swap.c 30.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  linux/mm/swap.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
S
Simon Arlott 已提交
8
 * This file contains the default values for the operation of the
L
Linus Torvalds 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * Linux VM subsystem. Fine-tuning documentation can be found in
 * Documentation/sysctl/vm.txt.
 * Started 18.12.91
 * Swap aging added 23.2.95, Stephen Tweedie.
 * Buffermem limits added 12.3.98, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/init.h>
24
#include <linux/export.h>
L
Linus Torvalds 已提交
25 26 27 28 29
#include <linux/mm_inline.h>
#include <linux/percpu_counter.h>
#include <linux/percpu.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
P
Peter Zijlstra 已提交
30
#include <linux/backing-dev.h>
31
#include <linux/memcontrol.h>
32
#include <linux/gfp.h>
33
#include <linux/uio.h>
L
Linus Torvalds 已提交
34

35 36
#include "internal.h"

37 38 39
#define CREATE_TRACE_POINTS
#include <trace/events/pagemap.h>

L
Linus Torvalds 已提交
40 41 42
/* How many pages do we try to swap or page in/out together? */
int page_cluster;

43
static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44
static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
M
Minchan Kim 已提交
45
static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46

A
Adrian Bunk 已提交
47 48 49 50
/*
 * This path almost never happens for VM activity - pages are normally
 * freed via pagevecs.  But it gets used by networking.
 */
H
Harvey Harrison 已提交
51
static void __page_cache_release(struct page *page)
A
Adrian Bunk 已提交
52 53 54
{
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
55 56
		struct lruvec *lruvec;
		unsigned long flags;
A
Adrian Bunk 已提交
57 58

		spin_lock_irqsave(&zone->lru_lock, flags);
59
		lruvec = mem_cgroup_page_lruvec(page, zone);
60
		VM_BUG_ON_PAGE(!PageLRU(page), page);
A
Adrian Bunk 已提交
61
		__ClearPageLRU(page);
62
		del_page_from_lru_list(page, lruvec, page_off_lru(page));
A
Adrian Bunk 已提交
63 64
		spin_unlock_irqrestore(&zone->lru_lock, flags);
	}
65 66 67 68 69
}

static void __put_single_page(struct page *page)
{
	__page_cache_release(page);
70
	free_hot_cold_page(page, false);
A
Adrian Bunk 已提交
71 72
}

73
static void __put_compound_page(struct page *page)
L
Linus Torvalds 已提交
74
{
75
	compound_page_dtor *dtor;
L
Linus Torvalds 已提交
76

77 78 79 80 81
	__page_cache_release(page);
	dtor = get_compound_page_dtor(page);
	(*dtor)(page);
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/**
 * Two special cases here: we could avoid taking compound_lock_irqsave
 * and could skip the tail refcounting(in _mapcount).
 *
 * 1. Hugetlbfs page:
 *
 *    PageHeadHuge will remain true until the compound page
 *    is released and enters the buddy allocator, and it could
 *    not be split by __split_huge_page_refcount().
 *
 *    So if we see PageHeadHuge set, and we have the tail page pin,
 *    then we could safely put head page.
 *
 * 2. Slab THP page:
 *
 *    PG_slab is cleared before the slab frees the head page, and
 *    tail pin cannot be the last reference left on the head page,
 *    because the slab code is free to reuse the compound page
 *    after a kfree/kmem_cache_free without having to check if
 *    there's any tail pin left.  In turn all tail pinsmust be always
 *    released while the head is still pinned by the slab code
 *    and so we know PG_slab will be still set too.
 *
 *    So if we see PageSlab set, and we have the tail page pin,
 *    then we could safely put head page.
 */
static __always_inline
void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
{
	/*
	 * If @page is a THP tail, we must read the tail page
	 * flags after the head page flags. The
	 * __split_huge_page_refcount side enforces write memory barriers
	 * between clearing PageTail and before the head page
	 * can be freed and reallocated.
	 */
	smp_rmb();
	if (likely(PageTail(page))) {
		/*
		 * __split_huge_page_refcount cannot race
		 * here, see the comment above this function.
		 */
		VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
		VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
		if (put_page_testzero(page_head)) {
			/*
			 * If this is the tail of a slab THP page,
			 * the tail pin must not be the last reference
			 * held on the page, because the PG_slab cannot
			 * be cleared before all tail pins (which skips
			 * the _mapcount tail refcounting) have been
			 * released.
			 *
			 * If this is the tail of a hugetlbfs page,
			 * the tail pin may be the last reference on
			 * the page instead, because PageHeadHuge will
			 * not go away until the compound page enters
			 * the buddy allocator.
			 */
			VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
			__put_compound_page(page_head);
		}
	} else
		/*
		 * __split_huge_page_refcount run before us,
		 * @page was a THP tail. The split @page_head
		 * has been freed and reallocated as slab or
		 * hugetlbfs page of smaller order (only
		 * possible if reallocated as slab on x86).
		 */
		if (put_page_testzero(page))
			__put_single_page(page);
}

static __always_inline
void put_refcounted_compound_page(struct page *page_head, struct page *page)
{
	if (likely(page != page_head && get_page_unless_zero(page_head))) {
		unsigned long flags;

		/*
		 * @page_head wasn't a dangling pointer but it may not
		 * be a head page anymore by the time we obtain the
		 * lock. That is ok as long as it can't be freed from
		 * under us.
		 */
		flags = compound_lock_irqsave(page_head);
		if (unlikely(!PageTail(page))) {
			/* __split_huge_page_refcount run before us */
			compound_unlock_irqrestore(page_head, flags);
			if (put_page_testzero(page_head)) {
				/*
				 * The @page_head may have been freed
				 * and reallocated as a compound page
				 * of smaller order and then freed
				 * again.  All we know is that it
				 * cannot have become: a THP page, a
				 * compound page of higher order, a
				 * tail page.  That is because we
				 * still hold the refcount of the
				 * split THP tail and page_head was
				 * the THP head before the split.
				 */
				if (PageHead(page_head))
					__put_compound_page(page_head);
				else
					__put_single_page(page_head);
			}
out_put_single:
			if (put_page_testzero(page))
				__put_single_page(page);
			return;
		}
		VM_BUG_ON_PAGE(page_head != page->first_page, page);
		/*
		 * We can release the refcount taken by
		 * get_page_unless_zero() now that
		 * __split_huge_page_refcount() is blocked on the
		 * compound_lock.
		 */
		if (put_page_testzero(page_head))
			VM_BUG_ON_PAGE(1, page_head);
		/* __split_huge_page_refcount will wait now */
		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
		atomic_dec(&page->_mapcount);
		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
		compound_unlock_irqrestore(page_head, flags);

		if (put_page_testzero(page_head)) {
			if (PageHead(page_head))
				__put_compound_page(page_head);
			else
				__put_single_page(page_head);
		}
	} else {
		/* @page_head is a dangling pointer */
		VM_BUG_ON_PAGE(PageTail(page), page);
		goto out_put_single;
	}
}

224 225
static void put_compound_page(struct page *page)
{
226
	struct page *page_head;
227

228 229 230 231 232
	/*
	 * We see the PageCompound set and PageTail not set, so @page maybe:
	 *  1. hugetlbfs head page, or
	 *  2. THP head page.
	 */
233 234
	if (likely(!PageTail(page))) {
		if (put_page_testzero(page)) {
235
			/*
236 237
			 * By the time all refcounts have been released
			 * split_huge_page cannot run anymore from under us.
238
			 */
239 240 241 242
			if (PageHead(page))
				__put_compound_page(page);
			else
				__put_single_page(page);
243
		}
244 245
		return;
	}
246

247
	/*
248 249 250 251
	 * We see the PageCompound set and PageTail set, so @page maybe:
	 *  1. a tail hugetlbfs page, or
	 *  2. a tail THP page, or
	 *  3. a split THP page.
252
	 *
253 254
	 *  Case 3 is possible, as we may race with
	 *  __split_huge_page_refcount tearing down a THP page.
255
	 */
256
	page_head = compound_head_by_tail(page);
257 258 259 260
	if (!__compound_tail_refcounted(page_head))
		put_unrefcounted_compound_page(page_head, page);
	else
		put_refcounted_compound_page(page_head, page);
N
Nick Piggin 已提交
261 262 263 264 265 266 267
}

void put_page(struct page *page)
{
	if (unlikely(PageCompound(page)))
		put_compound_page(page);
	else if (put_page_testzero(page))
268
		__put_single_page(page);
L
Linus Torvalds 已提交
269 270 271
}
EXPORT_SYMBOL(put_page);

272 273 274 275 276 277 278 279 280 281 282 283 284 285
/*
 * This function is exported but must not be called by anything other
 * than get_page(). It implements the slow path of get_page().
 */
bool __get_page_tail(struct page *page)
{
	/*
	 * This takes care of get_page() if run on a tail page
	 * returned by one of the get_user_pages/follow_page variants.
	 * get_user_pages/follow_page itself doesn't need the compound
	 * lock because it runs __get_page_tail_foll() under the
	 * proper PT lock that already serializes against
	 * split_huge_page().
	 */
286
	unsigned long flags;
287
	bool got;
D
David Rientjes 已提交
288
	struct page *page_head = compound_head(page);
289

290
	/* Ref to put_compound_page() comment. */
291
	if (!__compound_tail_refcounted(page_head)) {
292 293 294 295 296 297 298
		smp_rmb();
		if (likely(PageTail(page))) {
			/*
			 * This is a hugetlbfs page or a slab
			 * page. __split_huge_page_refcount
			 * cannot race here.
			 */
299
			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
300 301 302 303 304 305 306 307 308 309 310 311 312
			__get_page_tail_foll(page, true);
			return true;
		} else {
			/*
			 * __split_huge_page_refcount run
			 * before us, "page" was a THP
			 * tail. The split page_head has been
			 * freed and reallocated as slab or
			 * hugetlbfs page of smaller order
			 * (only possible if reallocated as
			 * slab on x86).
			 */
			return false;
313
		}
314
	}
315

316 317
	got = false;
	if (likely(page != page_head && get_page_unless_zero(page_head))) {
318 319 320 321 322 323 324 325 326 327 328
		/*
		 * page_head wasn't a dangling pointer but it
		 * may not be a head page anymore by the time
		 * we obtain the lock. That is ok as long as it
		 * can't be freed from under us.
		 */
		flags = compound_lock_irqsave(page_head);
		/* here __split_huge_page_refcount won't run anymore */
		if (likely(PageTail(page))) {
			__get_page_tail_foll(page, false);
			got = true;
329
		}
330 331 332
		compound_unlock_irqrestore(page_head, flags);
		if (unlikely(!got))
			put_page(page_head);
333 334 335 336 337
	}
	return got;
}
EXPORT_SYMBOL(__get_page_tail);

338
/**
339 340
 * put_pages_list() - release a list of pages
 * @pages: list of pages threaded on page->lru
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
 *
 * Release a list of pages which are strung together on page.lru.  Currently
 * used by read_cache_pages() and related error recovery code.
 */
void put_pages_list(struct list_head *pages)
{
	while (!list_empty(pages)) {
		struct page *victim;

		victim = list_entry(pages->prev, struct page, lru);
		list_del(&victim->lru);
		page_cache_release(victim);
	}
}
EXPORT_SYMBOL(put_pages_list);

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/*
 * get_kernel_pages() - pin kernel pages in memory
 * @kiov:	An array of struct kvec structures
 * @nr_segs:	number of segments to pin
 * @write:	pinning for read/write, currently ignored
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_segs long.
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with.
 */
int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
		struct page **pages)
{
	int seg;

	for (seg = 0; seg < nr_segs; seg++) {
		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
			return seg;

379
		pages[seg] = kmap_to_page(kiov[seg].iov_base);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
		page_cache_get(pages[seg]);
	}

	return seg;
}
EXPORT_SYMBOL_GPL(get_kernel_pages);

/*
 * get_kernel_page() - pin a kernel page in memory
 * @start:	starting kernel address
 * @write:	pinning for read/write, currently ignored
 * @pages:	array that receives pointer to the page pinned.
 *		Must be at least nr_segs long.
 *
 * Returns 1 if page is pinned. If the page was not pinned, returns
 * -errno. The page returned must be released with a put_page() call
 * when it is finished with.
 */
int get_kernel_page(unsigned long start, int write, struct page **pages)
{
	const struct kvec kiov = {
		.iov_base = (void *)start,
		.iov_len = PAGE_SIZE
	};

	return get_kernel_pages(&kiov, 1, write, pages);
}
EXPORT_SYMBOL_GPL(get_kernel_page);

S
Shaohua Li 已提交
409
static void pagevec_lru_move_fn(struct pagevec *pvec,
410 411
	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
	void *arg)
412 413 414
{
	int i;
	struct zone *zone = NULL;
415
	struct lruvec *lruvec;
S
Shaohua Li 已提交
416
	unsigned long flags = 0;
417 418 419 420 421 422 423

	for (i = 0; i < pagevec_count(pvec); i++) {
		struct page *page = pvec->pages[i];
		struct zone *pagezone = page_zone(page);

		if (pagezone != zone) {
			if (zone)
S
Shaohua Li 已提交
424
				spin_unlock_irqrestore(&zone->lru_lock, flags);
425
			zone = pagezone;
S
Shaohua Li 已提交
426
			spin_lock_irqsave(&zone->lru_lock, flags);
427
		}
S
Shaohua Li 已提交
428

429 430
		lruvec = mem_cgroup_page_lruvec(page, zone);
		(*move_fn)(page, lruvec, arg);
431 432
	}
	if (zone)
S
Shaohua Li 已提交
433
		spin_unlock_irqrestore(&zone->lru_lock, flags);
434 435
	release_pages(pvec->pages, pvec->nr, pvec->cold);
	pagevec_reinit(pvec);
S
Shaohua Li 已提交
436 437
}

438 439
static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
				 void *arg)
S
Shaohua Li 已提交
440 441 442 443 444
{
	int *pgmoved = arg;

	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
		enum lru_list lru = page_lru_base_type(page);
445
		list_move_tail(&page->lru, &lruvec->lists[lru]);
S
Shaohua Li 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		(*pgmoved)++;
	}
}

/*
 * pagevec_move_tail() must be called with IRQ disabled.
 * Otherwise this may cause nasty races.
 */
static void pagevec_move_tail(struct pagevec *pvec)
{
	int pgmoved = 0;

	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
	__count_vm_events(PGROTATED, pgmoved);
}

L
Linus Torvalds 已提交
462 463 464
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
465
 * inactive list.
L
Linus Torvalds 已提交
466
 */
S
Shaohua Li 已提交
467
void rotate_reclaimable_page(struct page *page)
L
Linus Torvalds 已提交
468
{
469
	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
L
Lee Schermerhorn 已提交
470
	    !PageUnevictable(page) && PageLRU(page)) {
471 472 473 474 475
		struct pagevec *pvec;
		unsigned long flags;

		page_cache_get(page);
		local_irq_save(flags);
476
		pvec = this_cpu_ptr(&lru_rotate_pvecs);
477 478 479 480
		if (!pagevec_add(pvec, page))
			pagevec_move_tail(pvec);
		local_irq_restore(flags);
	}
L
Linus Torvalds 已提交
481 482
}

483
static void update_page_reclaim_stat(struct lruvec *lruvec,
K
KOSAKI Motohiro 已提交
484 485
				     int file, int rotated)
{
486
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
K
KOSAKI Motohiro 已提交
487 488 489 490 491 492

	reclaim_stat->recent_scanned[file]++;
	if (rotated)
		reclaim_stat->recent_rotated[file]++;
}

493 494
static void __activate_page(struct page *page, struct lruvec *lruvec,
			    void *arg)
L
Linus Torvalds 已提交
495
{
496
	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
497 498
		int file = page_is_file_cache(page);
		int lru = page_lru_base_type(page);
499

500
		del_page_from_lru_list(page, lruvec, lru);
501 502
		SetPageActive(page);
		lru += LRU_ACTIVE;
503
		add_page_to_lru_list(page, lruvec, lru);
504
		trace_mm_lru_activate(page, page_to_pfn(page));
505

506 507
		__count_vm_event(PGACTIVATE);
		update_page_reclaim_stat(lruvec, file, 1);
L
Linus Torvalds 已提交
508
	}
509 510 511 512 513 514 515 516 517 518 519 520 521
}

#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);

static void activate_page_drain(int cpu)
{
	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);

	if (pagevec_count(pvec))
		pagevec_lru_move_fn(pvec, __activate_page, NULL);
}

522 523 524 525 526
static bool need_activate_page_drain(int cpu)
{
	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
void activate_page(struct page *page)
{
	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);

		page_cache_get(page);
		if (!pagevec_add(pvec, page))
			pagevec_lru_move_fn(pvec, __activate_page, NULL);
		put_cpu_var(activate_page_pvecs);
	}
}

#else
static inline void activate_page_drain(int cpu)
{
}

544 545 546 547 548
static bool need_activate_page_drain(int cpu)
{
	return false;
}

549 550 551 552 553
void activate_page(struct page *page)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
554
	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
L
Linus Torvalds 已提交
555 556
	spin_unlock_irq(&zone->lru_lock);
}
557
#endif
L
Linus Torvalds 已提交
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static void __lru_cache_activate_page(struct page *page)
{
	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
	int i;

	/*
	 * Search backwards on the optimistic assumption that the page being
	 * activated has just been added to this pagevec. Note that only
	 * the local pagevec is examined as a !PageLRU page could be in the
	 * process of being released, reclaimed, migrated or on a remote
	 * pagevec that is currently being drained. Furthermore, marking
	 * a remote pagevec's page PageActive potentially hits a race where
	 * a page is marked PageActive just after it is added to the inactive
	 * list causing accounting errors and BUG_ON checks to trigger.
	 */
	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
		struct page *pagevec_page = pvec->pages[i];

		if (pagevec_page == page) {
			SetPageActive(page);
			break;
		}
	}

	put_cpu_var(lru_add_pvec);
}

L
Linus Torvalds 已提交
586 587 588 589 590 591
/*
 * Mark a page as having seen activity.
 *
 * inactive,unreferenced	->	inactive,referenced
 * inactive,referenced		->	active,unreferenced
 * active,unreferenced		->	active,referenced
592 593 594
 *
 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
L
Linus Torvalds 已提交
595
 */
H
Harvey Harrison 已提交
596
void mark_page_accessed(struct page *page)
L
Linus Torvalds 已提交
597
{
L
Lee Schermerhorn 已提交
598
	if (!PageActive(page) && !PageUnevictable(page) &&
599 600 601 602 603 604 605 606 607 608 609 610
			PageReferenced(page)) {

		/*
		 * If the page is on the LRU, queue it for activation via
		 * activate_page_pvecs. Otherwise, assume the page is on a
		 * pagevec, mark it active and it'll be moved to the active
		 * LRU on the next drain.
		 */
		if (PageLRU(page))
			activate_page(page);
		else
			__lru_cache_activate_page(page);
L
Linus Torvalds 已提交
611
		ClearPageReferenced(page);
612 613
		if (page_is_file_cache(page))
			workingset_activation(page);
L
Linus Torvalds 已提交
614 615 616 617 618 619
	} else if (!PageReferenced(page)) {
		SetPageReferenced(page);
	}
}
EXPORT_SYMBOL(mark_page_accessed);

620
static void __lru_cache_add(struct page *page)
L
Linus Torvalds 已提交
621
{
622 623
	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);

L
Linus Torvalds 已提交
624
	page_cache_get(page);
625
	if (!pagevec_space(pvec))
626
		__pagevec_lru_add(pvec);
627
	pagevec_add(pvec, page);
628
	put_cpu_var(lru_add_pvec);
L
Linus Torvalds 已提交
629
}
630 631 632 633 634 635 636

/**
 * lru_cache_add: add a page to the page lists
 * @page: the page to add
 */
void lru_cache_add_anon(struct page *page)
{
637 638
	if (PageActive(page))
		ClearPageActive(page);
639 640 641 642 643
	__lru_cache_add(page);
}

void lru_cache_add_file(struct page *page)
{
644 645
	if (PageActive(page))
		ClearPageActive(page);
646 647 648
	__lru_cache_add(page);
}
EXPORT_SYMBOL(lru_cache_add_file);
L
Linus Torvalds 已提交
649

650
/**
651
 * lru_cache_add - add a page to a page list
652
 * @page: the page to be added to the LRU.
653 654 655 656 657
 *
 * Queue the page for addition to the LRU via pagevec. The decision on whether
 * to add the page to the [in]active [file|anon] list is deferred until the
 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 * have the page added to the active list using mark_page_accessed().
658
 */
659
void lru_cache_add(struct page *page)
L
Linus Torvalds 已提交
660
{
661 662
	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
	VM_BUG_ON_PAGE(PageLRU(page), page);
663
	__lru_cache_add(page);
L
Linus Torvalds 已提交
664 665
}

L
Lee Schermerhorn 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * add_page_to_unevictable_list - add a page to the unevictable list
 * @page:  the page to be added to the unevictable list
 *
 * Add page directly to its zone's unevictable list.  To avoid races with
 * tasks that might be making the page evictable, through eg. munlock,
 * munmap or exit, while it's not on the lru, we want to add the page
 * while it's locked or otherwise "invisible" to other tasks.  This is
 * difficult to do when using the pagevec cache, so bypass that.
 */
void add_page_to_unevictable_list(struct page *page)
{
	struct zone *zone = page_zone(page);
679
	struct lruvec *lruvec;
L
Lee Schermerhorn 已提交
680 681

	spin_lock_irq(&zone->lru_lock);
682
	lruvec = mem_cgroup_page_lruvec(page, zone);
683
	ClearPageActive(page);
L
Lee Schermerhorn 已提交
684 685
	SetPageUnevictable(page);
	SetPageLRU(page);
686
	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
L
Lee Schermerhorn 已提交
687 688 689
	spin_unlock_irq(&zone->lru_lock);
}

M
Minchan Kim 已提交
690 691 692 693 694 695
/*
 * If the page can not be invalidated, it is moved to the
 * inactive list to speed up its reclaim.  It is moved to the
 * head of the list, rather than the tail, to give the flusher
 * threads some time to write it out, as this is much more
 * effective than the single-page writeout from reclaim.
M
Minchan Kim 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709
 *
 * If the page isn't page_mapped and dirty/writeback, the page
 * could reclaim asap using PG_reclaim.
 *
 * 1. active, mapped page -> none
 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 * 3. inactive, mapped page -> none
 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 * 5. inactive, clean -> inactive, tail
 * 6. Others -> none
 *
 * In 4, why it moves inactive's head, the VM expects the page would
 * be write it out by flusher threads as this is much more effective
 * than the single-page writeout from reclaim.
M
Minchan Kim 已提交
710
 */
711 712
static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
			      void *arg)
M
Minchan Kim 已提交
713 714
{
	int lru, file;
M
Minchan Kim 已提交
715
	bool active;
M
Minchan Kim 已提交
716

M
Minchan Kim 已提交
717
	if (!PageLRU(page))
M
Minchan Kim 已提交
718 719
		return;

720 721 722
	if (PageUnevictable(page))
		return;

M
Minchan Kim 已提交
723 724 725 726
	/* Some processes are using the page */
	if (page_mapped(page))
		return;

M
Minchan Kim 已提交
727
	active = PageActive(page);
M
Minchan Kim 已提交
728 729
	file = page_is_file_cache(page);
	lru = page_lru_base_type(page);
730 731

	del_page_from_lru_list(page, lruvec, lru + active);
M
Minchan Kim 已提交
732 733
	ClearPageActive(page);
	ClearPageReferenced(page);
734
	add_page_to_lru_list(page, lruvec, lru);
M
Minchan Kim 已提交
735

M
Minchan Kim 已提交
736 737 738 739 740 741 742 743 744 745 746 747
	if (PageWriteback(page) || PageDirty(page)) {
		/*
		 * PG_reclaim could be raced with end_page_writeback
		 * It can make readahead confusing.  But race window
		 * is _really_ small and  it's non-critical problem.
		 */
		SetPageReclaim(page);
	} else {
		/*
		 * The page's writeback ends up during pagevec
		 * We moves tha page into tail of inactive.
		 */
748
		list_move_tail(&page->lru, &lruvec->lists[lru]);
M
Minchan Kim 已提交
749 750 751 752 753
		__count_vm_event(PGROTATED);
	}

	if (active)
		__count_vm_event(PGDEACTIVATE);
754
	update_page_reclaim_stat(lruvec, file, 0);
M
Minchan Kim 已提交
755 756
}

757 758 759 760 761
/*
 * Drain pages out of the cpu's pagevecs.
 * Either "cpu" is the current CPU, and preemption has already been
 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 */
762
void lru_add_drain_cpu(int cpu)
L
Linus Torvalds 已提交
763
{
764
	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
L
Linus Torvalds 已提交
765

766
	if (pagevec_count(pvec))
767
		__pagevec_lru_add(pvec);
768 769 770 771 772 773 774 775 776 777

	pvec = &per_cpu(lru_rotate_pvecs, cpu);
	if (pagevec_count(pvec)) {
		unsigned long flags;

		/* No harm done if a racing interrupt already did this */
		local_irq_save(flags);
		pagevec_move_tail(pvec);
		local_irq_restore(flags);
	}
M
Minchan Kim 已提交
778 779 780

	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
	if (pagevec_count(pvec))
S
Shaohua Li 已提交
781
		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
782 783

	activate_page_drain(cpu);
M
Minchan Kim 已提交
784 785 786 787 788 789 790 791 792 793 794 795
}

/**
 * deactivate_page - forcefully deactivate a page
 * @page: page to deactivate
 *
 * This function hints the VM that @page is a good reclaim candidate,
 * for example if its invalidation fails due to the page being dirty
 * or under writeback.
 */
void deactivate_page(struct page *page)
{
796 797 798 799 800 801 802
	/*
	 * In a workload with many unevictable page such as mprotect, unevictable
	 * page deactivation for accelerating reclaim is pointless.
	 */
	if (PageUnevictable(page))
		return;

M
Minchan Kim 已提交
803 804 805 806
	if (likely(get_page_unless_zero(page))) {
		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);

		if (!pagevec_add(pvec, page))
S
Shaohua Li 已提交
807
			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
M
Minchan Kim 已提交
808 809
		put_cpu_var(lru_deactivate_pvecs);
	}
810 811 812 813
}

void lru_add_drain(void)
{
814
	lru_add_drain_cpu(get_cpu());
815
	put_cpu();
L
Linus Torvalds 已提交
816 817
}

D
David Howells 已提交
818
static void lru_add_drain_per_cpu(struct work_struct *dummy)
819 820 821 822
{
	lru_add_drain();
}

823 824 825
static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);

void lru_add_drain_all(void)
826
{
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	static DEFINE_MUTEX(lock);
	static struct cpumask has_work;
	int cpu;

	mutex_lock(&lock);
	get_online_cpus();
	cpumask_clear(&has_work);

	for_each_online_cpu(cpu) {
		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);

		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
		    need_activate_page_drain(cpu)) {
			INIT_WORK(work, lru_add_drain_per_cpu);
			schedule_work_on(cpu, work);
			cpumask_set_cpu(cpu, &has_work);
		}
	}

	for_each_cpu(cpu, &has_work)
		flush_work(&per_cpu(lru_add_drain_work, cpu));

	put_online_cpus();
	mutex_unlock(&lock);
853 854
}

L
Linus Torvalds 已提交
855 856 857 858 859 860 861 862
/*
 * Batched page_cache_release().  Decrement the reference count on all the
 * passed pages.  If it fell to zero then remove the page from the LRU and
 * free it.
 *
 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
 * for the remainder of the operation.
 *
863 864 865 866
 * The locking in this function is against shrink_inactive_list(): we recheck
 * the page count inside the lock to see whether shrink_inactive_list()
 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
 * will free it.
L
Linus Torvalds 已提交
867
 */
868
void release_pages(struct page **pages, int nr, bool cold)
L
Linus Torvalds 已提交
869 870
{
	int i;
871
	LIST_HEAD(pages_to_free);
L
Linus Torvalds 已提交
872
	struct zone *zone = NULL;
873
	struct lruvec *lruvec;
874
	unsigned long uninitialized_var(flags);
L
Linus Torvalds 已提交
875 876 877 878

	for (i = 0; i < nr; i++) {
		struct page *page = pages[i];

N
Nick Piggin 已提交
879 880
		if (unlikely(PageCompound(page))) {
			if (zone) {
881
				spin_unlock_irqrestore(&zone->lru_lock, flags);
N
Nick Piggin 已提交
882 883 884 885 886 887
				zone = NULL;
			}
			put_compound_page(page);
			continue;
		}

N
Nick Piggin 已提交
888
		if (!put_page_testzero(page))
L
Linus Torvalds 已提交
889 890
			continue;

891 892
		if (PageLRU(page)) {
			struct zone *pagezone = page_zone(page);
L
Lee Schermerhorn 已提交
893

894 895
			if (pagezone != zone) {
				if (zone)
896 897
					spin_unlock_irqrestore(&zone->lru_lock,
									flags);
898
				zone = pagezone;
899
				spin_lock_irqsave(&zone->lru_lock, flags);
900
			}
901 902

			lruvec = mem_cgroup_page_lruvec(page, zone);
903
			VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
904
			__ClearPageLRU(page);
905
			del_page_from_lru_list(page, lruvec, page_off_lru(page));
906 907
		}

908
		/* Clear Active bit in case of parallel mark_page_accessed */
909
		__ClearPageActive(page);
910

911
		list_add(&page->lru, &pages_to_free);
L
Linus Torvalds 已提交
912 913
	}
	if (zone)
914
		spin_unlock_irqrestore(&zone->lru_lock, flags);
L
Linus Torvalds 已提交
915

916
	free_hot_cold_page_list(&pages_to_free, cold);
L
Linus Torvalds 已提交
917
}
M
Miklos Szeredi 已提交
918
EXPORT_SYMBOL(release_pages);
L
Linus Torvalds 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

/*
 * The pages which we're about to release may be in the deferred lru-addition
 * queues.  That would prevent them from really being freed right now.  That's
 * OK from a correctness point of view but is inefficient - those pages may be
 * cache-warm and we want to give them back to the page allocator ASAP.
 *
 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 * mutual recursion.
 */
void __pagevec_release(struct pagevec *pvec)
{
	lru_add_drain();
	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
	pagevec_reinit(pvec);
}
936 937
EXPORT_SYMBOL(__pagevec_release);

938
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
939
/* used by __split_huge_page_refcount() */
940
void lru_add_page_tail(struct page *page, struct page *page_tail,
941
		       struct lruvec *lruvec, struct list_head *list)
942 943 944
{
	const int file = 0;

945 946 947
	VM_BUG_ON_PAGE(!PageHead(page), page);
	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
948 949
	VM_BUG_ON(NR_CPUS != 1 &&
		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
950

951 952
	if (!list)
		SetPageLRU(page_tail);
953

954 955
	if (likely(PageLRU(page)))
		list_add_tail(&page_tail->lru, &page->lru);
956 957 958 959 960
	else if (list) {
		/* page reclaim is reclaiming a huge page */
		get_page(page_tail);
		list_add_tail(&page_tail->lru, list);
	} else {
961 962 963 964 965 966 967 968
		struct list_head *list_head;
		/*
		 * Head page has not yet been counted, as an hpage,
		 * so we must account for each subpage individually.
		 *
		 * Use the standard add function to put page_tail on the list,
		 * but then correct its position so they all end up in order.
		 */
969
		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
970 971
		list_head = page_tail->lru.prev;
		list_move_tail(&page_tail->lru, list_head);
972
	}
973 974

	if (!PageUnevictable(page))
975
		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
976
}
977
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
978

979 980
static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
				 void *arg)
S
Shaohua Li 已提交
981
{
982 983 984
	int file = page_is_file_cache(page);
	int active = PageActive(page);
	enum lru_list lru = page_lru(page);
S
Shaohua Li 已提交
985

986
	VM_BUG_ON_PAGE(PageLRU(page), page);
S
Shaohua Li 已提交
987 988

	SetPageLRU(page);
989 990
	add_page_to_lru_list(page, lruvec, lru);
	update_page_reclaim_stat(lruvec, file, active);
991
	trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
S
Shaohua Li 已提交
992 993
}

L
Linus Torvalds 已提交
994 995 996 997
/*
 * Add the passed pages to the LRU, then drop the caller's refcount
 * on them.  Reinitialises the caller's pagevec.
 */
998
void __pagevec_lru_add(struct pagevec *pvec)
L
Linus Torvalds 已提交
999
{
1000
	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
L
Linus Torvalds 已提交
1001
}
1002
EXPORT_SYMBOL(__pagevec_lru_add);
L
Linus Torvalds 已提交
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/**
 * pagevec_lookup_entries - gang pagecache lookup
 * @pvec:	Where the resulting entries are placed
 * @mapping:	The address_space to search
 * @start:	The starting entry index
 * @nr_entries:	The maximum number of entries
 * @indices:	The cache indices corresponding to the entries in @pvec
 *
 * pagevec_lookup_entries() will search for and return a group of up
 * to @nr_entries pages and shadow entries in the mapping.  All
 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
 * reference against actual pages in @pvec.
 *
 * The search returns a group of mapping-contiguous entries with
 * ascending indexes.  There may be holes in the indices due to
 * not-present entries.
 *
 * pagevec_lookup_entries() returns the number of entries which were
 * found.
 */
unsigned pagevec_lookup_entries(struct pagevec *pvec,
				struct address_space *mapping,
				pgoff_t start, unsigned nr_pages,
				pgoff_t *indices)
{
	pvec->nr = find_get_entries(mapping, start, nr_pages,
				    pvec->pages, indices);
	return pagevec_count(pvec);
}

/**
 * pagevec_remove_exceptionals - pagevec exceptionals pruning
 * @pvec:	The pagevec to prune
 *
 * pagevec_lookup_entries() fills both pages and exceptional radix
 * tree entries into the pagevec.  This function prunes all
 * exceptionals from @pvec without leaving holes, so that it can be
 * passed on to page-only pagevec operations.
 */
void pagevec_remove_exceptionals(struct pagevec *pvec)
{
	int i, j;

	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
		struct page *page = pvec->pages[i];
		if (!radix_tree_exceptional_entry(page))
			pvec->pages[j++] = page;
	}
	pvec->nr = j;
}

L
Linus Torvalds 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 * pagevec_lookup - gang pagecache lookup
 * @pvec:	Where the resulting pages are placed
 * @mapping:	The address_space to search
 * @start:	The starting page index
 * @nr_pages:	The maximum number of pages
 *
 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
 * reference against the pages in @pvec.
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
 *
 * pagevec_lookup() returns the number of pages which were found.
 */
unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
		pgoff_t start, unsigned nr_pages)
{
	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
	return pagevec_count(pvec);
}
1077 1078
EXPORT_SYMBOL(pagevec_lookup);

L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084 1085
unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
		pgoff_t *index, int tag, unsigned nr_pages)
{
	pvec->nr = find_get_pages_tag(mapping, index, tag,
					nr_pages, pvec->pages);
	return pagevec_count(pvec);
}
1086
EXPORT_SYMBOL(pagevec_lookup_tag);
L
Linus Torvalds 已提交
1087 1088 1089 1090 1091 1092

/*
 * Perform any setup for the swap system
 */
void __init swap_setup(void)
{
1093
	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
P
Peter Zijlstra 已提交
1094
#ifdef CONFIG_SWAP
1095 1096
	int i;

M
Mikulas Patocka 已提交
1097 1098
	if (bdi_init(swapper_spaces[0].backing_dev_info))
		panic("Failed to init swap bdi");
1099 1100 1101 1102
	for (i = 0; i < MAX_SWAPFILES; i++) {
		spin_lock_init(&swapper_spaces[i].tree_lock);
		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
	}
P
Peter Zijlstra 已提交
1103 1104
#endif

L
Linus Torvalds 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	/* Use a smaller cluster for small-memory machines */
	if (megs < 16)
		page_cluster = 2;
	else
		page_cluster = 3;
	/*
	 * Right now other parts of the system means that we
	 * _really_ don't want to cluster much more
	 */
}