mtk_eth_soc.c 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; version 2 of the License
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
 *   Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
 *   Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
 */

#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clk.h>
21
#include <linux/pm_runtime.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>

#include "mtk_eth_soc.h"

static int mtk_msg_level = -1;
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");

#define MTK_ETHTOOL_STAT(x) { #x, \
			      offsetof(struct mtk_hw_stats, x) / sizeof(u64) }

/* strings used by ethtool */
static const struct mtk_ethtool_stats {
	char str[ETH_GSTRING_LEN];
	u32 offset;
} mtk_ethtool_stats[] = {
	MTK_ETHTOOL_STAT(tx_bytes),
	MTK_ETHTOOL_STAT(tx_packets),
	MTK_ETHTOOL_STAT(tx_skip),
	MTK_ETHTOOL_STAT(tx_collisions),
	MTK_ETHTOOL_STAT(rx_bytes),
	MTK_ETHTOOL_STAT(rx_packets),
	MTK_ETHTOOL_STAT(rx_overflow),
	MTK_ETHTOOL_STAT(rx_fcs_errors),
	MTK_ETHTOOL_STAT(rx_short_errors),
	MTK_ETHTOOL_STAT(rx_long_errors),
	MTK_ETHTOOL_STAT(rx_checksum_errors),
	MTK_ETHTOOL_STAT(rx_flow_control_packets),
};

54 55 56 57
static const char * const mtk_clks_source_name[] = {
	"ethif", "esw", "gp1", "gp2"
};

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg)
{
	__raw_writel(val, eth->base + reg);
}

u32 mtk_r32(struct mtk_eth *eth, unsigned reg)
{
	return __raw_readl(eth->base + reg);
}

static int mtk_mdio_busy_wait(struct mtk_eth *eth)
{
	unsigned long t_start = jiffies;

	while (1) {
		if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS))
			return 0;
		if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT))
			break;
		usleep_range(10, 20);
	}

	dev_err(eth->dev, "mdio: MDIO timeout\n");
	return -1;
}

84 85
static u32 _mtk_mdio_write(struct mtk_eth *eth, u32 phy_addr,
			   u32 phy_register, u32 write_data)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
	if (mtk_mdio_busy_wait(eth))
		return -1;

	write_data &= 0xffff;

	mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE |
		(phy_register << PHY_IAC_REG_SHIFT) |
		(phy_addr << PHY_IAC_ADDR_SHIFT) | write_data,
		MTK_PHY_IAC);

	if (mtk_mdio_busy_wait(eth))
		return -1;

	return 0;
}

103
static u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
{
	u32 d;

	if (mtk_mdio_busy_wait(eth))
		return 0xffff;

	mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ |
		(phy_reg << PHY_IAC_REG_SHIFT) |
		(phy_addr << PHY_IAC_ADDR_SHIFT),
		MTK_PHY_IAC);

	if (mtk_mdio_busy_wait(eth))
		return 0xffff;

	d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff;

	return d;
}

static int mtk_mdio_write(struct mii_bus *bus, int phy_addr,
			  int phy_reg, u16 val)
{
	struct mtk_eth *eth = bus->priv;

	return _mtk_mdio_write(eth, phy_addr, phy_reg, val);
}

static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
	struct mtk_eth *eth = bus->priv;

	return _mtk_mdio_read(eth, phy_addr, phy_reg);
}

static void mtk_phy_link_adjust(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
141 142
	u16 lcl_adv = 0, rmt_adv = 0;
	u8 flowctrl;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
	u32 mcr = MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG |
		  MAC_MCR_FORCE_MODE | MAC_MCR_TX_EN |
		  MAC_MCR_RX_EN | MAC_MCR_BACKOFF_EN |
		  MAC_MCR_BACKPR_EN;

	switch (mac->phy_dev->speed) {
	case SPEED_1000:
		mcr |= MAC_MCR_SPEED_1000;
		break;
	case SPEED_100:
		mcr |= MAC_MCR_SPEED_100;
		break;
	};

	if (mac->phy_dev->link)
		mcr |= MAC_MCR_FORCE_LINK;

160
	if (mac->phy_dev->duplex) {
161 162
		mcr |= MAC_MCR_FORCE_DPX;

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
		if (mac->phy_dev->pause)
			rmt_adv = LPA_PAUSE_CAP;
		if (mac->phy_dev->asym_pause)
			rmt_adv |= LPA_PAUSE_ASYM;

		if (mac->phy_dev->advertising & ADVERTISED_Pause)
			lcl_adv |= ADVERTISE_PAUSE_CAP;
		if (mac->phy_dev->advertising & ADVERTISED_Asym_Pause)
			lcl_adv |= ADVERTISE_PAUSE_ASYM;

		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);

		if (flowctrl & FLOW_CTRL_TX)
			mcr |= MAC_MCR_FORCE_TX_FC;
		if (flowctrl & FLOW_CTRL_RX)
			mcr |= MAC_MCR_FORCE_RX_FC;

		netif_dbg(mac->hw, link, dev, "rx pause %s, tx pause %s\n",
			  flowctrl & FLOW_CTRL_RX ? "enabled" : "disabled",
			  flowctrl & FLOW_CTRL_TX ? "enabled" : "disabled");
	}
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

	mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));

	if (mac->phy_dev->link)
		netif_carrier_on(dev);
	else
		netif_carrier_off(dev);
}

static int mtk_phy_connect_node(struct mtk_eth *eth, struct mtk_mac *mac,
				struct device_node *phy_node)
{
	const __be32 *_addr = NULL;
	struct phy_device *phydev;
	int phy_mode, addr;

	_addr = of_get_property(phy_node, "reg", NULL);

	if (!_addr || (be32_to_cpu(*_addr) >= 0x20)) {
		pr_err("%s: invalid phy address\n", phy_node->name);
		return -EINVAL;
	}
	addr = be32_to_cpu(*_addr);
	phy_mode = of_get_phy_mode(phy_node);
	if (phy_mode < 0) {
		dev_err(eth->dev, "incorrect phy-mode %d\n", phy_mode);
		return -EINVAL;
	}

	phydev = of_phy_connect(eth->netdev[mac->id], phy_node,
				mtk_phy_link_adjust, 0, phy_mode);
215
	if (!phydev) {
216
		dev_err(eth->dev, "could not connect to PHY\n");
217
		return -ENODEV;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	}

	dev_info(eth->dev,
		 "connected mac %d to PHY at %s [uid=%08x, driver=%s]\n",
		 mac->id, phydev_name(phydev), phydev->phy_id,
		 phydev->drv->name);

	mac->phy_dev = phydev;

	return 0;
}

static int mtk_phy_connect(struct mtk_mac *mac)
{
	struct mtk_eth *eth = mac->hw;
	struct device_node *np;
234
	u32 val;
235 236

	np = of_parse_phandle(mac->of_node, "phy-handle", 0);
237 238 239
	if (!np && of_phy_is_fixed_link(mac->of_node))
		if (!of_phy_register_fixed_link(mac->of_node))
			np = of_node_get(mac->of_node);
240 241 242 243
	if (!np)
		return -ENODEV;

	switch (of_get_phy_mode(np)) {
244 245 246
	case PHY_INTERFACE_MODE_RGMII_TXID:
	case PHY_INTERFACE_MODE_RGMII_RXID:
	case PHY_INTERFACE_MODE_RGMII_ID:
247
	case PHY_INTERFACE_MODE_RGMII:
248
		mac->ge_mode = 0;
249 250
		break;
	case PHY_INTERFACE_MODE_MII:
251
		mac->ge_mode = 1;
252
		break;
253
	case PHY_INTERFACE_MODE_REVMII:
254
		mac->ge_mode = 2;
255
		break;
256 257 258
	case PHY_INTERFACE_MODE_RMII:
		if (!mac->id)
			goto err_phy;
259
		mac->ge_mode = 3;
260
		break;
261
	default:
262
		goto err_phy;
263 264 265 266 267
	}

	/* put the gmac into the right mode */
	regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
	val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id);
268
	val |= SYSCFG0_GE_MODE(mac->ge_mode, mac->id);
269 270 271 272 273 274
	regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);

	mtk_phy_connect_node(eth, mac, np);
	mac->phy_dev->autoneg = AUTONEG_ENABLE;
	mac->phy_dev->speed = 0;
	mac->phy_dev->duplex = 0;
275 276 277 278 279

	if (of_phy_is_fixed_link(mac->of_node))
		mac->phy_dev->supported |=
		SUPPORTED_Pause | SUPPORTED_Asym_Pause;

280 281
	mac->phy_dev->supported &= PHY_GBIT_FEATURES | SUPPORTED_Pause |
				   SUPPORTED_Asym_Pause;
282 283 284 285
	mac->phy_dev->advertising = mac->phy_dev->supported |
				    ADVERTISED_Autoneg;
	phy_start_aneg(mac->phy_dev);

286 287
	of_node_put(np);

288
	return 0;
289 290 291 292 293

err_phy:
	of_node_put(np);
	dev_err(eth->dev, "invalid phy_mode\n");
	return -EINVAL;
294 295 296 297 298
}

static int mtk_mdio_init(struct mtk_eth *eth)
{
	struct device_node *mii_np;
299
	int ret;
300 301 302 303 304 305 306 307

	mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
	if (!mii_np) {
		dev_err(eth->dev, "no %s child node found", "mdio-bus");
		return -ENODEV;
	}

	if (!of_device_is_available(mii_np)) {
308
		ret = -ENODEV;
309 310 311
		goto err_put_node;
	}

312
	eth->mii_bus = devm_mdiobus_alloc(eth->dev);
313
	if (!eth->mii_bus) {
314
		ret = -ENOMEM;
315 316 317 318 319 320 321 322 323 324
		goto err_put_node;
	}

	eth->mii_bus->name = "mdio";
	eth->mii_bus->read = mtk_mdio_read;
	eth->mii_bus->write = mtk_mdio_write;
	eth->mii_bus->priv = eth;
	eth->mii_bus->parent = eth->dev;

	snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%s", mii_np->name);
325
	ret = of_mdiobus_register(eth->mii_bus, mii_np);
326 327 328

err_put_node:
	of_node_put(mii_np);
329
	return ret;
330 331 332 333 334 335 336 337 338 339
}

static void mtk_mdio_cleanup(struct mtk_eth *eth)
{
	if (!eth->mii_bus)
		return;

	mdiobus_unregister(eth->mii_bus);
}

340 341
static inline void mtk_irq_disable(struct mtk_eth *eth,
				   unsigned reg, u32 mask)
342
{
343
	unsigned long flags;
344 345
	u32 val;

346
	spin_lock_irqsave(&eth->irq_lock, flags);
347 348
	val = mtk_r32(eth, reg);
	mtk_w32(eth, val & ~mask, reg);
349
	spin_unlock_irqrestore(&eth->irq_lock, flags);
350 351
}

352 353
static inline void mtk_irq_enable(struct mtk_eth *eth,
				  unsigned reg, u32 mask)
354
{
355
	unsigned long flags;
356 357
	u32 val;

358
	spin_lock_irqsave(&eth->irq_lock, flags);
359 360
	val = mtk_r32(eth, reg);
	mtk_w32(eth, val | mask, reg);
361
	spin_unlock_irqrestore(&eth->irq_lock, flags);
362 363 364 365 366 367 368 369 370 371 372
}

static int mtk_set_mac_address(struct net_device *dev, void *p)
{
	int ret = eth_mac_addr(dev, p);
	struct mtk_mac *mac = netdev_priv(dev);
	const char *macaddr = dev->dev_addr;

	if (ret)
		return ret;

373
	spin_lock_bh(&mac->hw->page_lock);
374 375 376 377 378
	mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
		MTK_GDMA_MAC_ADRH(mac->id));
	mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
		(macaddr[4] << 8) | macaddr[5],
		MTK_GDMA_MAC_ADRL(mac->id));
379
	spin_unlock_bh(&mac->hw->page_lock);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

	return 0;
}

void mtk_stats_update_mac(struct mtk_mac *mac)
{
	struct mtk_hw_stats *hw_stats = mac->hw_stats;
	unsigned int base = MTK_GDM1_TX_GBCNT;
	u64 stats;

	base += hw_stats->reg_offset;

	u64_stats_update_begin(&hw_stats->syncp);

	hw_stats->rx_bytes += mtk_r32(mac->hw, base);
	stats =  mtk_r32(mac->hw, base + 0x04);
	if (stats)
		hw_stats->rx_bytes += (stats << 32);
	hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08);
	hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10);
	hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14);
	hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18);
	hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c);
	hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20);
	hw_stats->rx_flow_control_packets +=
					mtk_r32(mac->hw, base + 0x24);
	hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28);
	hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c);
	hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30);
	stats =  mtk_r32(mac->hw, base + 0x34);
	if (stats)
		hw_stats->tx_bytes += (stats << 32);
	hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38);
	u64_stats_update_end(&hw_stats->syncp);
}

static void mtk_stats_update(struct mtk_eth *eth)
{
	int i;

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->mac[i] || !eth->mac[i]->hw_stats)
			continue;
		if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
			mtk_stats_update_mac(eth->mac[i]);
			spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
		}
	}
}

static struct rtnl_link_stats64 *mtk_get_stats64(struct net_device *dev,
					struct rtnl_link_stats64 *storage)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_hw_stats *hw_stats = mac->hw_stats;
	unsigned int start;

	if (netif_running(dev) && netif_device_present(dev)) {
		if (spin_trylock(&hw_stats->stats_lock)) {
			mtk_stats_update_mac(mac);
			spin_unlock(&hw_stats->stats_lock);
		}
	}

	do {
		start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
		storage->rx_packets = hw_stats->rx_packets;
		storage->tx_packets = hw_stats->tx_packets;
		storage->rx_bytes = hw_stats->rx_bytes;
		storage->tx_bytes = hw_stats->tx_bytes;
		storage->collisions = hw_stats->tx_collisions;
		storage->rx_length_errors = hw_stats->rx_short_errors +
			hw_stats->rx_long_errors;
		storage->rx_over_errors = hw_stats->rx_overflow;
		storage->rx_crc_errors = hw_stats->rx_fcs_errors;
		storage->rx_errors = hw_stats->rx_checksum_errors;
		storage->tx_aborted_errors = hw_stats->tx_skip;
	} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));

	storage->tx_errors = dev->stats.tx_errors;
	storage->rx_dropped = dev->stats.rx_dropped;
	storage->tx_dropped = dev->stats.tx_dropped;

	return storage;
}

static inline int mtk_max_frag_size(int mtu)
{
	/* make sure buf_size will be at least MTK_MAX_RX_LENGTH */
	if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH)
		mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN;

	return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}

static inline int mtk_max_buf_size(int frag_size)
{
	int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

	WARN_ON(buf_size < MTK_MAX_RX_LENGTH);

	return buf_size;
}

static inline void mtk_rx_get_desc(struct mtk_rx_dma *rxd,
				   struct mtk_rx_dma *dma_rxd)
{
	rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
	rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
	rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
	rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
}

/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
498
	dma_addr_t phy_ring_tail;
499 500 501 502 503 504
	int cnt = MTK_DMA_SIZE;
	dma_addr_t dma_addr;
	int i;

	eth->scratch_ring = dma_alloc_coherent(eth->dev,
					       cnt * sizeof(struct mtk_tx_dma),
505
					       &eth->phy_scratch_ring,
506 507 508 509 510 511
					       GFP_ATOMIC | __GFP_ZERO);
	if (unlikely(!eth->scratch_ring))
		return -ENOMEM;

	eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE,
				    GFP_KERNEL);
512 513 514
	if (unlikely(!eth->scratch_head))
		return -ENOMEM;

515 516 517 518 519 520 521
	dma_addr = dma_map_single(eth->dev,
				  eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE,
				  DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
		return -ENOMEM;

	memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt);
522
	phy_ring_tail = eth->phy_scratch_ring +
523 524 525 526 527 528
			(sizeof(struct mtk_tx_dma) * (cnt - 1));

	for (i = 0; i < cnt; i++) {
		eth->scratch_ring[i].txd1 =
					(dma_addr + (i * MTK_QDMA_PAGE_SIZE));
		if (i < cnt - 1)
529
			eth->scratch_ring[i].txd2 = (eth->phy_scratch_ring +
530 531 532 533
				((i + 1) * sizeof(struct mtk_tx_dma)));
		eth->scratch_ring[i].txd3 = TX_DMA_SDL(MTK_QDMA_PAGE_SIZE);
	}

534
	mtk_w32(eth, eth->phy_scratch_ring, MTK_QDMA_FQ_HEAD);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL);
	mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT);
	mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN);

	return 0;
}

static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
	void *ret = ring->dma;

	return ret + (desc - ring->phys);
}

static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
						    struct mtk_tx_dma *txd)
{
	int idx = txd - ring->dma;

	return &ring->buf[idx];
}

557
static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf)
558 559
{
	if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
560
		dma_unmap_single(eth->dev,
561 562 563 564
				 dma_unmap_addr(tx_buf, dma_addr0),
				 dma_unmap_len(tx_buf, dma_len0),
				 DMA_TO_DEVICE);
	} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
565
		dma_unmap_page(eth->dev,
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
			       dma_unmap_addr(tx_buf, dma_addr0),
			       dma_unmap_len(tx_buf, dma_len0),
			       DMA_TO_DEVICE);
	}
	tx_buf->flags = 0;
	if (tx_buf->skb &&
	    (tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC))
		dev_kfree_skb_any(tx_buf->skb);
	tx_buf->skb = NULL;
}

static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
		      int tx_num, struct mtk_tx_ring *ring, bool gso)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;
	struct mtk_tx_dma *itxd, *txd;
	struct mtk_tx_buf *tx_buf;
	dma_addr_t mapped_addr;
	unsigned int nr_frags;
	int i, n_desc = 1;
587
	u32 txd4 = 0, fport;
588 589 590 591 592 593

	itxd = ring->next_free;
	if (itxd == ring->last_free)
		return -ENOMEM;

	/* set the forward port */
594 595
	fport = (mac->id + 1) << TX_DMA_FPORT_SHIFT;
	txd4 |= fport;
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

	tx_buf = mtk_desc_to_tx_buf(ring, itxd);
	memset(tx_buf, 0, sizeof(*tx_buf));

	if (gso)
		txd4 |= TX_DMA_TSO;

	/* TX Checksum offload */
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		txd4 |= TX_DMA_CHKSUM;

	/* VLAN header offload */
	if (skb_vlan_tag_present(skb))
		txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb);

611
	mapped_addr = dma_map_single(eth->dev, skb->data,
612
				     skb_headlen(skb), DMA_TO_DEVICE);
613
	if (unlikely(dma_mapping_error(eth->dev, mapped_addr)))
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
		return -ENOMEM;

	WRITE_ONCE(itxd->txd1, mapped_addr);
	tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
	dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
	dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));

	/* TX SG offload */
	txd = itxd;
	nr_frags = skb_shinfo(skb)->nr_frags;
	for (i = 0; i < nr_frags; i++) {
		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
		unsigned int offset = 0;
		int frag_size = skb_frag_size(frag);

		while (frag_size) {
			bool last_frag = false;
			unsigned int frag_map_size;

			txd = mtk_qdma_phys_to_virt(ring, txd->txd2);
			if (txd == ring->last_free)
				goto err_dma;

			n_desc++;
			frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN);
639
			mapped_addr = skb_frag_dma_map(eth->dev, frag, offset,
640 641
						       frag_map_size,
						       DMA_TO_DEVICE);
642
			if (unlikely(dma_mapping_error(eth->dev, mapped_addr)))
643 644 645 646 647 648 649 650 651
				goto err_dma;

			if (i == nr_frags - 1 &&
			    (frag_size - frag_map_size) == 0)
				last_frag = true;

			WRITE_ONCE(txd->txd1, mapped_addr);
			WRITE_ONCE(txd->txd3, (TX_DMA_SWC |
					       TX_DMA_PLEN0(frag_map_size) |
652
					       last_frag * TX_DMA_LS0));
653
			WRITE_ONCE(txd->txd4, fport);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

			tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
			tx_buf = mtk_desc_to_tx_buf(ring, txd);
			memset(tx_buf, 0, sizeof(*tx_buf));

			tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
			dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
			dma_unmap_len_set(tx_buf, dma_len0, frag_map_size);
			frag_size -= frag_map_size;
			offset += frag_map_size;
		}
	}

	/* store skb to cleanup */
	tx_buf->skb = skb;

	WRITE_ONCE(itxd->txd4, txd4);
	WRITE_ONCE(itxd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(skb_headlen(skb)) |
				(!nr_frags * TX_DMA_LS0)));

	netdev_sent_queue(dev, skb->len);
	skb_tx_timestamp(skb);

	ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2);
	atomic_sub(n_desc, &ring->free_count);

	/* make sure that all changes to the dma ring are flushed before we
	 * continue
	 */
	wmb();

	if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
		mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR);

	return 0;

err_dma:
	do {
692
		tx_buf = mtk_desc_to_tx_buf(ring, itxd);
693 694

		/* unmap dma */
695
		mtk_tx_unmap(eth, tx_buf);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

		itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
		itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2);
	} while (itxd != txd);

	return -ENOMEM;
}

static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
	int i, nfrags;
	struct skb_frag_struct *frag;

	nfrags = 1;
	if (skb_is_gso(skb)) {
		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
			frag = &skb_shinfo(skb)->frags[i];
			nfrags += DIV_ROUND_UP(frag->size, MTK_TX_DMA_BUF_LEN);
		}
	} else {
		nfrags += skb_shinfo(skb)->nr_frags;
	}

719
	return nfrags;
720 721
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735
static int mtk_queue_stopped(struct mtk_eth *eth)
{
	int i;

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->netdev[i])
			continue;
		if (netif_queue_stopped(eth->netdev[i]))
			return 1;
	}

	return 0;
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static void mtk_wake_queue(struct mtk_eth *eth)
{
	int i;

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->netdev[i])
			continue;
		netif_wake_queue(eth->netdev[i]);
	}
}

static void mtk_stop_queue(struct mtk_eth *eth)
{
	int i;

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->netdev[i])
			continue;
		netif_stop_queue(eth->netdev[i]);
	}
}

758 759 760 761 762 763 764 765 766
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;
	struct mtk_tx_ring *ring = &eth->tx_ring;
	struct net_device_stats *stats = &dev->stats;
	bool gso = false;
	int tx_num;

J
John Crispin 已提交
767 768 769 770
	/* normally we can rely on the stack not calling this more than once,
	 * however we have 2 queues running on the same ring so we need to lock
	 * the ring access
	 */
771
	spin_lock(&eth->page_lock);
J
John Crispin 已提交
772

773 774
	tx_num = mtk_cal_txd_req(skb);
	if (unlikely(atomic_read(&ring->free_count) <= tx_num)) {
775
		mtk_stop_queue(eth);
776 777
		netif_err(eth, tx_queued, dev,
			  "Tx Ring full when queue awake!\n");
778
		spin_unlock(&eth->page_lock);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		return NETDEV_TX_BUSY;
	}

	/* TSO: fill MSS info in tcp checksum field */
	if (skb_is_gso(skb)) {
		if (skb_cow_head(skb, 0)) {
			netif_warn(eth, tx_err, dev,
				   "GSO expand head fail.\n");
			goto drop;
		}

		if (skb_shinfo(skb)->gso_type &
				(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
			gso = true;
			tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
		}
	}

	if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0)
		goto drop;

800
	if (unlikely(atomic_read(&ring->free_count) <= ring->thresh))
801
		mtk_stop_queue(eth);
802

803
	spin_unlock(&eth->page_lock);
804 805 806 807

	return NETDEV_TX_OK;

drop:
808
	spin_unlock(&eth->page_lock);
809 810 811 812 813 814
	stats->tx_dropped++;
	dev_kfree_skb(skb);
	return NETDEV_TX_OK;
}

static int mtk_poll_rx(struct napi_struct *napi, int budget,
815
		       struct mtk_eth *eth)
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
{
	struct mtk_rx_ring *ring = &eth->rx_ring;
	int idx = ring->calc_idx;
	struct sk_buff *skb;
	u8 *data, *new_data;
	struct mtk_rx_dma *rxd, trxd;
	int done = 0;

	while (done < budget) {
		struct net_device *netdev;
		unsigned int pktlen;
		dma_addr_t dma_addr;
		int mac = 0;

		idx = NEXT_RX_DESP_IDX(idx);
		rxd = &ring->dma[idx];
		data = ring->data[idx];

		mtk_rx_get_desc(&trxd, rxd);
		if (!(trxd.rxd2 & RX_DMA_DONE))
			break;

		/* find out which mac the packet come from. values start at 1 */
		mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) &
		      RX_DMA_FPORT_MASK;
		mac--;

		netdev = eth->netdev[mac];

		/* alloc new buffer */
		new_data = napi_alloc_frag(ring->frag_size);
		if (unlikely(!new_data)) {
			netdev->stats.rx_dropped++;
			goto release_desc;
		}
851
		dma_addr = dma_map_single(eth->dev,
852 853 854
					  new_data + NET_SKB_PAD,
					  ring->buf_size,
					  DMA_FROM_DEVICE);
855
		if (unlikely(dma_mapping_error(eth->dev, dma_addr))) {
856
			skb_free_frag(new_data);
857
			netdev->stats.rx_dropped++;
858 859 860 861 862 863
			goto release_desc;
		}

		/* receive data */
		skb = build_skb(data, ring->frag_size);
		if (unlikely(!skb)) {
864
			skb_free_frag(new_data);
865
			netdev->stats.rx_dropped++;
866 867 868 869
			goto release_desc;
		}
		skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);

870
		dma_unmap_single(eth->dev, trxd.rxd1,
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
				 ring->buf_size, DMA_FROM_DEVICE);
		pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
		skb->dev = netdev;
		skb_put(skb, pktlen);
		if (trxd.rxd4 & RX_DMA_L4_VALID)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		else
			skb_checksum_none_assert(skb);
		skb->protocol = eth_type_trans(skb, netdev);

		if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
		    RX_DMA_VID(trxd.rxd3))
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       RX_DMA_VID(trxd.rxd3));
		napi_gro_receive(napi, skb);

		ring->data[idx] = new_data;
		rxd->rxd1 = (unsigned int)dma_addr;

release_desc:
		rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size);

		ring->calc_idx = idx;
894

895 896 897
		done++;
	}

898 899 900 901 902 903 904
	if (done) {
		/* make sure that all changes to the dma ring are flushed before
		 * we continue
		 */
		wmb();
		mtk_w32(eth, ring->calc_idx, MTK_PRX_CRX_IDX0);
	}
905 906 907 908

	return done;
}

909
static int mtk_poll_tx(struct mtk_eth *eth, int budget)
910 911 912 913 914
{
	struct mtk_tx_ring *ring = &eth->tx_ring;
	struct mtk_tx_dma *desc;
	struct sk_buff *skb;
	struct mtk_tx_buf *tx_buf;
915
	unsigned int done[MTK_MAX_DEVS];
916 917 918
	unsigned int bytes[MTK_MAX_DEVS];
	u32 cpu, dma;
	static int condition;
919
	int total = 0, i;
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

	memset(done, 0, sizeof(done));
	memset(bytes, 0, sizeof(bytes));

	cpu = mtk_r32(eth, MTK_QTX_CRX_PTR);
	dma = mtk_r32(eth, MTK_QTX_DRX_PTR);

	desc = mtk_qdma_phys_to_virt(ring, cpu);

	while ((cpu != dma) && budget) {
		u32 next_cpu = desc->txd2;
		int mac;

		desc = mtk_qdma_phys_to_virt(ring, desc->txd2);
		if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0)
			break;

		mac = (desc->txd4 >> TX_DMA_FPORT_SHIFT) &
		       TX_DMA_FPORT_MASK;
		mac--;

		tx_buf = mtk_desc_to_tx_buf(ring, desc);
		skb = tx_buf->skb;
		if (!skb) {
			condition = 1;
			break;
		}

		if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
			bytes[mac] += skb->len;
			done[mac]++;
			budget--;
		}
953
		mtk_tx_unmap(eth, tx_buf);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

		ring->last_free = desc;
		atomic_inc(&ring->free_count);

		cpu = next_cpu;
	}

	mtk_w32(eth, cpu, MTK_QTX_CRX_PTR);

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->netdev[i] || !done[i])
			continue;
		netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
		total += done[i];
	}

970 971
	if (mtk_queue_stopped(eth) &&
	    (atomic_read(&ring->free_count) > ring->thresh))
972
		mtk_wake_queue(eth);
973 974 975 976

	return total;
}

977
static void mtk_handle_status_irq(struct mtk_eth *eth)
978
{
979
	u32 status2 = mtk_r32(eth, MTK_INT_STATUS2);
980

981
	if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) {
982
		mtk_stats_update(eth);
983 984
		mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF),
			MTK_INT_STATUS2);
985
	}
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
}

static int mtk_napi_tx(struct napi_struct *napi, int budget)
{
	struct mtk_eth *eth = container_of(napi, struct mtk_eth, tx_napi);
	u32 status, mask;
	int tx_done = 0;

	mtk_handle_status_irq(eth);
	mtk_w32(eth, MTK_TX_DONE_INT, MTK_QMTK_INT_STATUS);
	tx_done = mtk_poll_tx(eth, budget);

	if (unlikely(netif_msg_intr(eth))) {
		status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
		mask = mtk_r32(eth, MTK_QDMA_INT_MASK);
		dev_info(eth->dev,
			 "done tx %d, intr 0x%08x/0x%x\n",
			 tx_done, status, mask);
	}

	if (tx_done == budget)
		return budget;

	status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
	if (status & MTK_TX_DONE_INT)
		return budget;

	napi_complete(napi);
1014
	mtk_irq_enable(eth, MTK_QDMA_INT_MASK, MTK_TX_DONE_INT);
1015 1016 1017 1018 1019 1020 1021 1022 1023

	return tx_done;
}

static int mtk_napi_rx(struct napi_struct *napi, int budget)
{
	struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi);
	u32 status, mask;
	int rx_done = 0;
1024
	int remain_budget = budget;
1025 1026

	mtk_handle_status_irq(eth);
1027 1028

poll_again:
1029
	mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_STATUS);
1030
	rx_done = mtk_poll_rx(napi, remain_budget, eth);
1031 1032

	if (unlikely(netif_msg_intr(eth))) {
1033 1034
		status = mtk_r32(eth, MTK_PDMA_INT_STATUS);
		mask = mtk_r32(eth, MTK_PDMA_INT_MASK);
1035 1036 1037
		dev_info(eth->dev,
			 "done rx %d, intr 0x%08x/0x%x\n",
			 rx_done, status, mask);
1038
	}
1039
	if (rx_done == remain_budget)
1040 1041
		return budget;

1042
	status = mtk_r32(eth, MTK_PDMA_INT_STATUS);
1043 1044 1045 1046
	if (status & MTK_RX_DONE_INT) {
		remain_budget -= rx_done;
		goto poll_again;
	}
1047
	napi_complete(napi);
1048
	mtk_irq_enable(eth, MTK_PDMA_INT_MASK, MTK_RX_DONE_INT);
1049

1050
	return rx_done + budget - remain_budget;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}

static int mtk_tx_alloc(struct mtk_eth *eth)
{
	struct mtk_tx_ring *ring = &eth->tx_ring;
	int i, sz = sizeof(*ring->dma);

	ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf),
			       GFP_KERNEL);
	if (!ring->buf)
		goto no_tx_mem;

	ring->dma = dma_alloc_coherent(eth->dev,
					  MTK_DMA_SIZE * sz,
					  &ring->phys,
					  GFP_ATOMIC | __GFP_ZERO);
	if (!ring->dma)
		goto no_tx_mem;

	memset(ring->dma, 0, MTK_DMA_SIZE * sz);
	for (i = 0; i < MTK_DMA_SIZE; i++) {
		int next = (i + 1) % MTK_DMA_SIZE;
		u32 next_ptr = ring->phys + next * sz;

		ring->dma[i].txd2 = next_ptr;
		ring->dma[i].txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
	}

	atomic_set(&ring->free_count, MTK_DMA_SIZE - 2);
	ring->next_free = &ring->dma[0];
1081
	ring->last_free = &ring->dma[MTK_DMA_SIZE - 1];
1082
	ring->thresh = MAX_SKB_FRAGS;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	/* make sure that all changes to the dma ring are flushed before we
	 * continue
	 */
	wmb();

	mtk_w32(eth, ring->phys, MTK_QTX_CTX_PTR);
	mtk_w32(eth, ring->phys, MTK_QTX_DTX_PTR);
	mtk_w32(eth,
		ring->phys + ((MTK_DMA_SIZE - 1) * sz),
		MTK_QTX_CRX_PTR);
	mtk_w32(eth,
		ring->phys + ((MTK_DMA_SIZE - 1) * sz),
		MTK_QTX_DRX_PTR);
1097
	mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0));
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	return 0;

no_tx_mem:
	return -ENOMEM;
}

static void mtk_tx_clean(struct mtk_eth *eth)
{
	struct mtk_tx_ring *ring = &eth->tx_ring;
	int i;

	if (ring->buf) {
		for (i = 0; i < MTK_DMA_SIZE; i++)
1112
			mtk_tx_unmap(eth, &ring->buf[i]);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		kfree(ring->buf);
		ring->buf = NULL;
	}

	if (ring->dma) {
		dma_free_coherent(eth->dev,
				  MTK_DMA_SIZE * sizeof(*ring->dma),
				  ring->dma,
				  ring->phys);
		ring->dma = NULL;
	}
}

static int mtk_rx_alloc(struct mtk_eth *eth)
{
	struct mtk_rx_ring *ring = &eth->rx_ring;
	int i;

	ring->frag_size = mtk_max_frag_size(ETH_DATA_LEN);
	ring->buf_size = mtk_max_buf_size(ring->frag_size);
	ring->data = kcalloc(MTK_DMA_SIZE, sizeof(*ring->data),
			     GFP_KERNEL);
	if (!ring->data)
		return -ENOMEM;

	for (i = 0; i < MTK_DMA_SIZE; i++) {
		ring->data[i] = netdev_alloc_frag(ring->frag_size);
		if (!ring->data[i])
			return -ENOMEM;
	}

	ring->dma = dma_alloc_coherent(eth->dev,
				       MTK_DMA_SIZE * sizeof(*ring->dma),
				       &ring->phys,
				       GFP_ATOMIC | __GFP_ZERO);
	if (!ring->dma)
		return -ENOMEM;

	for (i = 0; i < MTK_DMA_SIZE; i++) {
		dma_addr_t dma_addr = dma_map_single(eth->dev,
				ring->data[i] + NET_SKB_PAD,
				ring->buf_size,
				DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
			return -ENOMEM;
		ring->dma[i].rxd1 = (unsigned int)dma_addr;

		ring->dma[i].rxd2 = RX_DMA_PLEN0(ring->buf_size);
	}
	ring->calc_idx = MTK_DMA_SIZE - 1;
	/* make sure that all changes to the dma ring are flushed before we
	 * continue
	 */
	wmb();

1168 1169 1170 1171
	mtk_w32(eth, eth->rx_ring.phys, MTK_PRX_BASE_PTR0);
	mtk_w32(eth, MTK_DMA_SIZE, MTK_PRX_MAX_CNT0);
	mtk_w32(eth, eth->rx_ring.calc_idx, MTK_PRX_CRX_IDX0);
	mtk_w32(eth, MTK_PST_DRX_IDX0, MTK_PDMA_RST_IDX);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	return 0;
}

static void mtk_rx_clean(struct mtk_eth *eth)
{
	struct mtk_rx_ring *ring = &eth->rx_ring;
	int i;

	if (ring->data && ring->dma) {
		for (i = 0; i < MTK_DMA_SIZE; i++) {
			if (!ring->data[i])
				continue;
			if (!ring->dma[i].rxd1)
				continue;
			dma_unmap_single(eth->dev,
					 ring->dma[i].rxd1,
					 ring->buf_size,
					 DMA_FROM_DEVICE);
			skb_free_frag(ring->data[i]);
		}
		kfree(ring->data);
		ring->data = NULL;
	}

	if (ring->dma) {
		dma_free_coherent(eth->dev,
				  MTK_DMA_SIZE * sizeof(*ring->dma),
				  ring->dma,
				  ring->phys);
		ring->dma = NULL;
	}
}

/* wait for DMA to finish whatever it is doing before we start using it again */
static int mtk_dma_busy_wait(struct mtk_eth *eth)
{
	unsigned long t_start = jiffies;

	while (1) {
		if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) &
		      (MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY)))
			return 0;
		if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT))
			break;
	}

	dev_err(eth->dev, "DMA init timeout\n");
	return -1;
}

static int mtk_dma_init(struct mtk_eth *eth)
{
	int err;

	if (mtk_dma_busy_wait(eth))
		return -EBUSY;

	/* QDMA needs scratch memory for internal reordering of the
	 * descriptors
	 */
	err = mtk_init_fq_dma(eth);
	if (err)
		return err;

	err = mtk_tx_alloc(eth);
	if (err)
		return err;

	err = mtk_rx_alloc(eth);
	if (err)
		return err;

	/* Enable random early drop and set drop threshold automatically */
	mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN,
		MTK_QDMA_FC_THRES);
	mtk_w32(eth, 0x0, MTK_QDMA_HRED2);

	return 0;
}

static void mtk_dma_free(struct mtk_eth *eth)
{
	int i;

	for (i = 0; i < MTK_MAC_COUNT; i++)
		if (eth->netdev[i])
			netdev_reset_queue(eth->netdev[i]);
1260 1261 1262 1263 1264 1265 1266 1267
	if (eth->scratch_ring) {
		dma_free_coherent(eth->dev,
				  MTK_DMA_SIZE * sizeof(struct mtk_tx_dma),
				  eth->scratch_ring,
				  eth->phy_scratch_ring);
		eth->scratch_ring = NULL;
		eth->phy_scratch_ring = 0;
	}
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	mtk_tx_clean(eth);
	mtk_rx_clean(eth);
	kfree(eth->scratch_head);
}

static void mtk_tx_timeout(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;

	eth->netdev[mac->id]->stats.tx_errors++;
	netif_err(eth, tx_err, dev,
		  "transmit timed out\n");
1281
	schedule_work(&eth->pending_work);
1282 1283
}

1284
static irqreturn_t mtk_handle_irq_rx(int irq, void *_eth)
1285 1286 1287
{
	struct mtk_eth *eth = _eth;

1288 1289
	if (likely(napi_schedule_prep(&eth->rx_napi))) {
		__napi_schedule(&eth->rx_napi);
1290
		mtk_irq_disable(eth, MTK_PDMA_INT_MASK, MTK_RX_DONE_INT);
1291
	}
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301
	return IRQ_HANDLED;
}

static irqreturn_t mtk_handle_irq_tx(int irq, void *_eth)
{
	struct mtk_eth *eth = _eth;

	if (likely(napi_schedule_prep(&eth->tx_napi))) {
		__napi_schedule(&eth->tx_napi);
1302
		mtk_irq_disable(eth, MTK_QDMA_INT_MASK, MTK_TX_DONE_INT);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	}

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void mtk_poll_controller(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;

1314 1315
	mtk_irq_disable(eth, MTK_QDMA_INT_MASK, MTK_TX_DONE_INT);
	mtk_irq_disable(eth, MTK_PDMA_INT_MASK, MTK_RX_DONE_INT);
1316
	mtk_handle_irq_rx(eth->irq[2], dev);
1317 1318
	mtk_irq_enable(eth, MTK_QDMA_INT_MASK, MTK_TX_DONE_INT);
	mtk_irq_enable(eth, MTK_PDMA_INT_MASK, MTK_RX_DONE_INT);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}
#endif

static int mtk_start_dma(struct mtk_eth *eth)
{
	int err;

	err = mtk_dma_init(eth);
	if (err) {
		mtk_dma_free(eth);
		return err;
	}

	mtk_w32(eth,
1333 1334
		MTK_TX_WB_DDONE | MTK_TX_DMA_EN |
		MTK_DMA_SIZE_16DWORDS | MTK_NDP_CO_PRO,
1335 1336
		MTK_QDMA_GLO_CFG);

1337 1338 1339 1340 1341
	mtk_w32(eth,
		MTK_RX_DMA_EN | MTK_RX_2B_OFFSET |
		MTK_RX_BT_32DWORDS | MTK_MULTI_EN,
		MTK_PDMA_GLO_CFG);

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	return 0;
}

static int mtk_open(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;

	/* we run 2 netdevs on the same dma ring so we only bring it up once */
	if (!atomic_read(&eth->dma_refcnt)) {
		int err = mtk_start_dma(eth);

		if (err)
			return err;

1357
		napi_enable(&eth->tx_napi);
1358
		napi_enable(&eth->rx_napi);
1359 1360
		mtk_irq_enable(eth, MTK_QDMA_INT_MASK, MTK_TX_DONE_INT);
		mtk_irq_enable(eth, MTK_PDMA_INT_MASK, MTK_RX_DONE_INT);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	}
	atomic_inc(&eth->dma_refcnt);

	phy_start(mac->phy_dev);
	netif_start_queue(dev);

	return 0;
}

static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
{
	u32 val;
	int i;

	/* stop the dma engine */
1376
	spin_lock_bh(&eth->page_lock);
1377 1378 1379
	val = mtk_r32(eth, glo_cfg);
	mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
		glo_cfg);
1380
	spin_unlock_bh(&eth->page_lock);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

	/* wait for dma stop */
	for (i = 0; i < 10; i++) {
		val = mtk_r32(eth, glo_cfg);
		if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
			msleep(20);
			continue;
		}
		break;
	}
}

static int mtk_stop(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;

	netif_tx_disable(dev);
	phy_stop(mac->phy_dev);

	/* only shutdown DMA if this is the last user */
	if (!atomic_dec_and_test(&eth->dma_refcnt))
		return 0;

1405 1406
	mtk_irq_disable(eth, MTK_QDMA_INT_MASK, MTK_TX_DONE_INT);
	mtk_irq_disable(eth, MTK_PDMA_INT_MASK, MTK_RX_DONE_INT);
1407
	napi_disable(&eth->tx_napi);
1408 1409 1410 1411 1412 1413 1414 1415 1416
	napi_disable(&eth->rx_napi);

	mtk_stop_dma(eth, MTK_QDMA_GLO_CFG);

	mtk_dma_free(eth);

	return 0;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static void ethsys_reset(struct mtk_eth *eth, u32 reset_bits)
{
	regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL,
			   reset_bits,
			   reset_bits);

	usleep_range(1000, 1100);
	regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL,
			   reset_bits,
			   ~reset_bits);
	mdelay(10);
}

1430
static int mtk_hw_init(struct mtk_eth *eth)
1431
{
1432 1433 1434 1435
	int i, val;

	if (test_and_set_bit(MTK_HW_INIT, &eth->state))
		return 0;
1436

1437 1438 1439
	pm_runtime_enable(eth->dev);
	pm_runtime_get_sync(eth->dev);

1440 1441 1442 1443
	clk_prepare_enable(eth->clks[MTK_CLK_ETHIF]);
	clk_prepare_enable(eth->clks[MTK_CLK_ESW]);
	clk_prepare_enable(eth->clks[MTK_CLK_GP1]);
	clk_prepare_enable(eth->clks[MTK_CLK_GP2]);
1444 1445
	ethsys_reset(eth, RSTCTRL_FE);
	ethsys_reset(eth, RSTCTRL_PPE);
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455
	regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->mac[i])
			continue;
		val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, eth->mac[i]->id);
		val |= SYSCFG0_GE_MODE(eth->mac[i]->ge_mode, eth->mac[i]->id);
	}
	regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	/* Set GE2 driving and slew rate */
	regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00);

	/* set GE2 TDSEL */
	regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5);

	/* set GE2 TUNE */
	regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0);

	/* GE1, Force 1000M/FD, FC ON */
	mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(0));

	/* GE2, Force 1000M/FD, FC ON */
	mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(1));

	/* Enable RX VLan Offloading */
	mtk_w32(eth, 1, MTK_CDMP_EG_CTRL);

	/* disable delay and normal interrupt */
	mtk_w32(eth, 0, MTK_QDMA_DELAY_INT);
1476 1477 1478
	mtk_w32(eth, 0, MTK_PDMA_DELAY_INT);
	mtk_irq_disable(eth, MTK_QDMA_INT_MASK, ~0);
	mtk_irq_disable(eth, MTK_PDMA_INT_MASK, ~0);
1479 1480 1481 1482
	mtk_w32(eth, RST_GL_PSE, MTK_RST_GL);
	mtk_w32(eth, 0, MTK_RST_GL);

	/* FE int grouping */
1483 1484 1485 1486 1487
	mtk_w32(eth, MTK_TX_DONE_INT, MTK_PDMA_INT_GRP1);
	mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_GRP2);
	mtk_w32(eth, MTK_TX_DONE_INT, MTK_QDMA_INT_GRP1);
	mtk_w32(eth, MTK_RX_DONE_INT, MTK_QDMA_INT_GRP2);
	mtk_w32(eth, 0x21021000, MTK_FE_INT_GRP);
1488 1489 1490 1491

	for (i = 0; i < 2; i++) {
		u32 val = mtk_r32(eth, MTK_GDMA_FWD_CFG(i));

1492
		/* setup the forward port to send frame to PDMA */
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		val &= ~0xffff;

		/* Enable RX checksum */
		val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN;

		/* setup the mac dma */
		mtk_w32(eth, val, MTK_GDMA_FWD_CFG(i));
	}

	return 0;
}

1505 1506
static int mtk_hw_deinit(struct mtk_eth *eth)
{
1507 1508 1509
	if (!test_and_clear_bit(MTK_HW_INIT, &eth->state))
		return 0;

1510 1511 1512 1513 1514
	clk_disable_unprepare(eth->clks[MTK_CLK_GP2]);
	clk_disable_unprepare(eth->clks[MTK_CLK_GP1]);
	clk_disable_unprepare(eth->clks[MTK_CLK_ESW]);
	clk_disable_unprepare(eth->clks[MTK_CLK_ETHIF]);

1515 1516 1517
	pm_runtime_put_sync(eth->dev);
	pm_runtime_disable(eth->dev);

1518 1519 1520
	return 0;
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static int __init mtk_init(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;
	const char *mac_addr;

	mac_addr = of_get_mac_address(mac->of_node);
	if (mac_addr)
		ether_addr_copy(dev->dev_addr, mac_addr);

	/* If the mac address is invalid, use random mac address  */
	if (!is_valid_ether_addr(dev->dev_addr)) {
		random_ether_addr(dev->dev_addr);
		dev_err(eth->dev, "generated random MAC address %pM\n",
			dev->dev_addr);
		dev->addr_assign_type = NET_ADDR_RANDOM;
	}

	return mtk_phy_connect(mac);
}

static void mtk_uninit(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_eth *eth = mac->hw;

	phy_disconnect(mac->phy_dev);
	mtk_mdio_cleanup(eth);
1549 1550
	mtk_irq_disable(eth, MTK_QDMA_INT_MASK, ~0);
	mtk_irq_disable(eth, MTK_PDMA_INT_MASK, ~0);
1551 1552
	free_irq(eth->irq[1], dev);
	free_irq(eth->irq[2], dev);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
}

static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mtk_mac *mac = netdev_priv(dev);

	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return phy_mii_ioctl(mac->phy_dev, ifr, cmd);
	default:
		break;
	}

	return -EOPNOTSUPP;
}

static void mtk_pending_work(struct work_struct *work)
{
1573
	struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work);
1574 1575
	int err, i;
	unsigned long restart = 0;
1576 1577 1578

	rtnl_lock();

1579 1580
	/* stop all devices to make sure that dma is properly shut down */
	for (i = 0; i < MTK_MAC_COUNT; i++) {
1581
		if (!eth->netdev[i])
1582 1583 1584 1585 1586
			continue;
		mtk_stop(eth->netdev[i]);
		__set_bit(i, &restart);
	}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	/* restart underlying hardware such as power, clock, pin mux
	 * and the connected phy
	 */
	mtk_hw_deinit(eth);

	if (eth->dev->pins)
		pinctrl_select_state(eth->dev->pins->p,
				     eth->dev->pins->default_state);
	mtk_hw_init(eth);

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->mac[i] ||
		    of_phy_is_fixed_link(eth->mac[i]->of_node))
			continue;
		err = phy_init_hw(eth->mac[i]->phy_dev);
		if (err)
			dev_err(eth->dev, "%s: PHY init failed.\n",
				eth->netdev[i]->name);
	}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	/* restart DMA and enable IRQs */
	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!test_bit(i, &restart))
			continue;
		err = mtk_open(eth->netdev[i]);
		if (err) {
			netif_alert(eth, ifup, eth->netdev[i],
			      "Driver up/down cycle failed, closing device.\n");
			dev_close(eth->netdev[i]);
		}
1617 1618 1619 1620
	}
	rtnl_unlock();
}

1621
static int mtk_free_dev(struct mtk_eth *eth)
1622 1623 1624 1625 1626 1627
{
	int i;

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->netdev[i])
			continue;
1628 1629 1630 1631 1632
		free_netdev(eth->netdev[i]);
	}

	return 0;
}
1633

1634 1635 1636 1637 1638 1639 1640
static int mtk_unreg_dev(struct mtk_eth *eth)
{
	int i;

	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->netdev[i])
			continue;
1641 1642
		unregister_netdev(eth->netdev[i]);
	}
1643 1644 1645 1646 1647 1648 1649 1650

	return 0;
}

static int mtk_cleanup(struct mtk_eth *eth)
{
	mtk_unreg_dev(eth);
	mtk_free_dev(eth);
1651
	cancel_work_sync(&eth->pending_work);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

	return 0;
}

static int mtk_get_settings(struct net_device *dev,
			    struct ethtool_cmd *cmd)
{
	struct mtk_mac *mac = netdev_priv(dev);
	int err;

	err = phy_read_status(mac->phy_dev);
	if (err)
		return -ENODEV;

	return phy_ethtool_gset(mac->phy_dev, cmd);
}

static int mtk_set_settings(struct net_device *dev,
			    struct ethtool_cmd *cmd)
{
	struct mtk_mac *mac = netdev_priv(dev);

	if (cmd->phy_address != mac->phy_dev->mdio.addr) {
		mac->phy_dev = mdiobus_get_phy(mac->hw->mii_bus,
					       cmd->phy_address);
		if (!mac->phy_dev)
			return -ENODEV;
	}

	return phy_ethtool_sset(mac->phy_dev, cmd);
}

static void mtk_get_drvinfo(struct net_device *dev,
			    struct ethtool_drvinfo *info)
{
	struct mtk_mac *mac = netdev_priv(dev);

	strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver));
	strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info));
	info->n_stats = ARRAY_SIZE(mtk_ethtool_stats);
}

static u32 mtk_get_msglevel(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);

	return mac->hw->msg_enable;
}

static void mtk_set_msglevel(struct net_device *dev, u32 value)
{
	struct mtk_mac *mac = netdev_priv(dev);

	mac->hw->msg_enable = value;
}

static int mtk_nway_reset(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);

	return genphy_restart_aneg(mac->phy_dev);
}

static u32 mtk_get_link(struct net_device *dev)
{
	struct mtk_mac *mac = netdev_priv(dev);
	int err;

	err = genphy_update_link(mac->phy_dev);
	if (err)
		return ethtool_op_get_link(dev);

	return mac->phy_dev->link;
}

static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) {
			memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN);
			data += ETH_GSTRING_LEN;
		}
		break;
	}
}

static int mtk_get_sset_count(struct net_device *dev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return ARRAY_SIZE(mtk_ethtool_stats);
	default:
		return -EOPNOTSUPP;
	}
}

static void mtk_get_ethtool_stats(struct net_device *dev,
				  struct ethtool_stats *stats, u64 *data)
{
	struct mtk_mac *mac = netdev_priv(dev);
	struct mtk_hw_stats *hwstats = mac->hw_stats;
	u64 *data_src, *data_dst;
	unsigned int start;
	int i;

	if (netif_running(dev) && netif_device_present(dev)) {
		if (spin_trylock(&hwstats->stats_lock)) {
			mtk_stats_update_mac(mac);
			spin_unlock(&hwstats->stats_lock);
		}
	}

	do {
1768
		data_src = (u64 *)hwstats;
1769 1770 1771 1772 1773 1774 1775 1776
		data_dst = data;
		start = u64_stats_fetch_begin_irq(&hwstats->syncp);

		for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++)
			*data_dst++ = *(data_src + mtk_ethtool_stats[i].offset);
	} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
}

1777
static const struct ethtool_ops mtk_ethtool_ops = {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	.get_settings		= mtk_get_settings,
	.set_settings		= mtk_set_settings,
	.get_drvinfo		= mtk_get_drvinfo,
	.get_msglevel		= mtk_get_msglevel,
	.set_msglevel		= mtk_set_msglevel,
	.nway_reset		= mtk_nway_reset,
	.get_link		= mtk_get_link,
	.get_strings		= mtk_get_strings,
	.get_sset_count		= mtk_get_sset_count,
	.get_ethtool_stats	= mtk_get_ethtool_stats,
};

static const struct net_device_ops mtk_netdev_ops = {
	.ndo_init		= mtk_init,
	.ndo_uninit		= mtk_uninit,
	.ndo_open		= mtk_open,
	.ndo_stop		= mtk_stop,
	.ndo_start_xmit		= mtk_start_xmit,
	.ndo_set_mac_address	= mtk_set_mac_address,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= mtk_do_ioctl,
	.ndo_change_mtu		= eth_change_mtu,
	.ndo_tx_timeout		= mtk_tx_timeout,
	.ndo_get_stats64        = mtk_get_stats64,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= mtk_poll_controller,
#endif
};

static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
{
	struct mtk_mac *mac;
	const __be32 *_id = of_get_property(np, "reg", NULL);
	int id, err;

	if (!_id) {
		dev_err(eth->dev, "missing mac id\n");
		return -EINVAL;
	}

	id = be32_to_cpup(_id);
	if (id >= MTK_MAC_COUNT) {
		dev_err(eth->dev, "%d is not a valid mac id\n", id);
		return -EINVAL;
	}

	if (eth->netdev[id]) {
		dev_err(eth->dev, "duplicate mac id found: %d\n", id);
		return -EINVAL;
	}

	eth->netdev[id] = alloc_etherdev(sizeof(*mac));
	if (!eth->netdev[id]) {
		dev_err(eth->dev, "alloc_etherdev failed\n");
		return -ENOMEM;
	}
	mac = netdev_priv(eth->netdev[id]);
	eth->mac[id] = mac;
	mac->id = id;
	mac->hw = eth;
	mac->of_node = np;

	mac->hw_stats = devm_kzalloc(eth->dev,
				     sizeof(*mac->hw_stats),
				     GFP_KERNEL);
	if (!mac->hw_stats) {
		dev_err(eth->dev, "failed to allocate counter memory\n");
		err = -ENOMEM;
		goto free_netdev;
	}
	spin_lock_init(&mac->hw_stats->stats_lock);
1849
	u64_stats_init(&mac->hw_stats->syncp);
1850 1851 1852
	mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;

	SET_NETDEV_DEV(eth->netdev[id], eth->dev);
1853
	eth->netdev[id]->watchdog_timeo = 5 * HZ;
1854 1855 1856 1857 1858 1859 1860
	eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
	eth->netdev[id]->base_addr = (unsigned long)eth->base;
	eth->netdev[id]->vlan_features = MTK_HW_FEATURES &
		~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
	eth->netdev[id]->features |= MTK_HW_FEATURES;
	eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops;

1861
	eth->netdev[id]->irq = eth->irq[0];
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	return 0;

free_netdev:
	free_netdev(eth->netdev[id]);
	return err;
}

static int mtk_probe(struct platform_device *pdev)
{
	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	struct device_node *mac_np;
	const struct of_device_id *match;
	struct mtk_soc_data *soc;
	struct mtk_eth *eth;
	int err;
1877
	int i;
1878 1879 1880 1881 1882 1883 1884 1885

	match = of_match_device(of_mtk_match, &pdev->dev);
	soc = (struct mtk_soc_data *)match->data;

	eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
	if (!eth)
		return -ENOMEM;

1886
	eth->dev = &pdev->dev;
1887
	eth->base = devm_ioremap_resource(&pdev->dev, res);
1888 1889
	if (IS_ERR(eth->base))
		return PTR_ERR(eth->base);
1890 1891

	spin_lock_init(&eth->page_lock);
1892
	spin_lock_init(&eth->irq_lock);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

	eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
						      "mediatek,ethsys");
	if (IS_ERR(eth->ethsys)) {
		dev_err(&pdev->dev, "no ethsys regmap found\n");
		return PTR_ERR(eth->ethsys);
	}

	eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
						    "mediatek,pctl");
	if (IS_ERR(eth->pctl)) {
		dev_err(&pdev->dev, "no pctl regmap found\n");
		return PTR_ERR(eth->pctl);
	}

1908 1909 1910 1911 1912 1913
	for (i = 0; i < 3; i++) {
		eth->irq[i] = platform_get_irq(pdev, i);
		if (eth->irq[i] < 0) {
			dev_err(&pdev->dev, "no IRQ%d resource found\n", i);
			return -ENXIO;
		}
1914
	}
1915 1916 1917 1918 1919 1920 1921 1922 1923
	for (i = 0; i < ARRAY_SIZE(eth->clks); i++) {
		eth->clks[i] = devm_clk_get(eth->dev,
					    mtk_clks_source_name[i]);
		if (IS_ERR(eth->clks[i])) {
			if (PTR_ERR(eth->clks[i]) == -EPROBE_DEFER)
				return -EPROBE_DEFER;
			return -ENODEV;
		}
	}
1924 1925

	eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
1926
	INIT_WORK(&eth->pending_work, mtk_pending_work);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	err = mtk_hw_init(eth);
	if (err)
		return err;

	for_each_child_of_node(pdev->dev.of_node, mac_np) {
		if (!of_device_is_compatible(mac_np,
					     "mediatek,eth-mac"))
			continue;

		if (!of_device_is_available(mac_np))
			continue;

		err = mtk_add_mac(eth, mac_np);
		if (err)
1942
			goto err_deinit_hw;
1943 1944
	}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	err = devm_request_irq(eth->dev, eth->irq[1], mtk_handle_irq_tx, 0,
			       dev_name(eth->dev), eth);
	if (err)
		goto err_free_dev;

	err = devm_request_irq(eth->dev, eth->irq[2], mtk_handle_irq_rx, 0,
			       dev_name(eth->dev), eth);
	if (err)
		goto err_free_dev;

	err = mtk_mdio_init(eth);
	if (err)
		goto err_free_dev;

	for (i = 0; i < MTK_MAX_DEVS; i++) {
		if (!eth->netdev[i])
			continue;

		err = register_netdev(eth->netdev[i]);
		if (err) {
			dev_err(eth->dev, "error bringing up device\n");
1966
			goto err_deinit_mdio;
1967 1968 1969 1970 1971 1972
		} else
			netif_info(eth, probe, eth->netdev[i],
				   "mediatek frame engine at 0x%08lx, irq %d\n",
				   eth->netdev[i]->base_addr, eth->irq[0]);
	}

1973 1974 1975 1976
	/* we run 2 devices on the same DMA ring so we need a dummy device
	 * for NAPI to work
	 */
	init_dummy_netdev(&eth->dummy_dev);
1977 1978 1979
	netif_napi_add(&eth->dummy_dev, &eth->tx_napi, mtk_napi_tx,
		       MTK_NAPI_WEIGHT);
	netif_napi_add(&eth->dummy_dev, &eth->rx_napi, mtk_napi_rx,
1980 1981 1982 1983 1984 1985
		       MTK_NAPI_WEIGHT);

	platform_set_drvdata(pdev, eth);

	return 0;

1986 1987
err_deinit_mdio:
	mtk_mdio_cleanup(eth);
1988
err_free_dev:
1989 1990 1991 1992
	mtk_free_dev(eth);
err_deinit_hw:
	mtk_hw_deinit(eth);

1993 1994 1995 1996 1997 1998
	return err;
}

static int mtk_remove(struct platform_device *pdev)
{
	struct mtk_eth *eth = platform_get_drvdata(pdev);
1999 2000 2001 2002 2003 2004 2005 2006
	int i;

	/* stop all devices to make sure that dma is properly shut down */
	for (i = 0; i < MTK_MAC_COUNT; i++) {
		if (!eth->netdev[i])
			continue;
		mtk_stop(eth->netdev[i]);
	}
2007

2008
	mtk_hw_deinit(eth);
2009

2010
	netif_napi_del(&eth->tx_napi);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	netif_napi_del(&eth->rx_napi);
	mtk_cleanup(eth);

	return 0;
}

const struct of_device_id of_mtk_match[] = {
	{ .compatible = "mediatek,mt7623-eth" },
	{},
};

static struct platform_driver mtk_driver = {
	.probe = mtk_probe,
	.remove = mtk_remove,
	.driver = {
		.name = "mtk_soc_eth",
		.of_match_table = of_mtk_match,
	},
};

module_platform_driver(mtk_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");