blk-settings.c 27.2 KB
Newer Older
J
Jens Axboe 已提交
1 2 3 4 5 6 7 8 9
/*
 * Functions related to setting various queue properties from drivers
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10
#include <linux/gcd.h>
11
#include <linux/lcm.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
13
#include <linux/gfp.h>
J
Jens Axboe 已提交
14 15 16

#include "blk.h"

17
unsigned long blk_max_low_pfn;
J
Jens Axboe 已提交
18
EXPORT_SYMBOL(blk_max_low_pfn);
19 20

unsigned long blk_max_pfn;
J
Jens Axboe 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

/**
 * blk_queue_prep_rq - set a prepare_request function for queue
 * @q:		queue
 * @pfn:	prepare_request function
 *
 * It's possible for a queue to register a prepare_request callback which
 * is invoked before the request is handed to the request_fn. The goal of
 * the function is to prepare a request for I/O, it can be used to build a
 * cdb from the request data for instance.
 *
 */
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
	q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * blk_queue_unprep_rq - set an unprepare_request function for queue
 * @q:		queue
 * @ufn:	unprepare_request function
 *
 * It's possible for a queue to register an unprepare_request callback
 * which is invoked before the request is finally completed. The goal
 * of the function is to deallocate any data that was allocated in the
 * prepare_request callback.
 *
 */
void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
{
	q->unprep_rq_fn = ufn;
}
EXPORT_SYMBOL(blk_queue_unprep_rq);

J
Jens Axboe 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * blk_queue_merge_bvec - set a merge_bvec function for queue
 * @q:		queue
 * @mbfn:	merge_bvec_fn
 *
 * Usually queues have static limitations on the max sectors or segments that
 * we can put in a request. Stacking drivers may have some settings that
 * are dynamic, and thus we have to query the queue whether it is ok to
 * add a new bio_vec to a bio at a given offset or not. If the block device
 * has such limitations, it needs to register a merge_bvec_fn to control
 * the size of bio's sent to it. Note that a block device *must* allow a
 * single page to be added to an empty bio. The block device driver may want
 * to use the bio_split() function to deal with these bio's. By default
 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
 * honored.
 */
void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
{
	q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);

void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
	q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);

J
Jens Axboe 已提交
84 85 86 87 88 89 90 91 92 93 94 95
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
	q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);

void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
{
	q->rq_timed_out_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);

96 97 98 99 100 101
void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
{
	q->lld_busy_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_lld_busy);

102 103
/**
 * blk_set_default_limits - reset limits to default values
104
 * @lim:  the queue_limits structure to reset
105 106
 *
 * Description:
107
 *   Returns a queue_limit struct to its default state.
108 109 110
 */
void blk_set_default_limits(struct queue_limits *lim)
{
111
	lim->max_segments = BLK_MAX_SEGMENTS;
112
	lim->max_integrity_segments = 0;
113
	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114
	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115
	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116
	lim->chunk_sectors = 0;
117
	lim->max_write_same_sectors = 0;
118 119 120 121
	lim->max_discard_sectors = 0;
	lim->discard_granularity = 0;
	lim->discard_alignment = 0;
	lim->discard_misaligned = 0;
122
	lim->discard_zeroes_data = 0;
123
	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
124
	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
125 126 127
	lim->alignment_offset = 0;
	lim->io_opt = 0;
	lim->misaligned = 0;
128
	lim->cluster = 1;
129 130 131
}
EXPORT_SYMBOL(blk_set_default_limits);

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/**
 * blk_set_stacking_limits - set default limits for stacking devices
 * @lim:  the queue_limits structure to reset
 *
 * Description:
 *   Returns a queue_limit struct to its default state. Should be used
 *   by stacking drivers like DM that have no internal limits.
 */
void blk_set_stacking_limits(struct queue_limits *lim)
{
	blk_set_default_limits(lim);

	/* Inherit limits from component devices */
	lim->discard_zeroes_data = 1;
	lim->max_segments = USHRT_MAX;
	lim->max_hw_sectors = UINT_MAX;
148
	lim->max_segment_size = UINT_MAX;
149
	lim->max_sectors = UINT_MAX;
150
	lim->max_write_same_sectors = UINT_MAX;
151 152 153
}
EXPORT_SYMBOL(blk_set_stacking_limits);

J
Jens Axboe 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/**
 * blk_queue_make_request - define an alternate make_request function for a device
 * @q:  the request queue for the device to be affected
 * @mfn: the alternate make_request function
 *
 * Description:
 *    The normal way for &struct bios to be passed to a device
 *    driver is for them to be collected into requests on a request
 *    queue, and then to allow the device driver to select requests
 *    off that queue when it is ready.  This works well for many block
 *    devices. However some block devices (typically virtual devices
 *    such as md or lvm) do not benefit from the processing on the
 *    request queue, and are served best by having the requests passed
 *    directly to them.  This can be achieved by providing a function
 *    to blk_queue_make_request().
 *
 * Caveat:
 *    The driver that does this *must* be able to deal appropriately
 *    with buffers in "highmemory". This can be accomplished by either calling
 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
 *    blk_queue_bounce() to create a buffer in normal memory.
 **/
176
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
J
Jens Axboe 已提交
177 178 179 180 181
{
	/*
	 * set defaults
	 */
	q->nr_requests = BLKDEV_MAX_RQ;
182

J
Jens Axboe 已提交
183 184 185 186 187
	q->make_request_fn = mfn;
	blk_queue_dma_alignment(q, 511);
	blk_queue_congestion_threshold(q);
	q->nr_batching = BLK_BATCH_REQ;

188 189
	blk_set_default_limits(&q->limits);

J
Jens Axboe 已提交
190 191 192 193 194 195 196 197 198
	/*
	 * by default assume old behaviour and bounce for any highmem page
	 */
	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);

/**
 * blk_queue_bounce_limit - set bounce buffer limit for queue
199
 * @q: the request queue for the device
200
 * @max_addr: the maximum address the device can handle
J
Jens Axboe 已提交
201 202 203 204 205
 *
 * Description:
 *    Different hardware can have different requirements as to what pages
 *    it can do I/O directly to. A low level driver can call
 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
206
 *    buffers for doing I/O to pages residing above @max_addr.
J
Jens Axboe 已提交
207
 **/
208
void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
J
Jens Axboe 已提交
209
{
210
	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
J
Jens Axboe 已提交
211 212 213 214
	int dma = 0;

	q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
215 216 217 218 219 220
	/*
	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
	 * some IOMMUs can handle everything, but I don't know of a
	 * way to test this here.
	 */
	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
J
Jens Axboe 已提交
221
		dma = 1;
222
	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
J
Jens Axboe 已提交
223
#else
224
	if (b_pfn < blk_max_low_pfn)
J
Jens Axboe 已提交
225
		dma = 1;
226
	q->limits.bounce_pfn = b_pfn;
227
#endif
J
Jens Axboe 已提交
228 229 230
	if (dma) {
		init_emergency_isa_pool();
		q->bounce_gfp = GFP_NOIO | GFP_DMA;
231
		q->limits.bounce_pfn = b_pfn;
J
Jens Axboe 已提交
232 233 234 235 236
	}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);

/**
237 238
 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
 * @limits: the queue limits
239
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
J
Jens Axboe 已提交
240 241
 *
 * Description:
242 243 244 245 246 247 248 249 250
 *    Enables a low level driver to set a hard upper limit,
 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 *    the device driver based upon the combined capabilities of I/O
 *    controller and storage device.
 *
 *    max_sectors is a soft limit imposed by the block layer for
 *    filesystem type requests.  This value can be overridden on a
 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 *    The soft limit can not exceed max_hw_sectors.
J
Jens Axboe 已提交
251
 **/
252
void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
J
Jens Axboe 已提交
253
{
254 255
	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
256
		printk(KERN_INFO "%s: set to minimum %d\n",
257
		       __func__, max_hw_sectors);
J
Jens Axboe 已提交
258 259
	}

260
	limits->max_sectors = limits->max_hw_sectors = max_hw_sectors;
261 262 263 264 265 266 267 268 269 270 271 272 273 274
}
EXPORT_SYMBOL(blk_limits_max_hw_sectors);

/**
 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 * @q:  the request queue for the device
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 *
 * Description:
 *    See description for blk_limits_max_hw_sectors().
 **/
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
{
	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
J
Jens Axboe 已提交
275
}
276
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
J
Jens Axboe 已提交
277

278 279 280 281 282 283 284 285
/**
 * blk_queue_chunk_sectors - set size of the chunk for this queue
 * @q:  the request queue for the device
 * @chunk_sectors:  chunk sectors in the usual 512b unit
 *
 * Description:
 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 *    this limit and prevent merging across chunks. Note that the chunk size
286 287 288 289
 *    must currently be a power-of-2 in sectors. Also note that the block
 *    layer must accept a page worth of data at any offset. So if the
 *    crossing of chunks is a hard limitation in the driver, it must still be
 *    prepared to split single page bios.
290 291 292 293 294 295 296 297
 **/
void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
{
	BUG_ON(!is_power_of_2(chunk_sectors));
	q->limits.chunk_sectors = chunk_sectors;
}
EXPORT_SYMBOL(blk_queue_chunk_sectors);

298 299 300
/**
 * blk_queue_max_discard_sectors - set max sectors for a single discard
 * @q:  the request queue for the device
301
 * @max_discard_sectors: maximum number of sectors to discard
302 303 304 305 306 307 308 309
 **/
void blk_queue_max_discard_sectors(struct request_queue *q,
		unsigned int max_discard_sectors)
{
	q->limits.max_discard_sectors = max_discard_sectors;
}
EXPORT_SYMBOL(blk_queue_max_discard_sectors);

310 311 312 313 314 315 316 317 318 319 320 321
/**
 * blk_queue_max_write_same_sectors - set max sectors for a single write same
 * @q:  the request queue for the device
 * @max_write_same_sectors: maximum number of sectors to write per command
 **/
void blk_queue_max_write_same_sectors(struct request_queue *q,
				      unsigned int max_write_same_sectors)
{
	q->limits.max_write_same_sectors = max_write_same_sectors;
}
EXPORT_SYMBOL(blk_queue_max_write_same_sectors);

J
Jens Axboe 已提交
322
/**
323
 * blk_queue_max_segments - set max hw segments for a request for this queue
J
Jens Axboe 已提交
324 325 326 327 328
 * @q:  the request queue for the device
 * @max_segments:  max number of segments
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the number of
329
 *    hw data segments in a request.
J
Jens Axboe 已提交
330
 **/
331
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
J
Jens Axboe 已提交
332 333 334
{
	if (!max_segments) {
		max_segments = 1;
335 336
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_segments);
J
Jens Axboe 已提交
337 338
	}

339
	q->limits.max_segments = max_segments;
J
Jens Axboe 已提交
340
}
341
EXPORT_SYMBOL(blk_queue_max_segments);
J
Jens Axboe 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355

/**
 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 * @q:  the request queue for the device
 * @max_size:  max size of segment in bytes
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the size of a
 *    coalesced segment
 **/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
	if (max_size < PAGE_CACHE_SIZE) {
		max_size = PAGE_CACHE_SIZE;
356 357
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_size);
J
Jens Axboe 已提交
358 359
	}

360
	q->limits.max_segment_size = max_size;
J
Jens Axboe 已提交
361 362 363 364
}
EXPORT_SYMBOL(blk_queue_max_segment_size);

/**
365
 * blk_queue_logical_block_size - set logical block size for the queue
J
Jens Axboe 已提交
366
 * @q:  the request queue for the device
367
 * @size:  the logical block size, in bytes
J
Jens Axboe 已提交
368 369
 *
 * Description:
370 371 372
 *   This should be set to the lowest possible block size that the
 *   storage device can address.  The default of 512 covers most
 *   hardware.
J
Jens Axboe 已提交
373
 **/
374
void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
J
Jens Axboe 已提交
375
{
376
	q->limits.logical_block_size = size;
377 378 379 380 381 382

	if (q->limits.physical_block_size < size)
		q->limits.physical_block_size = size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
J
Jens Axboe 已提交
383
}
384
EXPORT_SYMBOL(blk_queue_logical_block_size);
J
Jens Axboe 已提交
385

386 387 388 389 390 391 392 393 394 395
/**
 * blk_queue_physical_block_size - set physical block size for the queue
 * @q:  the request queue for the device
 * @size:  the physical block size, in bytes
 *
 * Description:
 *   This should be set to the lowest possible sector size that the
 *   hardware can operate on without reverting to read-modify-write
 *   operations.
 */
396
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
397 398 399 400 401 402 403 404 405 406 407 408 409 410
{
	q->limits.physical_block_size = size;

	if (q->limits.physical_block_size < q->limits.logical_block_size)
		q->limits.physical_block_size = q->limits.logical_block_size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);

/**
 * blk_queue_alignment_offset - set physical block alignment offset
 * @q:	the request queue for the device
411
 * @offset: alignment offset in bytes
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
 *
 * Description:
 *   Some devices are naturally misaligned to compensate for things like
 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 *   should call this function for devices whose first sector is not
 *   naturally aligned.
 */
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
	q->limits.alignment_offset =
		offset & (q->limits.physical_block_size - 1);
	q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/**
 * blk_limits_io_min - set minimum request size for a device
 * @limits: the queue limits
 * @min:  smallest I/O size in bytes
 *
 * Description:
 *   Some devices have an internal block size bigger than the reported
 *   hardware sector size.  This function can be used to signal the
 *   smallest I/O the device can perform without incurring a performance
 *   penalty.
 */
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
{
	limits->io_min = min;

	if (limits->io_min < limits->logical_block_size)
		limits->io_min = limits->logical_block_size;

	if (limits->io_min < limits->physical_block_size)
		limits->io_min = limits->physical_block_size;
}
EXPORT_SYMBOL(blk_limits_io_min);

450 451 452
/**
 * blk_queue_io_min - set minimum request size for the queue
 * @q:	the request queue for the device
453
 * @min:  smallest I/O size in bytes
454 455
 *
 * Description:
456 457 458 459 460 461 462
 *   Storage devices may report a granularity or preferred minimum I/O
 *   size which is the smallest request the device can perform without
 *   incurring a performance penalty.  For disk drives this is often the
 *   physical block size.  For RAID arrays it is often the stripe chunk
 *   size.  A properly aligned multiple of minimum_io_size is the
 *   preferred request size for workloads where a high number of I/O
 *   operations is desired.
463 464 465
 */
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
466
	blk_limits_io_min(&q->limits, min);
467 468 469
}
EXPORT_SYMBOL(blk_queue_io_min);

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/**
 * blk_limits_io_opt - set optimal request size for a device
 * @limits: the queue limits
 * @opt:  smallest I/O size in bytes
 *
 * Description:
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
 */
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
{
	limits->io_opt = opt;
}
EXPORT_SYMBOL(blk_limits_io_opt);

489 490 491
/**
 * blk_queue_io_opt - set optimal request size for the queue
 * @q:	the request queue for the device
492
 * @opt:  optimal request size in bytes
493 494
 *
 * Description:
495 496 497 498 499 500
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
501 502 503
 */
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
504
	blk_limits_io_opt(&q->limits, opt);
505 506 507
}
EXPORT_SYMBOL(blk_queue_io_opt);

J
Jens Axboe 已提交
508 509 510 511 512 513 514
/**
 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 * @t:	the stacking driver (top)
 * @b:  the underlying device (bottom)
 **/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
515
	blk_stack_limits(&t->limits, &b->limits, 0);
J
Jens Axboe 已提交
516 517 518
}
EXPORT_SYMBOL(blk_queue_stack_limits);

519 520
/**
 * blk_stack_limits - adjust queue_limits for stacked devices
521 522
 * @t:	the stacking driver limits (top device)
 * @b:  the underlying queue limits (bottom, component device)
523
 * @start:  first data sector within component device
524 525
 *
 * Description:
526 527 528 529 530 531 532 533 534 535 536 537 538
 *    This function is used by stacking drivers like MD and DM to ensure
 *    that all component devices have compatible block sizes and
 *    alignments.  The stacking driver must provide a queue_limits
 *    struct (top) and then iteratively call the stacking function for
 *    all component (bottom) devices.  The stacking function will
 *    attempt to combine the values and ensure proper alignment.
 *
 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 *    top device's block sizes and alignment offsets may be adjusted to
 *    ensure alignment with the bottom device. If no compatible sizes
 *    and alignments exist, -1 is returned and the resulting top
 *    queue_limits will have the misaligned flag set to indicate that
 *    the alignment_offset is undefined.
539 540
 */
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
541
		     sector_t start)
542
{
543
	unsigned int top, bottom, alignment, ret = 0;
544

545 546
	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
547 548
	t->max_write_same_sectors = min(t->max_write_same_sectors,
					b->max_write_same_sectors);
549
	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
550 551 552 553

	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
					    b->seg_boundary_mask);

554
	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
555 556
	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
						 b->max_integrity_segments);
557 558 559 560

	t->max_segment_size = min_not_zero(t->max_segment_size,
					   b->max_segment_size);

561 562
	t->misaligned |= b->misaligned;

563
	alignment = queue_limit_alignment_offset(b, start);
564

565 566 567
	/* Bottom device has different alignment.  Check that it is
	 * compatible with the current top alignment.
	 */
568 569 570 571
	if (t->alignment_offset != alignment) {

		top = max(t->physical_block_size, t->io_min)
			+ t->alignment_offset;
572
		bottom = max(b->physical_block_size, b->io_min) + alignment;
573

574
		/* Verify that top and bottom intervals line up */
575
		if (max(top, bottom) % min(top, bottom)) {
576
			t->misaligned = 1;
577 578
			ret = -1;
		}
579 580
	}

581 582 583 584 585 586 587
	t->logical_block_size = max(t->logical_block_size,
				    b->logical_block_size);

	t->physical_block_size = max(t->physical_block_size,
				     b->physical_block_size);

	t->io_min = max(t->io_min, b->io_min);
588
	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
589

590
	t->cluster &= b->cluster;
591
	t->discard_zeroes_data &= b->discard_zeroes_data;
592

593
	/* Physical block size a multiple of the logical block size? */
594 595
	if (t->physical_block_size & (t->logical_block_size - 1)) {
		t->physical_block_size = t->logical_block_size;
596
		t->misaligned = 1;
597
		ret = -1;
598 599
	}

600
	/* Minimum I/O a multiple of the physical block size? */
601 602 603
	if (t->io_min & (t->physical_block_size - 1)) {
		t->io_min = t->physical_block_size;
		t->misaligned = 1;
604
		ret = -1;
605 606
	}

607
	/* Optimal I/O a multiple of the physical block size? */
608 609 610
	if (t->io_opt & (t->physical_block_size - 1)) {
		t->io_opt = 0;
		t->misaligned = 1;
611
		ret = -1;
612
	}
613

614 615 616 617
	t->raid_partial_stripes_expensive =
		max(t->raid_partial_stripes_expensive,
		    b->raid_partial_stripes_expensive);

618
	/* Find lowest common alignment_offset */
619
	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
620
		% max(t->physical_block_size, t->io_min);
621

622
	/* Verify that new alignment_offset is on a logical block boundary */
623
	if (t->alignment_offset & (t->logical_block_size - 1)) {
624
		t->misaligned = 1;
625 626
		ret = -1;
	}
627

628 629
	/* Discard alignment and granularity */
	if (b->discard_granularity) {
630
		alignment = queue_limit_discard_alignment(b, start);
631 632 633 634 635

		if (t->discard_granularity != 0 &&
		    t->discard_alignment != alignment) {
			top = t->discard_granularity + t->discard_alignment;
			bottom = b->discard_granularity + alignment;
636

637
			/* Verify that top and bottom intervals line up */
638
			if ((max(top, bottom) % min(top, bottom)) != 0)
639 640 641
				t->discard_misaligned = 1;
		}

642 643
		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
						      b->max_discard_sectors);
644 645
		t->discard_granularity = max(t->discard_granularity,
					     b->discard_granularity);
646
		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
647
			t->discard_granularity;
648
	}
649

650
	return ret;
651
}
M
Mike Snitzer 已提交
652
EXPORT_SYMBOL(blk_stack_limits);
653

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/**
 * bdev_stack_limits - adjust queue limits for stacked drivers
 * @t:	the stacking driver limits (top device)
 * @bdev:  the component block_device (bottom)
 * @start:  first data sector within component device
 *
 * Description:
 *    Merges queue limits for a top device and a block_device.  Returns
 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 *    device caused misalignment.
 */
int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
		      sector_t start)
{
	struct request_queue *bq = bdev_get_queue(bdev);

	start += get_start_sect(bdev);

672
	return blk_stack_limits(t, &bq->limits, start);
673 674 675
}
EXPORT_SYMBOL(bdev_stack_limits);

676 677
/**
 * disk_stack_limits - adjust queue limits for stacked drivers
678
 * @disk:  MD/DM gendisk (top)
679 680 681 682
 * @bdev:  the underlying block device (bottom)
 * @offset:  offset to beginning of data within component device
 *
 * Description:
683 684
 *    Merges the limits for a top level gendisk and a bottom level
 *    block_device.
685 686 687 688 689 690
 */
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
		       sector_t offset)
{
	struct request_queue *t = disk->queue;

691
	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
692 693 694 695 696 697 698 699 700 701 702
		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];

		disk_name(disk, 0, top);
		bdevname(bdev, bottom);

		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
		       top, bottom);
	}
}
EXPORT_SYMBOL(disk_stack_limits);

703 704 705 706 707
/**
 * blk_queue_dma_pad - set pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
708
 * Set dma pad mask.
709
 *
710 711
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
712 713 714 715 716 717 718
 **/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
	q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
/**
 * blk_queue_update_dma_pad - update pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
 * Update dma pad mask.
 *
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
 **/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
	if (mask > q->dma_pad_mask)
		q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);

J
Jens Axboe 已提交
736 737 738
/**
 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 * @q:  the request queue for the device
739
 * @dma_drain_needed: fn which returns non-zero if drain is necessary
J
Jens Axboe 已提交
740 741 742 743 744 745 746 747 748 749 750 751
 * @buf:	physically contiguous buffer
 * @size:	size of the buffer in bytes
 *
 * Some devices have excess DMA problems and can't simply discard (or
 * zero fill) the unwanted piece of the transfer.  They have to have a
 * real area of memory to transfer it into.  The use case for this is
 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 * bigger than the transfer size some HBAs will lock up if there
 * aren't DMA elements to contain the excess transfer.  What this API
 * does is adjust the queue so that the buf is always appended
 * silently to the scatterlist.
 *
752 753 754 755
 * Note: This routine adjusts max_hw_segments to make room for appending
 * the drain buffer.  If you call blk_queue_max_segments() after calling
 * this routine, you must set the limit to one fewer than your device
 * can support otherwise there won't be room for the drain buffer.
J
Jens Axboe 已提交
756
 */
757
int blk_queue_dma_drain(struct request_queue *q,
758 759
			       dma_drain_needed_fn *dma_drain_needed,
			       void *buf, unsigned int size)
J
Jens Axboe 已提交
760
{
761
	if (queue_max_segments(q) < 2)
J
Jens Axboe 已提交
762 763
		return -EINVAL;
	/* make room for appending the drain */
764
	blk_queue_max_segments(q, queue_max_segments(q) - 1);
765
	q->dma_drain_needed = dma_drain_needed;
J
Jens Axboe 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	q->dma_drain_buffer = buf;
	q->dma_drain_size = size;

	return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);

/**
 * blk_queue_segment_boundary - set boundary rules for segment merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
	if (mask < PAGE_CACHE_SIZE - 1) {
		mask = PAGE_CACHE_SIZE - 1;
782 783
		printk(KERN_INFO "%s: set to minimum %lx\n",
		       __func__, mask);
J
Jens Axboe 已提交
784 785
	}

786
	q->limits.seg_boundary_mask = mask;
J
Jens Axboe 已提交
787 788 789 790 791 792 793 794 795
}
EXPORT_SYMBOL(blk_queue_segment_boundary);

/**
 * blk_queue_dma_alignment - set dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
796
 *    set required memory and length alignment for direct dma transactions.
A
Alan Cox 已提交
797
 *    this is used when building direct io requests for the queue.
J
Jens Axboe 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811
 *
 **/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
	q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);

/**
 * blk_queue_update_dma_alignment - update dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
812
 *    update required memory and length alignment for direct dma transactions.
J
Jens Axboe 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
 *    If the requested alignment is larger than the current alignment, then
 *    the current queue alignment is updated to the new value, otherwise it
 *    is left alone.  The design of this is to allow multiple objects
 *    (driver, device, transport etc) to set their respective
 *    alignments without having them interfere.
 *
 **/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
	BUG_ON(mask > PAGE_SIZE);

	if (mask > q->dma_alignment)
		q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * blk_queue_flush - configure queue's cache flush capability
 * @q:		the request queue for the device
 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
 *
 * Tell block layer cache flush capability of @q.  If it supports
 * flushing, REQ_FLUSH should be set.  If it supports bypassing
 * write cache for individual writes, REQ_FUA should be set.
 */
void blk_queue_flush(struct request_queue *q, unsigned int flush)
{
	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));

	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
		flush &= ~REQ_FUA;

	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
}
EXPORT_SYMBOL_GPL(blk_queue_flush);

849 850 851 852 853 854
void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
{
	q->flush_not_queueable = !queueable;
}
EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);

855
static int __init blk_settings_init(void)
J
Jens Axboe 已提交
856 857 858 859 860 861
{
	blk_max_low_pfn = max_low_pfn - 1;
	blk_max_pfn = max_pfn - 1;
	return 0;
}
subsys_initcall(blk_settings_init);