ttm_bo.c 44.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**************************************************************************
 *
 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/
/*
 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 */

#include "ttm/ttm_module.h"
#include "ttm/ttm_bo_driver.h"
#include "ttm/ttm_placement.h"
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
40
#include <asm/atomic.h>
41 42 43 44 45 46 47

#define TTM_ASSERT_LOCKED(param)
#define TTM_DEBUG(fmt, arg...)
#define TTM_BO_HASH_ORDER 13

static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 49 50 51 52 53 54
static void ttm_bo_global_kobj_release(struct kobject *kobj);

static struct attribute ttm_bo_count = {
	.name = "bo_count",
	.mode = S_IRUGO
};

55 56 57 58 59 60 61 62 63 64 65 66
static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
{
	int i;

	for (i = 0; i <= TTM_PL_PRIV5; i++)
		if (flags & (1 << i)) {
			*mem_type = i;
			return 0;
		}
	return -EINVAL;
}

67
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68
{
69 70
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];

71 72 73 74
	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75
	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76 77 78 79
	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
		man->available_caching);
	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
		man->default_caching);
80 81
	if (mem_type != TTM_PL_SYSTEM)
		(*man->func->debug)(man, TTM_PFX);
82 83 84 85 86 87 88
}

static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
					struct ttm_placement *placement)
{
	int i, ret, mem_type;

89
	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90 91 92 93 94 95 96 97 98
		bo, bo->mem.num_pages, bo->mem.size >> 10,
		bo->mem.size >> 20);
	for (i = 0; i < placement->num_placement; i++) {
		ret = ttm_mem_type_from_flags(placement->placement[i],
						&mem_type);
		if (ret)
			return;
		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
			i, placement->placement[i], mem_type);
99
		ttm_mem_type_debug(bo->bdev, mem_type);
100 101 102
	}
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static ssize_t ttm_bo_global_show(struct kobject *kobj,
				  struct attribute *attr,
				  char *buffer)
{
	struct ttm_bo_global *glob =
		container_of(kobj, struct ttm_bo_global, kobj);

	return snprintf(buffer, PAGE_SIZE, "%lu\n",
			(unsigned long) atomic_read(&glob->bo_count));
}

static struct attribute *ttm_bo_global_attrs[] = {
	&ttm_bo_count,
	NULL
};

119
static const struct sysfs_ops ttm_bo_global_ops = {
120 121 122 123 124 125 126 127 128
	.show = &ttm_bo_global_show
};

static struct kobj_type ttm_bo_glob_kobj_type  = {
	.release = &ttm_bo_global_kobj_release,
	.sysfs_ops = &ttm_bo_global_ops,
	.default_attrs = ttm_bo_global_attrs
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

static inline uint32_t ttm_bo_type_flags(unsigned type)
{
	return 1 << (type);
}

static void ttm_bo_release_list(struct kref *list_kref)
{
	struct ttm_buffer_object *bo =
	    container_of(list_kref, struct ttm_buffer_object, list_kref);
	struct ttm_bo_device *bdev = bo->bdev;

	BUG_ON(atomic_read(&bo->list_kref.refcount));
	BUG_ON(atomic_read(&bo->kref.refcount));
	BUG_ON(atomic_read(&bo->cpu_writers));
	BUG_ON(bo->sync_obj != NULL);
	BUG_ON(bo->mem.mm_node != NULL);
	BUG_ON(!list_empty(&bo->lru));
	BUG_ON(!list_empty(&bo->ddestroy));

	if (bo->ttm)
		ttm_tt_destroy(bo->ttm);
151
	atomic_dec(&bo->glob->bo_count);
152 153 154
	if (bo->destroy)
		bo->destroy(bo);
	else {
155
		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156 157 158 159 160 161 162
		kfree(bo);
	}
}

int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
{
	if (interruptible) {
163
		return wait_event_interruptible(bo->event_queue,
164 165 166
					       atomic_read(&bo->reserved) == 0);
	} else {
		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167
		return 0;
168 169
	}
}
170
EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_mem_type_manager *man;

	BUG_ON(!atomic_read(&bo->reserved));

	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {

		BUG_ON(!list_empty(&bo->lru));

		man = &bdev->man[bo->mem.mem_type];
		list_add_tail(&bo->lru, &man->lru);
		kref_get(&bo->list_kref);

		if (bo->ttm != NULL) {
188
			list_add_tail(&bo->swap, &bo->glob->swap_lru);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
			kref_get(&bo->list_kref);
		}
	}
}

/**
 * Call with the lru_lock held.
 */

static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
	int put_count = 0;

	if (!list_empty(&bo->swap)) {
		list_del_init(&bo->swap);
		++put_count;
	}
	if (!list_empty(&bo->lru)) {
		list_del_init(&bo->lru);
		++put_count;
	}

	/*
	 * TODO: Add a driver hook to delete from
	 * driver-specific LRU's here.
	 */

	return put_count;
}

int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
			  bool interruptible,
			  bool no_wait, bool use_sequence, uint32_t sequence)
{
223
	struct ttm_bo_global *glob = bo->glob;
224 225 226 227 228 229 230 231 232 233 234
	int ret;

	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
		if (use_sequence && bo->seq_valid &&
			(sequence - bo->val_seq < (1 << 31))) {
			return -EAGAIN;
		}

		if (no_wait)
			return -EBUSY;

235
		spin_unlock(&glob->lru_lock);
236
		ret = ttm_bo_wait_unreserved(bo, interruptible);
237
		spin_lock(&glob->lru_lock);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

		if (unlikely(ret))
			return ret;
	}

	if (use_sequence) {
		bo->val_seq = sequence;
		bo->seq_valid = true;
	} else {
		bo->seq_valid = false;
	}

	return 0;
}
EXPORT_SYMBOL(ttm_bo_reserve);

static void ttm_bo_ref_bug(struct kref *list_kref)
{
	BUG();
}

int ttm_bo_reserve(struct ttm_buffer_object *bo,
		   bool interruptible,
		   bool no_wait, bool use_sequence, uint32_t sequence)
{
263
	struct ttm_bo_global *glob = bo->glob;
264 265 266
	int put_count = 0;
	int ret;

267
	spin_lock(&glob->lru_lock);
268 269 270 271
	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
				    sequence);
	if (likely(ret == 0))
		put_count = ttm_bo_del_from_lru(bo);
272
	spin_unlock(&glob->lru_lock);
273 274 275 276 277 278 279 280 281

	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);

	return ret;
}

void ttm_bo_unreserve(struct ttm_buffer_object *bo)
{
282
	struct ttm_bo_global *glob = bo->glob;
283

284
	spin_lock(&glob->lru_lock);
285 286 287
	ttm_bo_add_to_lru(bo);
	atomic_set(&bo->reserved, 0);
	wake_up_all(&bo->event_queue);
288
	spin_unlock(&glob->lru_lock);
289 290 291 292 293 294 295 296 297
}
EXPORT_SYMBOL(ttm_bo_unreserve);

/*
 * Call bo->mutex locked.
 */
static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
{
	struct ttm_bo_device *bdev = bo->bdev;
298
	struct ttm_bo_global *glob = bo->glob;
299 300 301 302 303 304
	int ret = 0;
	uint32_t page_flags = 0;

	TTM_ASSERT_LOCKED(&bo->mutex);
	bo->ttm = NULL;

D
Dave Airlie 已提交
305 306 307
	if (bdev->need_dma32)
		page_flags |= TTM_PAGE_FLAG_DMA32;

308 309 310 311 312 313
	switch (bo->type) {
	case ttm_bo_type_device:
		if (zero_alloc)
			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
	case ttm_bo_type_kernel:
		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
314
					page_flags, glob->dummy_read_page);
315 316 317 318 319 320
		if (unlikely(bo->ttm == NULL))
			ret = -ENOMEM;
		break;
	case ttm_bo_type_user:
		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
					page_flags | TTM_PAGE_FLAG_USER,
321
					glob->dummy_read_page);
D
Dave Airlie 已提交
322
		if (unlikely(bo->ttm == NULL)) {
323
			ret = -ENOMEM;
D
Dave Airlie 已提交
324 325
			break;
		}
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

		ret = ttm_tt_set_user(bo->ttm, current,
				      bo->buffer_start, bo->num_pages);
		if (unlikely(ret != 0))
			ttm_tt_destroy(bo->ttm);
		break;
	default:
		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
		ret = -EINVAL;
		break;
	}

	return ret;
}

static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
				  struct ttm_mem_reg *mem,
343 344
				  bool evict, bool interruptible,
				  bool no_wait_reserve, bool no_wait_gpu)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
{
	struct ttm_bo_device *bdev = bo->bdev;
	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
	int ret = 0;

	if (old_is_pci || new_is_pci ||
	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
		ttm_bo_unmap_virtual(bo);

	/*
	 * Create and bind a ttm if required.
	 */

	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
		ret = ttm_bo_add_ttm(bo, false);
		if (ret)
			goto out_err;

		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
		if (ret)
368
			goto out_err;
369 370 371 372 373 374 375 376

		if (mem->mem_type != TTM_PL_SYSTEM) {
			ret = ttm_tt_bind(bo->ttm, mem);
			if (ret)
				goto out_err;
		}

		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
377
			bo->mem = *mem;
378 379 380 381 382 383
			mem->mm_node = NULL;
			goto moved;
		}

	}

384 385 386
	if (bdev->driver->move_notify)
		bdev->driver->move_notify(bo, mem);

387 388
	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
389
		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
390 391
	else if (bdev->driver->move)
		ret = bdev->driver->move(bo, evict, interruptible,
392
					 no_wait_reserve, no_wait_gpu, mem);
393
	else
394
		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
395 396 397 398 399 400 401 402 403 404 405 406 407 408

	if (ret)
		goto out_err;

moved:
	if (bo->evicted) {
		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
		if (ret)
			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
		bo->evicted = false;
	}

	if (bo->mem.mm_node) {
		spin_lock(&bo->lock);
409
		bo->offset = (bo->mem.start << PAGE_SHIFT) +
410 411 412
		    bdev->man[bo->mem.mem_type].gpu_offset;
		bo->cur_placement = bo->mem.placement;
		spin_unlock(&bo->lock);
413 414
	} else
		bo->offset = 0;
415 416 417 418 419 420 421 422 423 424 425 426 427 428

	return 0;

out_err:
	new_man = &bdev->man[bo->mem.mem_type];
	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
		ttm_tt_unbind(bo->ttm);
		ttm_tt_destroy(bo->ttm);
		bo->ttm = NULL;
	}

	return ret;
}

429
/**
430
 * Call bo::reserved.
431
 * Will release GPU memory type usage on destruction.
432 433 434
 * This is the place to put in driver specific hooks to release
 * driver private resources.
 * Will release the bo::reserved lock.
435 436 437 438 439 440 441 442 443 444
 */

static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
	if (bo->ttm) {
		ttm_tt_unbind(bo->ttm);
		ttm_tt_destroy(bo->ttm);
		bo->ttm = NULL;
	}

445
	ttm_bo_mem_put(bo, &bo->mem);
446 447

	atomic_set(&bo->reserved, 0);
448 449 450 451 452

	/*
	 * Make processes trying to reserve really pick it up.
	 */
	smp_mb__after_atomic_dec();
453 454 455
	wake_up_all(&bo->event_queue);
}

456
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
457 458
{
	struct ttm_bo_device *bdev = bo->bdev;
459
	struct ttm_bo_global *glob = bo->glob;
460
	struct ttm_bo_driver *driver;
461
	void *sync_obj = NULL;
462 463
	void *sync_obj_arg;
	int put_count;
464 465 466
	int ret;

	spin_lock(&bo->lock);
467
	(void) ttm_bo_wait(bo, false, false, true);
468 469
	if (!bo->sync_obj) {

470
		spin_lock(&glob->lru_lock);
T
Thomas Hellstrom 已提交
471

472
		/**
473 474
		 * Lock inversion between bo::reserve and bo::lock here,
		 * but that's OK, since we're only trylocking.
475 476
		 */

477
		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
478

479 480
		if (unlikely(ret == -EBUSY))
			goto queue;
481

482
		spin_unlock(&bo->lock);
483
		put_count = ttm_bo_del_from_lru(bo);
484

485
		spin_unlock(&glob->lru_lock);
486
		ttm_bo_cleanup_memtype_use(bo);
487 488

		while (put_count--)
T
Thomas Hellstrom 已提交
489
			kref_put(&bo->list_kref, ttm_bo_ref_bug);
490

491 492 493
		return;
	} else {
		spin_lock(&glob->lru_lock);
494
	}
495 496
queue:
	driver = bdev->driver;
497 498 499
	if (bo->sync_obj)
		sync_obj = driver->sync_obj_ref(bo->sync_obj);
	sync_obj_arg = bo->sync_obj_arg;
500 501 502 503 504 505

	kref_get(&bo->list_kref);
	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
	spin_unlock(&glob->lru_lock);
	spin_unlock(&bo->lock);

506
	if (sync_obj) {
507
		driver->sync_obj_flush(sync_obj, sync_obj_arg);
508 509
		driver->sync_obj_unref(&sync_obj);
	}
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	schedule_delayed_work(&bdev->wq,
			      ((HZ / 100) < 1) ? 1 : HZ / 100);
}

/**
 * function ttm_bo_cleanup_refs
 * If bo idle, remove from delayed- and lru lists, and unref.
 * If not idle, do nothing.
 *
 * @interruptible         Any sleeps should occur interruptibly.
 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 */

static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
			       bool interruptible,
			       bool no_wait_reserve,
			       bool no_wait_gpu)
{
	struct ttm_bo_global *glob = bo->glob;
	int put_count;
	int ret = 0;

retry:
	spin_lock(&bo->lock);
	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
	spin_unlock(&bo->lock);

	if (unlikely(ret != 0))
		return ret;

541
	spin_lock(&glob->lru_lock);
542 543
	ret = ttm_bo_reserve_locked(bo, interruptible,
				    no_wait_reserve, false, 0);
544

545
	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
546
		spin_unlock(&glob->lru_lock);
547 548
		return ret;
	}
549

550 551 552 553 554 555 556
	/**
	 * We can re-check for sync object without taking
	 * the bo::lock since setting the sync object requires
	 * also bo::reserved. A busy object at this point may
	 * be caused by another thread recently starting an accelerated
	 * eviction.
	 */
557

558 559 560
	if (unlikely(bo->sync_obj)) {
		atomic_set(&bo->reserved, 0);
		wake_up_all(&bo->event_queue);
561
		spin_unlock(&glob->lru_lock);
562
		goto retry;
563 564
	}

565 566 567 568 569 570 571 572 573 574 575
	put_count = ttm_bo_del_from_lru(bo);
	list_del_init(&bo->ddestroy);
	++put_count;

	spin_unlock(&glob->lru_lock);
	ttm_bo_cleanup_memtype_use(bo);

	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);

	return 0;
576 577 578 579 580 581 582 583 584
}

/**
 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 * encountered buffers.
 */

static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
585
	struct ttm_bo_global *glob = bdev->glob;
586 587
	struct ttm_buffer_object *entry = NULL;
	int ret = 0;
588

589
	spin_lock(&glob->lru_lock);
590 591 592 593 594 595 596 597 598 599 600 601 602
	if (list_empty(&bdev->ddestroy))
		goto out_unlock;

	entry = list_first_entry(&bdev->ddestroy,
		struct ttm_buffer_object, ddestroy);
	kref_get(&entry->list_kref);

	for (;;) {
		struct ttm_buffer_object *nentry = NULL;

		if (entry->ddestroy.next != &bdev->ddestroy) {
			nentry = list_first_entry(&entry->ddestroy,
				struct ttm_buffer_object, ddestroy);
603 604 605
			kref_get(&nentry->list_kref);
		}

606
		spin_unlock(&glob->lru_lock);
607 608
		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
					  !remove_all);
609
		kref_put(&entry->list_kref, ttm_bo_release_list);
610 611 612 613
		entry = nentry;

		if (ret || !entry)
			goto out;
614

615
		spin_lock(&glob->lru_lock);
616
		if (list_empty(&entry->ddestroy))
617 618 619
			break;
	}

620 621 622 623 624
out_unlock:
	spin_unlock(&glob->lru_lock);
out:
	if (entry)
		kref_put(&entry->list_kref, ttm_bo_release_list);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	return ret;
}

static void ttm_bo_delayed_workqueue(struct work_struct *work)
{
	struct ttm_bo_device *bdev =
	    container_of(work, struct ttm_bo_device, wq.work);

	if (ttm_bo_delayed_delete(bdev, false)) {
		schedule_delayed_work(&bdev->wq,
				      ((HZ / 100) < 1) ? 1 : HZ / 100);
	}
}

static void ttm_bo_release(struct kref *kref)
{
	struct ttm_buffer_object *bo =
	    container_of(kref, struct ttm_buffer_object, kref);
	struct ttm_bo_device *bdev = bo->bdev;

	if (likely(bo->vm_node != NULL)) {
		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
		drm_mm_put_block(bo->vm_node);
		bo->vm_node = NULL;
	}
	write_unlock(&bdev->vm_lock);
651
	ttm_bo_cleanup_refs_or_queue(bo);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	kref_put(&bo->list_kref, ttm_bo_release_list);
	write_lock(&bdev->vm_lock);
}

void ttm_bo_unref(struct ttm_buffer_object **p_bo)
{
	struct ttm_buffer_object *bo = *p_bo;
	struct ttm_bo_device *bdev = bo->bdev;

	*p_bo = NULL;
	write_lock(&bdev->vm_lock);
	kref_put(&bo->kref, ttm_bo_release);
	write_unlock(&bdev->vm_lock);
}
EXPORT_SYMBOL(ttm_bo_unref);

668 669 670 671 672 673 674 675 676 677 678 679 680 681
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
	return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);

void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
	if (resched)
		schedule_delayed_work(&bdev->wq,
				      ((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);

682
static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
683
			bool no_wait_reserve, bool no_wait_gpu)
684 685 686
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_mem_reg evict_mem;
687 688
	struct ttm_placement placement;
	int ret = 0;
689 690

	spin_lock(&bo->lock);
691
	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
692 693
	spin_unlock(&bo->lock);

694
	if (unlikely(ret != 0)) {
695
		if (ret != -ERESTARTSYS) {
696 697 698 699
			printk(KERN_ERR TTM_PFX
			       "Failed to expire sync object before "
			       "buffer eviction.\n");
		}
700 701 702 703 704 705 706
		goto out;
	}

	BUG_ON(!atomic_read(&bo->reserved));

	evict_mem = bo->mem;
	evict_mem.mm_node = NULL;
707
	evict_mem.bus.io_reserved = false;
708

709 710 711 712
	placement.fpfn = 0;
	placement.lpfn = 0;
	placement.num_placement = 0;
	placement.num_busy_placement = 0;
713 714
	bdev->driver->evict_flags(bo, &placement);
	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
715
				no_wait_reserve, no_wait_gpu);
716
	if (ret) {
717
		if (ret != -ERESTARTSYS) {
718 719 720
			printk(KERN_ERR TTM_PFX
			       "Failed to find memory space for "
			       "buffer 0x%p eviction.\n", bo);
721 722
			ttm_bo_mem_space_debug(bo, &placement);
		}
723 724 725 726
		goto out;
	}

	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
727
				     no_wait_reserve, no_wait_gpu);
728
	if (ret) {
729
		if (ret != -ERESTARTSYS)
730
			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
731
		ttm_bo_mem_put(bo, &evict_mem);
732 733
		goto out;
	}
734 735 736 737 738 739 740
	bo->evicted = true;
out:
	return ret;
}

static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
				uint32_t mem_type,
741 742
				bool interruptible, bool no_wait_reserve,
				bool no_wait_gpu)
743 744 745 746 747
{
	struct ttm_bo_global *glob = bdev->glob;
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
	struct ttm_buffer_object *bo;
	int ret, put_count = 0;
748

749
retry:
750
	spin_lock(&glob->lru_lock);
751 752 753 754 755
	if (list_empty(&man->lru)) {
		spin_unlock(&glob->lru_lock);
		return -EBUSY;
	}

756 757
	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
	kref_get(&bo->list_kref);
758

759 760 761 762 763 764 765 766 767 768 769 770
	if (!list_empty(&bo->ddestroy)) {
		spin_unlock(&glob->lru_lock);
		ret = ttm_bo_cleanup_refs(bo, interruptible,
					  no_wait_reserve, no_wait_gpu);
		kref_put(&bo->list_kref, ttm_bo_release_list);

		if (likely(ret == 0 || ret == -ERESTARTSYS))
			return ret;

		goto retry;
	}

771
	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
772 773 774

	if (unlikely(ret == -EBUSY)) {
		spin_unlock(&glob->lru_lock);
775
		if (likely(!no_wait_gpu))
776 777 778 779 780 781 782 783 784 785 786 787 788 789
			ret = ttm_bo_wait_unreserved(bo, interruptible);

		kref_put(&bo->list_kref, ttm_bo_release_list);

		/**
		 * We *need* to retry after releasing the lru lock.
		 */

		if (unlikely(ret != 0))
			return ret;
		goto retry;
	}

	put_count = ttm_bo_del_from_lru(bo);
790
	spin_unlock(&glob->lru_lock);
791 792 793

	BUG_ON(ret != 0);

794 795
	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);
796

797
	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
798
	ttm_bo_unreserve(bo);
799

800
	kref_put(&bo->list_kref, ttm_bo_release_list);
801 802 803
	return ret;
}

804 805
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
806
	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
807

808 809
	if (mem->mm_node)
		(*man->func->put_node)(man, mem);
810 811 812
}
EXPORT_SYMBOL(ttm_bo_mem_put);

813 814 815 816
/**
 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 * space, or we've evicted everything and there isn't enough space.
 */
817 818 819 820
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
					uint32_t mem_type,
					struct ttm_placement *placement,
					struct ttm_mem_reg *mem,
821 822 823
					bool interruptible,
					bool no_wait_reserve,
					bool no_wait_gpu)
824
{
825
	struct ttm_bo_device *bdev = bo->bdev;
826 827 828 829
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
	int ret;

	do {
830
		ret = (*man->func->get_node)(man, bo, placement, mem);
831 832
		if (unlikely(ret != 0))
			return ret;
833
		if (mem->mm_node)
834
			break;
835
		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
836
						no_wait_reserve, no_wait_gpu);
837 838 839
		if (unlikely(ret != 0))
			return ret;
	} while (1);
840
	if (mem->mm_node == NULL)
841 842 843 844 845
		return -ENOMEM;
	mem->mem_type = mem_type;
	return 0;
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
				      uint32_t cur_placement,
				      uint32_t proposed_placement)
{
	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;

	/**
	 * Keep current caching if possible.
	 */

	if ((cur_placement & caching) != 0)
		result |= (cur_placement & caching);
	else if ((man->default_caching & caching) != 0)
		result |= man->default_caching;
	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
		result |= TTM_PL_FLAG_CACHED;
	else if ((TTM_PL_FLAG_WC & caching) != 0)
		result |= TTM_PL_FLAG_WC;
	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
		result |= TTM_PL_FLAG_UNCACHED;

	return result;
}

871 872 873
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
				 bool disallow_fixed,
				 uint32_t mem_type,
874 875
				 uint32_t proposed_placement,
				 uint32_t *masked_placement)
876 877 878 879 880 881
{
	uint32_t cur_flags = ttm_bo_type_flags(mem_type);

	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
		return false;

882
	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
883 884
		return false;

885
	if ((proposed_placement & man->available_caching) == 0)
886 887
		return false;

888 889 890
	cur_flags |= (proposed_placement & man->available_caching);

	*masked_placement = cur_flags;
891 892 893 894 895 896 897 898 899 900 901 902
	return true;
}

/**
 * Creates space for memory region @mem according to its type.
 *
 * This function first searches for free space in compatible memory types in
 * the priority order defined by the driver.  If free space isn't found, then
 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 * space.
 */
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
903 904
			struct ttm_placement *placement,
			struct ttm_mem_reg *mem,
905 906
			bool interruptible, bool no_wait_reserve,
			bool no_wait_gpu)
907 908 909 910 911 912 913
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_mem_type_manager *man;
	uint32_t mem_type = TTM_PL_SYSTEM;
	uint32_t cur_flags = 0;
	bool type_found = false;
	bool type_ok = false;
914
	bool has_erestartsys = false;
915
	int i, ret;
916 917

	mem->mm_node = NULL;
918
	for (i = 0; i < placement->num_placement; ++i) {
919 920 921 922
		ret = ttm_mem_type_from_flags(placement->placement[i],
						&mem_type);
		if (ret)
			return ret;
923 924 925
		man = &bdev->man[mem_type];

		type_ok = ttm_bo_mt_compatible(man,
926 927 928 929
						bo->type == ttm_bo_type_user,
						mem_type,
						placement->placement[i],
						&cur_flags);
930 931 932 933

		if (!type_ok)
			continue;

934 935
		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
						  cur_flags);
936 937 938 939 940 941
		/*
		 * Use the access and other non-mapping-related flag bits from
		 * the memory placement flags to the current flags
		 */
		ttm_flag_masked(&cur_flags, placement->placement[i],
				~TTM_PL_MASK_MEMTYPE);
942

943 944 945 946 947
		if (mem_type == TTM_PL_SYSTEM)
			break;

		if (man->has_type && man->use_type) {
			type_found = true;
948
			ret = (*man->func->get_node)(man, bo, placement, mem);
949 950
			if (unlikely(ret))
				return ret;
951
		}
952
		if (mem->mm_node)
953 954 955
			break;
	}

956
	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
957 958 959 960 961 962 963 964
		mem->mem_type = mem_type;
		mem->placement = cur_flags;
		return 0;
	}

	if (!type_found)
		return -EINVAL;

965 966
	for (i = 0; i < placement->num_busy_placement; ++i) {
		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
967 968 969
						&mem_type);
		if (ret)
			return ret;
970 971 972 973
		man = &bdev->man[mem_type];
		if (!man->has_type)
			continue;
		if (!ttm_bo_mt_compatible(man,
974 975
						bo->type == ttm_bo_type_user,
						mem_type,
976
						placement->busy_placement[i],
977
						&cur_flags))
978 979
			continue;

980 981
		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
						  cur_flags);
982 983 984 985
		/*
		 * Use the access and other non-mapping-related flag bits from
		 * the memory placement flags to the current flags
		 */
986
		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
987
				~TTM_PL_MASK_MEMTYPE);
988

989 990 991 992 993 994 995 996

		if (mem_type == TTM_PL_SYSTEM) {
			mem->mem_type = mem_type;
			mem->placement = cur_flags;
			mem->mm_node = NULL;
			return 0;
		}

997
		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
998
						interruptible, no_wait_reserve, no_wait_gpu);
999 1000 1001 1002
		if (ret == 0 && mem->mm_node) {
			mem->placement = cur_flags;
			return 0;
		}
1003 1004
		if (ret == -ERESTARTSYS)
			has_erestartsys = true;
1005
	}
1006
	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1007 1008 1009 1010 1011 1012 1013 1014 1015
	return ret;
}
EXPORT_SYMBOL(ttm_bo_mem_space);

int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
{
	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
		return -EBUSY;

1016 1017
	return wait_event_interruptible(bo->event_queue,
					atomic_read(&bo->cpu_writers) == 0);
1018
}
1019
EXPORT_SYMBOL(ttm_bo_wait_cpu);
1020 1021

int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1022
			struct ttm_placement *placement,
1023 1024
			bool interruptible, bool no_wait_reserve,
			bool no_wait_gpu)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
{
	int ret = 0;
	struct ttm_mem_reg mem;

	BUG_ON(!atomic_read(&bo->reserved));

	/*
	 * FIXME: It's possible to pipeline buffer moves.
	 * Have the driver move function wait for idle when necessary,
	 * instead of doing it here.
	 */
	spin_lock(&bo->lock);
1037
	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1038 1039 1040 1041 1042 1043
	spin_unlock(&bo->lock);
	if (ret)
		return ret;
	mem.num_pages = bo->num_pages;
	mem.size = mem.num_pages << PAGE_SHIFT;
	mem.page_alignment = bo->mem.page_alignment;
1044
	mem.bus.io_reserved = false;
1045 1046 1047
	/*
	 * Determine where to move the buffer.
	 */
1048
	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1049 1050
	if (ret)
		goto out_unlock;
1051
	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1052
out_unlock:
1053 1054
	if (ret && mem.mm_node)
		ttm_bo_mem_put(bo, &mem);
1055 1056 1057
	return ret;
}

1058
static int ttm_bo_mem_compat(struct ttm_placement *placement,
1059 1060
			     struct ttm_mem_reg *mem)
{
1061
	int i;
1062

1063 1064 1065
	if (mem->mm_node && placement->lpfn != 0 &&
	    (mem->start < placement->fpfn ||
	     mem->start + mem->num_pages > placement->lpfn))
1066
		return -1;
1067 1068 1069 1070 1071 1072 1073 1074 1075

	for (i = 0; i < placement->num_placement; i++) {
		if ((placement->placement[i] & mem->placement &
			TTM_PL_MASK_CACHING) &&
			(placement->placement[i] & mem->placement &
			TTM_PL_MASK_MEM))
			return i;
	}
	return -1;
1076 1077
}

1078 1079
int ttm_bo_validate(struct ttm_buffer_object *bo,
			struct ttm_placement *placement,
1080 1081
			bool interruptible, bool no_wait_reserve,
			bool no_wait_gpu)
1082 1083 1084 1085
{
	int ret;

	BUG_ON(!atomic_read(&bo->reserved));
1086 1087 1088 1089 1090
	/* Check that range is valid */
	if (placement->lpfn || placement->fpfn)
		if (placement->fpfn > placement->lpfn ||
			(placement->lpfn - placement->fpfn) < bo->num_pages)
			return -EINVAL;
1091 1092 1093
	/*
	 * Check whether we need to move buffer.
	 */
1094 1095
	ret = ttm_bo_mem_compat(placement, &bo->mem);
	if (ret < 0) {
1096
		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1097
		if (ret)
1098
			return ret;
1099 1100 1101 1102 1103 1104 1105
	} else {
		/*
		 * Use the access and other non-mapping-related flag bits from
		 * the compatible memory placement flags to the active flags
		 */
		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
				~TTM_PL_MASK_MEMTYPE);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	}
	/*
	 * We might need to add a TTM.
	 */
	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
		ret = ttm_bo_add_ttm(bo, true);
		if (ret)
			return ret;
	}
	return 0;
}
1117
EXPORT_SYMBOL(ttm_bo_validate);
1118

1119 1120
int ttm_bo_check_placement(struct ttm_buffer_object *bo,
				struct ttm_placement *placement)
1121
{
1122 1123
	BUG_ON((placement->fpfn || placement->lpfn) &&
	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1124 1125 1126 1127

	return 0;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
int ttm_bo_init(struct ttm_bo_device *bdev,
		struct ttm_buffer_object *bo,
		unsigned long size,
		enum ttm_bo_type type,
		struct ttm_placement *placement,
		uint32_t page_alignment,
		unsigned long buffer_start,
		bool interruptible,
		struct file *persistant_swap_storage,
		size_t acc_size,
		void (*destroy) (struct ttm_buffer_object *))
1139
{
1140
	int ret = 0;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	unsigned long num_pages;

	size += buffer_start & ~PAGE_MASK;
	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (num_pages == 0) {
		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
		return -EINVAL;
	}
	bo->destroy = destroy;

	spin_lock_init(&bo->lock);
	kref_init(&bo->kref);
	kref_init(&bo->list_kref);
	atomic_set(&bo->cpu_writers, 0);
	atomic_set(&bo->reserved, 1);
	init_waitqueue_head(&bo->event_queue);
	INIT_LIST_HEAD(&bo->lru);
	INIT_LIST_HEAD(&bo->ddestroy);
	INIT_LIST_HEAD(&bo->swap);
	bo->bdev = bdev;
1161
	bo->glob = bdev->glob;
1162 1163
	bo->type = type;
	bo->num_pages = num_pages;
1164
	bo->mem.size = num_pages << PAGE_SHIFT;
1165 1166 1167 1168
	bo->mem.mem_type = TTM_PL_SYSTEM;
	bo->mem.num_pages = bo->num_pages;
	bo->mem.mm_node = NULL;
	bo->mem.page_alignment = page_alignment;
1169
	bo->mem.bus.io_reserved = false;
1170 1171 1172 1173 1174 1175
	bo->buffer_start = buffer_start & PAGE_MASK;
	bo->priv_flags = 0;
	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
	bo->seq_valid = false;
	bo->persistant_swap_storage = persistant_swap_storage;
	bo->acc_size = acc_size;
1176
	atomic_inc(&bo->glob->bo_count);
1177

1178
	ret = ttm_bo_check_placement(bo, placement);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (unlikely(ret != 0))
		goto out_err;

	/*
	 * For ttm_bo_type_device buffers, allocate
	 * address space from the device.
	 */
	if (bo->type == ttm_bo_type_device) {
		ret = ttm_bo_setup_vm(bo);
		if (ret)
			goto out_err;
	}

1192
	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	if (ret)
		goto out_err;

	ttm_bo_unreserve(bo);
	return 0;

out_err:
	ttm_bo_unreserve(bo);
	ttm_bo_unref(&bo);

	return ret;
}
1205
EXPORT_SYMBOL(ttm_bo_init);
1206

1207
static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1208 1209 1210 1211 1212
				 unsigned long num_pages)
{
	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
	    PAGE_MASK;

1213
	return glob->ttm_bo_size + 2 * page_array_size;
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224
int ttm_bo_create(struct ttm_bo_device *bdev,
			unsigned long size,
			enum ttm_bo_type type,
			struct ttm_placement *placement,
			uint32_t page_alignment,
			unsigned long buffer_start,
			bool interruptible,
			struct file *persistant_swap_storage,
			struct ttm_buffer_object **p_bo)
1225 1226
{
	struct ttm_buffer_object *bo;
1227
	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1228
	int ret;
1229 1230

	size_t acc_size =
1231
	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1232
	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1233 1234 1235 1236 1237 1238
	if (unlikely(ret != 0))
		return ret;

	bo = kzalloc(sizeof(*bo), GFP_KERNEL);

	if (unlikely(bo == NULL)) {
1239
		ttm_mem_global_free(mem_glob, acc_size);
1240 1241 1242
		return -ENOMEM;
	}

1243 1244 1245
	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
				buffer_start, interruptible,
				persistant_swap_storage, acc_size, NULL);
1246 1247 1248 1249 1250 1251 1252
	if (likely(ret == 0))
		*p_bo = bo;

	return ret;
}

static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1253
					unsigned mem_type, bool allow_errors)
1254
{
1255
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1256
	struct ttm_bo_global *glob = bdev->glob;
1257 1258 1259 1260 1261 1262
	int ret;

	/*
	 * Can't use standard list traversal since we're unlocking.
	 */

1263
	spin_lock(&glob->lru_lock);
1264
	while (!list_empty(&man->lru)) {
1265
		spin_unlock(&glob->lru_lock);
1266
		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1267 1268 1269 1270 1271 1272 1273 1274
		if (ret) {
			if (allow_errors) {
				return ret;
			} else {
				printk(KERN_ERR TTM_PFX
					"Cleanup eviction failed\n");
			}
		}
1275
		spin_lock(&glob->lru_lock);
1276
	}
1277
	spin_unlock(&glob->lru_lock);
1278 1279 1280 1281 1282
	return 0;
}

int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
R
Roel Kluin 已提交
1283
	struct ttm_mem_type_manager *man;
1284 1285 1286 1287 1288 1289
	int ret = -EINVAL;

	if (mem_type >= TTM_NUM_MEM_TYPES) {
		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
		return ret;
	}
R
Roel Kluin 已提交
1290
	man = &bdev->man[mem_type];
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

	if (!man->has_type) {
		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
		       "memory manager type %u\n", mem_type);
		return ret;
	}

	man->use_type = false;
	man->has_type = false;

	ret = 0;
	if (mem_type > 0) {
1303
		ttm_bo_force_list_clean(bdev, mem_type, false);
1304

1305
		ret = (*man->func->takedown)(man);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	}

	return ret;
}
EXPORT_SYMBOL(ttm_bo_clean_mm);

int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];

	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
		printk(KERN_ERR TTM_PFX
		       "Illegal memory manager memory type %u.\n",
		       mem_type);
		return -EINVAL;
	}

	if (!man->has_type) {
		printk(KERN_ERR TTM_PFX
		       "Memory type %u has not been initialized.\n",
		       mem_type);
		return 0;
	}

1330
	return ttm_bo_force_list_clean(bdev, mem_type, true);
1331 1332 1333 1334
}
EXPORT_SYMBOL(ttm_bo_evict_mm);

int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1335
			unsigned long p_size)
1336 1337 1338 1339
{
	int ret = -EINVAL;
	struct ttm_mem_type_manager *man;

1340
	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1341
	man = &bdev->man[type];
1342
	BUG_ON(man->has_type);
1343 1344 1345 1346

	ret = bdev->driver->init_mem_type(bdev, type, man);
	if (ret)
		return ret;
1347
	man->bdev = bdev;
1348 1349 1350

	ret = 0;
	if (type != TTM_PL_SYSTEM) {
1351
		ret = (*man->func->init)(man, p_size);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		if (ret)
			return ret;
	}
	man->has_type = true;
	man->use_type = true;
	man->size = p_size;

	INIT_LIST_HEAD(&man->lru);

	return 0;
}
EXPORT_SYMBOL(ttm_bo_init_mm);

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static void ttm_bo_global_kobj_release(struct kobject *kobj)
{
	struct ttm_bo_global *glob =
		container_of(kobj, struct ttm_bo_global, kobj);

	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
	__free_page(glob->dummy_read_page);
	kfree(glob);
}

1375
void ttm_bo_global_release(struct drm_global_reference *ref)
1376 1377 1378 1379 1380 1381 1382 1383
{
	struct ttm_bo_global *glob = ref->object;

	kobject_del(&glob->kobj);
	kobject_put(&glob->kobj);
}
EXPORT_SYMBOL(ttm_bo_global_release);

1384
int ttm_bo_global_init(struct drm_global_reference *ref)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
{
	struct ttm_bo_global_ref *bo_ref =
		container_of(ref, struct ttm_bo_global_ref, ref);
	struct ttm_bo_global *glob = ref->object;
	int ret;

	mutex_init(&glob->device_list_mutex);
	spin_lock_init(&glob->lru_lock);
	glob->mem_glob = bo_ref->mem_glob;
	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);

	if (unlikely(glob->dummy_read_page == NULL)) {
		ret = -ENOMEM;
		goto out_no_drp;
	}

	INIT_LIST_HEAD(&glob->swap_lru);
	INIT_LIST_HEAD(&glob->device_list);

	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
	if (unlikely(ret != 0)) {
		printk(KERN_ERR TTM_PFX
		       "Could not register buffer object swapout.\n");
		goto out_no_shrink;
	}

	glob->ttm_bo_extra_size =
		ttm_round_pot(sizeof(struct ttm_tt)) +
		ttm_round_pot(sizeof(struct ttm_backend));

	glob->ttm_bo_size = glob->ttm_bo_extra_size +
		ttm_round_pot(sizeof(struct ttm_buffer_object));

	atomic_set(&glob->bo_count, 0);

1421 1422
	ret = kobject_init_and_add(
		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	if (unlikely(ret != 0))
		kobject_put(&glob->kobj);
	return ret;
out_no_shrink:
	__free_page(glob->dummy_read_page);
out_no_drp:
	kfree(glob);
	return ret;
}
EXPORT_SYMBOL(ttm_bo_global_init);


1435 1436 1437 1438 1439
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
	int ret = 0;
	unsigned i = TTM_NUM_MEM_TYPES;
	struct ttm_mem_type_manager *man;
1440
	struct ttm_bo_global *glob = bdev->glob;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	while (i--) {
		man = &bdev->man[i];
		if (man->has_type) {
			man->use_type = false;
			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
				ret = -EBUSY;
				printk(KERN_ERR TTM_PFX
				       "DRM memory manager type %d "
				       "is not clean.\n", i);
			}
			man->has_type = false;
		}
	}

1456 1457 1458 1459
	mutex_lock(&glob->device_list_mutex);
	list_del(&bdev->device_list);
	mutex_unlock(&glob->device_list_mutex);

1460 1461 1462 1463 1464 1465
	if (!cancel_delayed_work(&bdev->wq))
		flush_scheduled_work();

	while (ttm_bo_delayed_delete(bdev, true))
		;

1466
	spin_lock(&glob->lru_lock);
1467 1468 1469 1470 1471
	if (list_empty(&bdev->ddestroy))
		TTM_DEBUG("Delayed destroy list was clean\n");

	if (list_empty(&bdev->man[0].lru))
		TTM_DEBUG("Swap list was clean\n");
1472
	spin_unlock(&glob->lru_lock);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
	write_lock(&bdev->vm_lock);
	drm_mm_takedown(&bdev->addr_space_mm);
	write_unlock(&bdev->vm_lock);

	return ret;
}
EXPORT_SYMBOL(ttm_bo_device_release);

int ttm_bo_device_init(struct ttm_bo_device *bdev,
1484 1485
		       struct ttm_bo_global *glob,
		       struct ttm_bo_driver *driver,
D
Dave Airlie 已提交
1486
		       uint64_t file_page_offset,
D
Dave Airlie 已提交
1487
		       bool need_dma32)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
{
	int ret = -EINVAL;

	rwlock_init(&bdev->vm_lock);
	bdev->driver = driver;

	memset(bdev->man, 0, sizeof(bdev->man));

	/*
	 * Initialize the system memory buffer type.
	 * Other types need to be driver / IOCTL initialized.
	 */
1500
	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1501
	if (unlikely(ret != 0))
1502
		goto out_no_sys;
1503 1504 1505 1506

	bdev->addr_space_rb = RB_ROOT;
	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
	if (unlikely(ret != 0))
1507
		goto out_no_addr_mm;
1508 1509 1510 1511 1512

	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
	bdev->nice_mode = true;
	INIT_LIST_HEAD(&bdev->ddestroy);
	bdev->dev_mapping = NULL;
1513
	bdev->glob = glob;
D
Dave Airlie 已提交
1514
	bdev->need_dma32 = need_dma32;
1515

1516 1517 1518
	mutex_lock(&glob->device_list_mutex);
	list_add_tail(&bdev->device_list, &glob->device_list);
	mutex_unlock(&glob->device_list_mutex);
1519 1520

	return 0;
1521
out_no_addr_mm:
1522
	ttm_bo_clean_mm(bdev, 0);
1523
out_no_sys:
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	return ret;
}
EXPORT_SYMBOL(ttm_bo_device_init);

/*
 * buffer object vm functions.
 */

bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];

	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
		if (mem->mem_type == TTM_PL_SYSTEM)
			return false;

		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
			return false;

		if (mem->placement & TTM_PL_FLAG_CACHED)
			return false;
	}
	return true;
}

void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	loff_t offset = (loff_t) bo->addr_space_offset;
	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;

	if (!bdev->dev_mapping)
		return;
	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1558
	ttm_mem_io_free(bdev, &bo->mem);
1559
}
1560
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
	struct rb_node *parent = NULL;
	struct ttm_buffer_object *cur_bo;
	unsigned long offset = bo->vm_node->start;
	unsigned long cur_offset;

	while (*cur) {
		parent = *cur;
		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
		cur_offset = cur_bo->vm_node->start;
		if (offset < cur_offset)
			cur = &parent->rb_left;
		else if (offset > cur_offset)
			cur = &parent->rb_right;
		else
			BUG();
	}

	rb_link_node(&bo->vm_rb, parent, cur);
	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
}

/**
 * ttm_bo_setup_vm:
 *
 * @bo: the buffer to allocate address space for
 *
 * Allocate address space in the drm device so that applications
 * can mmap the buffer and access the contents. This only
 * applies to ttm_bo_type_device objects as others are not
 * placed in the drm device address space.
 */

static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	int ret;

retry_pre_get:
	ret = drm_mm_pre_get(&bdev->addr_space_mm);
	if (unlikely(ret != 0))
		return ret;

	write_lock(&bdev->vm_lock);
	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
					 bo->mem.num_pages, 0, 0);

	if (unlikely(bo->vm_node == NULL)) {
		ret = -ENOMEM;
		goto out_unlock;
	}

	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
					      bo->mem.num_pages, 0);

	if (unlikely(bo->vm_node == NULL)) {
		write_unlock(&bdev->vm_lock);
		goto retry_pre_get;
	}

	ttm_bo_vm_insert_rb(bo);
	write_unlock(&bdev->vm_lock);
	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;

	return 0;
out_unlock:
	write_unlock(&bdev->vm_lock);
	return ret;
}

int ttm_bo_wait(struct ttm_buffer_object *bo,
		bool lazy, bool interruptible, bool no_wait)
{
	struct ttm_bo_driver *driver = bo->bdev->driver;
	void *sync_obj;
	void *sync_obj_arg;
	int ret = 0;

	if (likely(bo->sync_obj == NULL))
		return 0;

	while (bo->sync_obj) {

		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
			void *tmp_obj = bo->sync_obj;
			bo->sync_obj = NULL;
			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
			spin_unlock(&bo->lock);
			driver->sync_obj_unref(&tmp_obj);
			spin_lock(&bo->lock);
			continue;
		}

		if (no_wait)
			return -EBUSY;

		sync_obj = driver->sync_obj_ref(bo->sync_obj);
		sync_obj_arg = bo->sync_obj_arg;
		spin_unlock(&bo->lock);
		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
					    lazy, interruptible);
		if (unlikely(ret != 0)) {
			driver->sync_obj_unref(&sync_obj);
			spin_lock(&bo->lock);
			return ret;
		}
		spin_lock(&bo->lock);
		if (likely(bo->sync_obj == sync_obj &&
			   bo->sync_obj_arg == sync_obj_arg)) {
			void *tmp_obj = bo->sync_obj;
			bo->sync_obj = NULL;
			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
				  &bo->priv_flags);
			spin_unlock(&bo->lock);
			driver->sync_obj_unref(&sync_obj);
			driver->sync_obj_unref(&tmp_obj);
			spin_lock(&bo->lock);
1682 1683 1684 1685
		} else {
			spin_unlock(&bo->lock);
			driver->sync_obj_unref(&sync_obj);
			spin_lock(&bo->lock);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		}
	}
	return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);

int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
	int ret = 0;

	/*
1697
	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	 */

	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
	if (unlikely(ret != 0))
		return ret;
	spin_lock(&bo->lock);
	ret = ttm_bo_wait(bo, false, true, no_wait);
	spin_unlock(&bo->lock);
	if (likely(ret == 0))
		atomic_inc(&bo->cpu_writers);
	ttm_bo_unreserve(bo);
	return ret;
}
1711
EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1712 1713 1714 1715 1716 1717

void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
	if (atomic_dec_and_test(&bo->cpu_writers))
		wake_up_all(&bo->event_queue);
}
1718
EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1719 1720 1721 1722 1723 1724 1725 1726

/**
 * A buffer object shrink method that tries to swap out the first
 * buffer object on the bo_global::swap_lru list.
 */

static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
{
1727 1728
	struct ttm_bo_global *glob =
	    container_of(shrink, struct ttm_bo_global, shrink);
1729 1730 1731 1732 1733
	struct ttm_buffer_object *bo;
	int ret = -EBUSY;
	int put_count;
	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);

1734
	spin_lock(&glob->lru_lock);
1735
	while (ret == -EBUSY) {
1736 1737
		if (unlikely(list_empty(&glob->swap_lru))) {
			spin_unlock(&glob->lru_lock);
1738 1739 1740
			return -EBUSY;
		}

1741
		bo = list_first_entry(&glob->swap_lru,
1742 1743 1744
				      struct ttm_buffer_object, swap);
		kref_get(&bo->list_kref);

1745 1746 1747 1748 1749 1750 1751
		if (!list_empty(&bo->ddestroy)) {
			spin_unlock(&glob->lru_lock);
			(void) ttm_bo_cleanup_refs(bo, false, false, false);
			kref_put(&bo->list_kref, ttm_bo_release_list);
			continue;
		}

1752 1753 1754 1755 1756 1757 1758 1759
		/**
		 * Reserve buffer. Since we unlock while sleeping, we need
		 * to re-check that nobody removed us from the swap-list while
		 * we slept.
		 */

		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
		if (unlikely(ret == -EBUSY)) {
1760
			spin_unlock(&glob->lru_lock);
1761 1762
			ttm_bo_wait_unreserved(bo, false);
			kref_put(&bo->list_kref, ttm_bo_release_list);
1763
			spin_lock(&glob->lru_lock);
1764 1765 1766 1767 1768
		}
	}

	BUG_ON(ret != 0);
	put_count = ttm_bo_del_from_lru(bo);
1769
	spin_unlock(&glob->lru_lock);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);

	/**
	 * Wait for GPU, then move to system cached.
	 */

	spin_lock(&bo->lock);
	ret = ttm_bo_wait(bo, false, false, false);
	spin_unlock(&bo->lock);

	if (unlikely(ret != 0))
		goto out;

	if ((bo->mem.placement & swap_placement) != swap_placement) {
		struct ttm_mem_reg evict_mem;

		evict_mem = bo->mem;
		evict_mem.mm_node = NULL;
		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
		evict_mem.mem_type = TTM_PL_SYSTEM;

		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1794
					     false, false, false);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		if (unlikely(ret != 0))
			goto out;
	}

	ttm_bo_unmap_virtual(bo);

	/**
	 * Swap out. Buffer will be swapped in again as soon as
	 * anyone tries to access a ttm page.
	 */

1806 1807 1808
	if (bo->bdev->driver->swap_notify)
		bo->bdev->driver->swap_notify(bo);

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
out:

	/**
	 *
	 * Unreserve without putting on LRU to avoid swapping out an
	 * already swapped buffer.
	 */

	atomic_set(&bo->reserved, 0);
	wake_up_all(&bo->event_queue);
	kref_put(&bo->list_kref, ttm_bo_release_list);
	return ret;
}

void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
1826
	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1827 1828
		;
}
1829
EXPORT_SYMBOL(ttm_bo_swapout_all);