halt = (!io_data->read == !epfile->in);
899 900
	if (halt && epfile->isoc)
		return -EINVAL;
901

902 903 904 905 906
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

907 908
	/* Allocate & copy */
	if (!halt) {
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

924 925
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
926 927
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
928
		 */
929
		gadget = epfile->ffs->gadget;
930

931 932 933
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
934 935
			ret = -ESHUTDOWN;
			goto error_lock;
936
		}
937
		data_len = iov_iter_count(&io_data->data);
938 939 940 941
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
942 943
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
944
		spin_unlock_irq(&epfile->ffs->eps_lock);
945 946

		data = kmalloc(data_len, GFP_KERNEL);
947 948 949 950 951
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
952
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
953 954
			ret = -EFAULT;
			goto error_mutex;
955 956
		}
	}
957

958
	spin_lock_irq(&epfile->ffs->eps_lock);
959

960 961 962 963 964
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
		/* Halt */
965 966 967
		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
			usb_ep_set_halt(ep->ep);
		ret = -EBADMSG;
968
	} else if (unlikely(data_len == -EINVAL)) {
969 970 971 972 973 974 975 976 977 978 979
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
980 981 982 983
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
984
		bool interrupted = false;
985

986 987 988
		req = ep->req;
		req->buf      = data;
		req->length   = data_len;
989

990 991
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
992

993 994 995
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
996

997
		spin_unlock_irq(&epfile->ffs->eps_lock);
998

999
		if (unlikely(wait_for_completion_interruptible(&done))) {
1000 1001 1002 1003 1004 1005
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1006
			usb_ep_dequeue(ep->ep, req);
1007
			interrupted = ep->status < 0;
1008
		}
1009

1010 1011 1012
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1013 1014
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1015 1016
		else
			ret = ep->status;
1017 1018 1019 1020 1021 1022
		goto error_mutex;
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
		ret = -ENOMEM;
	} else {
		req->buf      = data;
		req->length   = data_len;
1023

1024 1025 1026 1027
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1028

1029 1030
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1031

1032 1033 1034 1035
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1036 1037
		}

1038 1039 1040 1041 1042 1043 1044
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1045 1046 1047

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1048
error_mutex:
1049
	mutex_unlock(&epfile->mutex);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
error:
	kfree(data);
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
	int value;

	ENTER();

	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
		value = -EINVAL;

	spin_unlock_irq(&epfile->ffs->eps_lock);

	return value;
}

1091
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092
{
1093
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1094
	ssize_t res;
1095 1096 1097

	ENTER();

1098 1099 1100 1101 1102 1103 1104 1105
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1106

1107 1108 1109 1110
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1111

1112
	kiocb->private = p;
1113

1114 1115
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116

1117 1118 1119 1120 1121 1122 1123
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1124
	return res;
1125 1126
}

1127
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128
{
1129
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1130
	ssize_t res;
1131 1132 1133

	ENTER();

1134 1135 1136 1137 1138 1139 1140
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1141 1142
	}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1156

1157
	kiocb->private = p;
1158

1159 1160
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1171 1172
	}
	return res;
1173 1174
}

1175 1176 1177 1178 1179 1180 1181
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1182
	__ffs_epfile_read_buffer_free(epfile);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	spin_lock_irq(&epfile->ffs->eps_lock);
	if (likely(epfile->ep)) {
		switch (code) {
		case FUNCTIONFS_FIFO_STATUS:
			ret = usb_ep_fifo_status(epfile->ep->ep);
			break;
		case FUNCTIONFS_FIFO_FLUSH:
			usb_ep_fifo_flush(epfile->ep->ep);
			ret = 0;
			break;
		case FUNCTIONFS_CLEAR_HALT:
			ret = usb_ep_clear_halt(epfile->ep->ep);
			break;
		case FUNCTIONFS_ENDPOINT_REVMAP:
			ret = epfile->ep->num;
			break;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		case FUNCTIONFS_ENDPOINT_DESC:
		{
			int desc_idx;
			struct usb_endpoint_descriptor *desc;

			switch (epfile->ffs->gadget->speed) {
			case USB_SPEED_SUPER:
				desc_idx = 2;
				break;
			case USB_SPEED_HIGH:
				desc_idx = 1;
				break;
			default:
				desc_idx = 0;
			}
			desc = epfile->ep->descs[desc_idx];

			spin_unlock_irq(&epfile->ffs->eps_lock);
			ret = copy_to_user((void *)value, desc, sizeof(*desc));
			if (ret)
				ret = -EFAULT;
			return ret;
		}
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		default:
			ret = -ENOTTY;
		}
	} else {
		ret = -ENODEV;
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1253 1254
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1255 1256 1257 1258 1259 1260 1261 1262
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
};


/* File system and super block operations ***********************************/

/*
1263
 * Mounting the file system creates a controller file, used first for
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1280
		struct timespec ts = current_time(inode);
1281

1282
		inode->i_ino	 = get_next_ino();
1283 1284 1285
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1286 1287 1288
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1300
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1301
					const char *name, void *data,
A
Al Viro 已提交
1302
					const struct file_operations *fops)
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1321
	return dentry;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1334
	bool no_disconnect;
A
Al Viro 已提交
1335
	struct ffs_data *ffs_data;
1336 1337 1338 1339 1340 1341
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1342
	struct ffs_data	*ffs = data->ffs_data;
1343 1344 1345 1346

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1347
	data->ffs_data       = NULL;
1348
	sb->s_fs_info        = ffs;
1349 1350
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1361 1362
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1363
		return -ENOMEM;
1364 1365 1366

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1367
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1368
		return -ENOMEM;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1382
		char *eq, *comma;
1383 1384 1385 1386 1387 1388 1389 1390 1391

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1392
			pr_err("'=' missing in %s\n", opts);
1393 1394 1395 1396 1397
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1398
		if (kstrtoul(eq + 1, 0, &value)) {
1399
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1400 1401 1402 1403 1404
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1405 1406 1407 1408 1409 1410
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1430 1431 1432 1433 1434 1435
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1436
			} else if (!memcmp(opts, "gid", 3)) {
1437 1438 1439 1440 1441
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1442
			} else {
1443
				goto invalid;
1444
			}
1445 1446 1447 1448
			break;

		default:
invalid:
1449
			pr_err("%s: invalid option\n", opts);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1464 1465 1466
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1467 1468 1469 1470
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1471 1472
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1473 1474
		},
		.root_mode = S_IFDIR | 0500,
1475
		.no_disconnect = false,
1476
	};
1477
	struct dentry *rv;
1478
	int ret;
1479
	void *ffs_dev;
A
Al Viro 已提交
1480
	struct ffs_data	*ffs;
1481 1482 1483 1484 1485

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1486
		return ERR_PTR(ret);
1487

A
Al Viro 已提交
1488 1489 1490 1491
	ffs = ffs_data_new();
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1492
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1493 1494 1495 1496 1497 1498 1499

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1500
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1501 1502 1503 1504 1505 1506
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1507 1508

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1509
	if (IS_ERR(rv) && data.ffs_data) {
1510
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1511 1512
		ffs_data_put(data.ffs_data);
	}
1513
	return rv;
1514 1515 1516 1517 1518 1519 1520 1521
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1522
	if (sb->s_fs_info) {
1523
		ffs_release_dev(sb->s_fs_info);
1524
		ffs_data_closed(sb->s_fs_info);
1525
		ffs_data_put(sb->s_fs_info);
1526
	}
1527 1528 1529 1530 1531
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1532
	.mount		= ffs_fs_mount,
1533 1534
	.kill_sb	= ffs_fs_kill_sb,
};
1535
MODULE_ALIAS_FS("functionfs");
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1548
		pr_info("file system registered\n");
1549
	else
1550
		pr_err("failed registering file system (%d)\n", ret);
1551 1552 1553 1554 1555 1556 1557 1558

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1559
	pr_info("unloading\n");
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

	atomic_inc(&ffs->ref);
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

	atomic_inc(&ffs->ref);
1581 1582 1583 1584 1585
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1586 1587 1588 1589 1590 1591 1592
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1593
		pr_info("%s(): freeing\n", __func__);
1594
		ffs_data_clear(ffs);
1595
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1596
		       waitqueue_active(&ffs->ep0req_completion.wait));
1597
		kfree(ffs->dev_name);
1598 1599 1600 1601 1602 1603 1604 1605 1606
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

static struct ffs_data *ffs_data_new(void)
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1633
		return NULL;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	ENTER();

	atomic_set(&ffs->ref, 1);
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1655
	ffs_closed(ffs);
1656 1657 1658 1659 1660 1661

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1662 1663 1664
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1665
	kfree(ffs->raw_descs_data);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1677
	ffs->raw_descs_data = NULL;
1678 1679 1680 1681 1682 1683 1684
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1685
	ffs->ss_descs_count = 0;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1701 1702
	struct usb_gadget_strings **lang;
	int first_id;
1703 1704 1705 1706 1707 1708 1709

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1710 1711 1712
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1713 1714 1715 1716 1717 1718 1719

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1720
	lang = ffs->stringtabs;
1721 1722 1723 1724 1725 1726 1727
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1728 1729 1730
	}

	ffs->gadget = cdev->gadget;
1731
	ffs_data_get(ffs);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1743
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1744
		ffs_data_put(ffs);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1756
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1757 1758 1759 1760 1761 1762 1763 1764
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
		init_waitqueue_head(&epfile->wait);
1765
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1766
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1767
		else
1768 1769
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1770 1771 1772
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
		BUG_ON(mutex_is_locked(&epfile->mutex) ||
		       waitqueue_active(&epfile->wait));
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1808
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1809 1810 1811 1812 1813
	do {
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1814 1815

		if (epfile) {
1816 1817
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1818 1819
			++epfile;
		}
1820
	} while (--count);
1821
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
	do {
		struct usb_endpoint_descriptor *ds;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		int desc_idx;

		if (ffs->gadget->speed == USB_SPEED_SUPER)
			desc_idx = 2;
		else if (ffs->gadget->speed == USB_SPEED_HIGH)
			desc_idx = 1;
		else
			desc_idx = 0;

		/* fall-back to lower speed if desc missing for current speed */
		do {
			ds = ep->descs[desc_idx];
		} while (!ds && --desc_idx >= 0);

		if (!ds) {
			ret = -EINVAL;
			break;
		}
1854 1855

		ep->ep->driver_data = ep;
1856 1857
		ep->ep->desc = ds;
		ret = usb_ep_enable(ep->ep);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		if (likely(!ret)) {
			epfile->ep = ep;
			epfile->in = usb_endpoint_dir_in(ds);
			epfile->isoc = usb_endpoint_xfer_isoc(ds);
		} else {
			break;
		}

		wake_up(&epfile->wait);

		++ep;
		++epfile;
	} while (--count);
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1879 1880
/*
 * This validates if data pointed by data is a valid USB descriptor as
1881
 * well as record how many interfaces, endpoints and strings are
1882 1883 1884
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1885 1886 1887 1888 1889

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1890 1891 1892 1893
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

1894 1895 1896 1897 1898
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

1899 1900 1901 1902
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

1903 1904 1905
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
					   void *priv)
1906 1907 1908 1909 1910 1911 1912 1913 1914
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
1915
		pr_vdebug("descriptor too short\n");
1916 1917 1918 1919 1920 1921
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
1922
		pr_vdebug("descriptor longer then available data\n");
1923 1924 1925 1926 1927 1928 1929
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
1930
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1931
		if (unlikely(!__entity_check_ ##type(val))) {		\
1932
			pr_vdebug("invalid entity's value\n");		\
1933 1934 1935 1936
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
1937
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1938
				 (val), ret);				\
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
1950
		pr_vdebug("descriptor reserved for gadget: %d\n",
1951
		      _ds->bDescriptorType);
1952 1953 1954 1955
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
1956
		pr_vdebug("interface descriptor\n");
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
1968
		pr_vdebug("endpoint descriptor\n");
1969 1970 1971 1972 1973 1974 1975
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

1976 1977 1978 1979 1980 1981
	case HID_DT_HID:
		pr_vdebug("hid descriptor\n");
		if (length != sizeof(struct hid_descriptor))
			goto inv_length;
		break;

1982 1983 1984 1985 1986 1987 1988
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1989
		pr_vdebug("interface association descriptor\n");
1990 1991 1992 1993 1994 1995 1996
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

1997 1998 1999 2000 2001 2002
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2003 2004 2005 2006 2007 2008
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2009
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2010 2011 2012 2013
		return -EINVAL;

	default:
		/* We should never be here */
2014
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2015 2016
		return -EINVAL;

2017
inv_length:
2018
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2019
			  _ds->bLength, _ds->bDescriptorType);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2046
		/* Record "descriptor" entity */
2047 2048
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2049
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2050
				 num, ret);
2051 2052 2053 2054 2055 2056
			return ret;
		}

		if (!data)
			return _len - len;

2057
		ret = ffs_do_single_desc(data, len, entity, priv);
2058
		if (unlikely(ret < 0)) {
2059
			pr_debug("%s returns %d\n", __func__, ret);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2073 2074
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2075 2076 2077 2078 2079 2080 2081 2082

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2083 2084
		/*
		 * Interfaces are indexed from zero so if we
2085
		 * encountered interface "n" then there are at least
2086 2087
		 * "n+1" interfaces.
		 */
2088 2089
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2090 2091 2092
		break;

	case FFS_STRING:
2093
		/*
2094 2095
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2096
		 */
2097 2098
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2099 2100 2101
		break;

	case FFS_ENDPOINT:
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		d = (void *)desc;
		helper->eps_count++;
		if (helper->eps_count >= 15)
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2113 2114 2115 2116 2117 2118
		break;
	}

	return 0;
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2255
		    d->Reserved1)
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
			return -EINVAL;
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2299 2300 2301
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2302
	char *data = _data, *raw_descs;
2303
	unsigned os_descs_count = 0, counts[3], flags;
2304
	int ret = -EINVAL, i;
2305
	struct ffs_desc_helper helper;
2306 2307 2308

	ENTER();

2309
	if (get_unaligned_le32(data + 4) != len)
2310 2311
		goto error;

2312 2313 2314 2315 2316 2317 2318 2319
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2320
		ffs->user_flags = flags;
2321 2322
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2323
			      FUNCTIONFS_HAS_SS_DESC |
2324
			      FUNCTIONFS_HAS_MS_OS_DESC |
2325
			      FUNCTIONFS_VIRTUAL_ADDR |
2326
			      FUNCTIONFS_EVENTFD |
2327 2328
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2329
			ret = -ENOSYS;
2330 2331
			goto error;
		}
2332 2333 2334 2335 2336
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2337 2338
	}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2353 2354 2355 2356 2357
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2358
			goto error;
2359 2360 2361 2362
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2363
		}
2364
	}
2365 2366 2367 2368 2369
	if (flags & (1 << i)) {
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2370

2371 2372
	/* Read descriptors */
	raw_descs = data;
2373
	helper.ffs = ffs;
2374 2375 2376
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2377 2378
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2379
		ret = ffs_do_descs(counts[i], data, len,
2380
				   __ffs_data_do_entity, &helper);
2381
		if (ret < 0)
2382
			goto error;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2396 2397
		data += ret;
		len  -= ret;
2398
	}
2399 2400 2401 2402 2403 2404 2405 2406
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2407

2408 2409 2410 2411
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2412

2413 2414 2415 2416 2417 2418
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2419
	ffs->ms_os_descs_count	= os_descs_count;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2434
	struct usb_string *s;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

	ENTER();

	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2453 2454 2455 2456
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2457 2458 2459 2460 2461
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2462
	/* Allocate everything in one chunk so there's less maintenance. */
2463 2464
	{
		unsigned i = 0;
2465 2466 2467 2468 2469 2470
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2471

2472 2473 2474
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2475 2476 2477 2478
			kfree(_data);
			return -ENOMEM;
		}

2479 2480 2481
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2482 2483 2484 2485 2486 2487
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2488 2489 2490 2491
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2517 2518 2519 2520 2521
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2522
			if (likely(needed)) {
2523 2524
				/*
				 * s->id will be set while adding
2525
				 * function to configuration so for
2526 2527
				 * now just leave garbage here.
				 */
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2569 2570 2571 2572
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2573 2574
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2575 2576
	 * the source does nothing.
	 */
2577
	if (ffs->setup_state == FFS_SETUP_PENDING)
2578
		ffs->setup_state = FFS_SETUP_CANCELLED;
2579

2580 2581 2582 2583 2584 2585 2586
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2587 2588 2589
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2590
		/* FALL THROUGH */
2591 2592 2593
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2594
		/* Discard all similar events */
2595 2596 2597 2598 2599 2600
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2601
		/* Discard everything other then power management. */
2602 2603 2604 2605 2606 2607
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2608 2609
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2610 2611 2612 2613 2614 2615 2616 2617 2618
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2619
				pr_vdebug("purging event %d\n", *ev);
2620 2621 2622
		ffs->ev.count = out - ffs->ev.types;
	}

2623
	pr_vdebug("adding event %d\n", type);
2624 2625
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2626 2627
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2651 2652 2653 2654 2655 2656 2657
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2658 2659
	unsigned ep_desc_id;
	int idx;
2660
	static const char *speed_names[] = { "full", "high", "super" };
2661 2662 2663 2664

	if (type != FFS_DESCRIPTOR)
		return 0;

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2676
		func->function.hs_descriptors[(long)valuep] = desc;
2677 2678
	} else {
		ep_desc_id = 0;
2679
		func->function.fs_descriptors[(long)valuep]    = desc;
2680
	}
2681 2682 2683 2684

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2685 2686 2687 2688
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2689 2690
	ffs_ep = func->eps + idx;

2691 2692 2693
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2694
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2695 2696
		return -EINVAL;
	}
2697
	ffs_ep->descs[ep_desc_id] = ds;
2698 2699 2700 2701 2702 2703 2704 2705 2706

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2707
		u8 bEndpointAddress;
2708

2709 2710 2711 2712 2713
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2714
		pr_vdebug("autoconfig\n");
2715 2716 2717
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2718
		ep->driver_data = func->eps + idx;
2719 2720 2721 2722 2723 2724 2725 2726 2727

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2728 2729 2730 2731 2732 2733
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2771 2772 2773 2774
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2790
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2791 2792 2793 2794
	*valuep = newValue;
	return 0;
}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
		ext_prop->data_len = le32_to_cpu(*(u32 *)
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
2923 2924 2925 2926 2927 2928 2929
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
	const int high = gadget_is_dualspeed(func->gadget) &&
		func->ffs->hs_descs_count;
2930 2931
	const int super = gadget_is_superspeed(func->gadget) &&
		func->ffs->ss_descs_count;
2932

2933
	int fs_len, hs_len, ss_len, ret, i;
2934
	struct ffs_ep *eps_ptr;
2935 2936

	/* Make it a single chunk, less management later on */
2937 2938 2939 2940 2941 2942
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
2943 2944
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
2945
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
2958
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2959
	char *vlabuf;
2960 2961 2962

	ENTER();

2963 2964
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
2965 2966
		return -ENOTSUPP;

2967
	/* Allocate a single chunk, less management later on */
2968
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2969
	if (unlikely(!vlabuf))
2970 2971
		return -ENOMEM;

2972 2973 2974 2975 2976 2977
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

2978 2979 2980
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
2981

2982
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2983 2984 2985
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
2986

2987 2988 2989 2990 2991
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2992

2993 2994
	/*
	 * Go through all the endpoint descriptors and allocate
2995
	 * endpoints first, so that later we can rewrite the endpoint
2996 2997
	 * numbers without worrying that it may be described later on.
	 */
2998
	if (likely(full)) {
2999
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3000 3001 3002 3003 3004 3005
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3006
			goto error;
3007
		}
3008
	} else {
3009
		fs_len = 0;
3010 3011 3012
	}

	if (likely(high)) {
3013
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3028
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3029 3030 3031
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3032 3033
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3034
			goto error;
3035 3036 3037
		}
	} else {
		ss_len = 0;
3038 3039
	}

3040 3041 3042 3043 3044
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3045
	ret = ffs_do_descs(ffs->fs_descs_count +
3046 3047
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3048
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3049 3050 3051 3052
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3053
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3054
	if (c->cdev->use_os_string) {
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3065 3066 3067 3068 3069 3070 3071 3072 3073
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3074 3075 3076
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3077 3078 3079 3080 3081 3082 3083 3084 3085
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3086 3087 3088 3089
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3090 3091
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3092 3093 3094 3095

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3096 3097 3098 3099 3100
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3101 3102
}

3103 3104 3105

/* Other USB function hooks *************************************************/

3106 3107 3108 3109 3110 3111 3112
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3129 3130 3131 3132 3133 3134 3135
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3167 3168 3169 3170 3171
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3172

3173 3174
	/*
	 * Most requests directed to interface go through here
3175 3176 3177 3178
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3179 3180 3181
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3182
	 */
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3197 3198
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3199 3200 3201
		break;

	default:
3202 3203 3204 3205
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

	return 0;
}

3217
static bool ffs_func_req_match(struct usb_function *f,
3218 3219
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3220 3221 3222
{
	struct ffs_function *func = ffs_func_from_usb(f);

3223
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3224 3225
		return false;

3226 3227
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3228 3229
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3230
	case USB_RECIP_ENDPOINT:
3231 3232
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3233 3234 3235 3236 3237 3238
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3252
/* Endpoint and interface numbers reverse mapping ***************************/
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3274 3275 3276 3277
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3278
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3279 3280 3281 3282 3283 3284 3285 3286 3287
{
	struct ffs_dev *dev;

	list_for_each_entry(dev, &ffs_devices, entry) {
		if (!dev->name || !name)
			continue;
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3288

3289 3290 3291 3292 3293 3294
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3295
static struct ffs_dev *_ffs_get_single_dev(void)
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3311
static struct ffs_dev *_ffs_find_dev(const char *name)
3312 3313 3314
{
	struct ffs_dev *dev;

3315
	dev = _ffs_get_single_dev();
3316 3317 3318
	if (dev)
		return dev;

3319
	return _ffs_do_find_dev(name);
3320 3321
}

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

static struct config_item_type ffs_func_type = {
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3347 3348 3349 3350 3351 3352 3353 3354
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3355
	_ffs_free_dev(opts->dev);
3356 3357 3358 3359
	ffs_dev_unlock();
	kfree(opts);
}

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
#define MAX_INST_NAME_LEN	40

static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
	struct f_fs_opts *opts;
	char *ptr;
	const char *tmp;
	int name_len, ret;

	name_len = strlen(name) + 1;
	if (name_len > MAX_INST_NAME_LEN)
		return -ENAMETOOLONG;

	ptr = kstrndup(name, name_len, GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	opts = to_f_fs_opts(fi);
	tmp = NULL;

	ffs_dev_lock();

	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
	ret = _ffs_name_dev(opts->dev, ptr);
	if (ret) {
		kfree(ptr);
		ffs_dev_unlock();
		return ret;
	}
	opts->dev->name_allocated = true;

	ffs_dev_unlock();

	kfree(tmp);

	return 0;
}

3398 3399 3400 3401 3402 3403 3404 3405 3406
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3407
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3408 3409
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3410
	dev = _ffs_alloc_dev();
3411 3412 3413 3414 3415 3416
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3417
	dev->opts = opts;
3418

3419 3420
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
	do {
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
	} while (--count);
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3466
	func->function.ss_descriptors = NULL;
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3489
	func->function.req_match = ffs_func_req_match;
3490 3491 3492 3493 3494 3495 3496
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3497 3498 3499
/*
 * ffs_lock must be taken by the caller of this function
 */
3500
static struct ffs_dev *_ffs_alloc_dev(void)
3501 3502 3503 3504
{
	struct ffs_dev *dev;
	int ret;

3505
	if (_ffs_get_single_dev())
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

/*
 * ffs_lock must be taken by the caller of this function
 * The caller is responsible for "name" being available whenever f_fs needs it
 */
static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
{
	struct ffs_dev *existing;

3533
	existing = _ffs_do_find_dev(name);
3534 3535
	if (existing)
		return -EBUSY;
3536

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	dev->name = name;

	return 0;
}

/*
 * The caller is responsible for "name" being available whenever f_fs needs it
 */
int ffs_name_dev(struct ffs_dev *dev, const char *name)
{
	int ret;

	ffs_dev_lock();
	ret = _ffs_name_dev(dev, name);
	ffs_dev_unlock();

	return ret;
}
3555
EXPORT_SYMBOL_GPL(ffs_name_dev);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3572
EXPORT_SYMBOL_GPL(ffs_single_dev);
3573 3574 3575 3576

/*
 * ffs_lock must be taken by the caller of this function
 */
3577
static void _ffs_free_dev(struct ffs_dev *dev)
3578 3579
{
	list_del(&dev->entry);
3580 3581
	if (dev->name_allocated)
		kfree(dev->name);
3582 3583 3584 3585 3586

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3599
	ffs_dev = _ffs_find_dev(dev_name);
3600
	if (!ffs_dev)
3601
		ffs_dev = ERR_PTR(-ENOENT);
3602 3603
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3604 3605
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3606
		ffs_dev = ERR_PTR(-ENOENT);
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3622
	if (ffs_dev) {
3623
		ffs_dev->mounted = false;
3624 3625 3626 3627

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3653
	if (ffs_obj->ffs_ready_callback) {
3654
		ret = ffs_obj->ffs_ready_callback(ffs);
3655 3656 3657
		if (ret)
			goto done;
	}
3658

3659
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3660 3661 3662 3663 3664 3665 3666 3667
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3668
	struct f_fs_opts *opts;
3669
	struct config_item *ci;
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;

3680 3681
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3682
		ffs_obj->ffs_closed_callback(ffs);
3683

3684 3685 3686 3687 3688 3689
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3690
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3691 3692
		goto done;

3693 3694 3695 3696 3697
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

	unregister_gadget_item(ci);
	return;
3698 3699 3700 3701
done:
	ffs_dev_unlock();
}

3702 3703 3704 3705 3706 3707 3708 3709 3710
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3711
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3722
	if (unlikely(copy_from_user(data, buf, len))) {
3723 3724 3725 3726
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3727
	pr_vdebug("Buffer from user space:\n");
3728 3729 3730 3731
	ffs_dump_mem("", data, len);

	return data;
}
3732 3733 3734 3735

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");