ar9003_eeprom.c 146.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

17
#include <asm/unaligned.h>
18 19 20 21 22 23 24
#include "hw.h"
#include "ar9003_phy.h"
#include "ar9003_eeprom.h"

#define COMP_HDR_LEN 4
#define COMP_CKSUM_LEN 2

25 26 27
#define LE16(x) __constant_cpu_to_le16(x)
#define LE32(x) __constant_cpu_to_le32(x)

28 29 30 31 32 33 34 35 36
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)

#define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */

37 38
#define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))

39 40
#define EEPROM_DATA_LEN_9485	1088

41 42
static int ar9003_hw_power_interpolate(int32_t x,
				       int32_t *px, int32_t *py, u_int16_t np);
43

44

45 46 47
static const struct ar9300_eeprom ar9300_default = {
	.eepromVersion = 2,
	.templateVersion = 2,
48
	.macAddr = {0, 2, 3, 4, 5, 6},
49 50 51
	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
	.baseEepHeader = {
52
		.regDmn = { LE16(0), LE16(0x1f) },
53 54
		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
		.opCapFlags = {
55
			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
			.eepMisc = 0,
		},
		.rfSilent = 0,
		.blueToothOptions = 0,
		.deviceCap = 0,
		.deviceType = 5, /* takes lower byte in eeprom location */
		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
		.params_for_tuning_caps = {0, 0},
		.featureEnable = 0x0c,
		 /*
		  * bit0 - enable tx temp comp - disabled
		  * bit1 - enable tx volt comp - disabled
		  * bit2 - enable fastClock - enabled
		  * bit3 - enable doubling - enabled
		  * bit4 - enable internal regulator - disabled
71
		  * bit5 - enable pa predistortion - disabled
72 73 74 75 76 77 78 79 80 81 82 83
		  */
		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
		.eepromWriteEnableGpio = 3,
		.wlanDisableGpio = 0,
		.wlanLedGpio = 8,
		.rxBandSelectGpio = 0xff,
		.txrxgain = 0,
		.swreg = 0,
	 },
	.modalHeader2G = {
	/* ar9300_modal_eep_header  2g */
		/* 4 idle,t1,t2,b(4 bits per setting) */
84
		.antCtrlCommon = LE32(0x110),
85
		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86
		.antCtrlCommon2 = LE32(0x22222),
87 88 89 90 91

		/*
		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
		 * rx1, rx12, b (2 bits each)
		 */
92
		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

		/*
		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
		 * for ar9280 (0xa20c/b20c 5:0)
		 */
		.xatten1DB = {0, 0, 0},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for ar9280 (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0, 0, 0},
		.tempSlope = 36,
		.voltSlope = 0,

		/*
		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
		 * channels in usual fbin coding format
		 */
		.spurChans = {0, 0, 0, 0, 0},

		/*
		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
		 * if the register is per chain
		 */
		.noiseFloorThreshCh = {-1, 0, 0},
119 120
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
121 122 123 124 125 126 127 128 129 130 131
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2c,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
132 133
		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134
		.xlna_bias_strength = 0,
135
		.futureModal = {
136
			0, 0, 0, 0, 0, 0, 0,
137 138
		},
	 },
139 140
	.base_ext1 = {
		.ant_div_control = 0,
141
		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
142
	},
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	.calFreqPier2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1),
	 },
	/* ar9300_cal_data_per_freq_op_loop 2g */
	.calPierData2G = {
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
	 },
	.calTarget_freqbin_Cck = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2484, 1),
	 },
	.calTarget_freqbin_2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTarget_freqbin_2GHT20 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTarget_freqbin_2GHT40 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTargetPowerCck = {
		 /* 1L-5L,5S,11L,11S */
		 { {36, 36, 36, 36} },
		 { {36, 36, 36, 36} },
	},
	.calTargetPower2G = {
		 /* 6-24,36,48,54 */
		 { {32, 32, 28, 24} },
		 { {32, 32, 28, 24} },
		 { {32, 32, 28, 24} },
	},
	.calTargetPower2GHT20 = {
		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
	},
	.calTargetPower2GHT40 = {
		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
	},
	.ctlIndex_2G =  {
		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
	},
	.ctl_freqbin_2G = {
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2457, 1),
			FREQ2FBIN(2462, 1)
		},
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},

		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},
		{
			FREQ2FBIN(2422, 1),
			FREQ2FBIN(2427, 1),
			FREQ2FBIN(2447, 1),
			FREQ2FBIN(2452, 1)
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
		},

		{
			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
277
			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
278 279 280
		}
	 },
	.ctlPowerData_2G = {
281 282 283
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
284

285
		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
286 287
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288

289 290 291
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292

293 294 295
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
296 297 298
	 },
	.modalHeader5G = {
		/* 4 idle,t1,t2,b (4 bits per setting) */
299
		.antCtrlCommon = LE32(0x110),
300
		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
301
		.antCtrlCommon2 = LE32(0x22222),
302 303
		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
		.antCtrlChain = {
304
			LE16(0x000), LE16(0x000), LE16(0x000),
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		},
		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
		.xatten1DB = {0, 0, 0},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for merlin (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0, 0, 0},
		.tempSlope = 68,
		.voltSlope = 0,
		/* spurChans spur channels in usual fbin coding format */
		.spurChans = {0, 0, 0, 0, 0},
		/* noiseFloorThreshCh Check if the register is per chain */
		.noiseFloorThreshCh = {-1, 0, 0},
320 321
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
322 323 324 325 326 327 328 329 330 331 332
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2d,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
333 334
		.papdRateMaskHt20 = LE32(0x0c80c080),
		.papdRateMaskHt40 = LE32(0x0080c080),
335
		.xlna_bias_strength = 0,
336
		.futureModal = {
337
			0, 0, 0, 0, 0, 0, 0,
338 339
		},
	 },
340 341 342 343 344 345 346 347
	.base_ext2 = {
		.tempSlopeLow = 0,
		.tempSlopeHigh = 0,
		.xatten1DBLow = {0, 0, 0},
		.xatten1MarginLow = {0, 0, 0},
		.xatten1DBHigh = {0, 0, 0},
		.xatten1MarginHigh = {0, 0, 0}
	},
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	.calFreqPier5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5725, 0),
		FREQ2FBIN(5825, 0)
	},
	.calPierData5G = {
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},

	},
	.calTarget_freqbin_5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5725, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT20 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5725, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT40 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5725, 0),
		FREQ2FBIN(5825, 0)
	 },
	.calTargetPower5G = {
		/* 6-24,36,48,54 */
		{ {20, 20, 20, 10} },
		{ {20, 20, 20, 10} },
		{ {20, 20, 20, 10} },
		{ {20, 20, 20, 10} },
		{ {20, 20, 20, 10} },
		{ {20, 20, 20, 10} },
		{ {20, 20, 20, 10} },
		{ {20, 20, 20, 10} },
	 },
	.calTargetPower5GHT20 = {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
	 },
	.calTargetPower5GHT40 =  {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
	 },
	.ctlIndex_5G =  {
		0x10, 0x16, 0x18, 0x40, 0x46,
		0x48, 0x30, 0x36, 0x38
	},
	.ctl_freqbin_5G =  {
		{
			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},
		{
			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
		},

		{
			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
			/* Data[5].ctlEdges[7].bChannel */ 0xFF
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
		}
	 },
	.ctlPowerData_5G = {
		{
			{
566 567
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
568 569 570 571
			}
		},
		{
			{
572 573
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
574 575 576 577
			}
		},
		{
			{
578 579
				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
580 581 582 583
			}
		},
		{
			{
584 585
				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
586 587 588 589
			}
		},
		{
			{
590 591
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
592 593 594 595
			}
		},
		{
			{
596 597
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
598 599 600 601
			}
		},
		{
			{
602 603
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 605 606 607
			}
		},
		{
			{
608 609
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
610 611 612 613
			}
		},
		{
			{
614 615
				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
616 617 618 619 620
			}
		},
	 }
};

621 622 623 624 625 626 627 628 629
static const struct ar9300_eeprom ar9300_x113 = {
	.eepromVersion = 2,
	.templateVersion = 6,
	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
	.custData = {"x113-023-f0000"},
	.baseEepHeader = {
		.regDmn = { LE16(0), LE16(0x1f) },
		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
		.opCapFlags = {
630
			.opFlags = AR5416_OPFLAGS_11A,
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
			.eepMisc = 0,
		},
		.rfSilent = 0,
		.blueToothOptions = 0,
		.deviceCap = 0,
		.deviceType = 5, /* takes lower byte in eeprom location */
		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
		.params_for_tuning_caps = {0, 0},
		.featureEnable = 0x0d,
		 /*
		  * bit0 - enable tx temp comp - disabled
		  * bit1 - enable tx volt comp - disabled
		  * bit2 - enable fastClock - enabled
		  * bit3 - enable doubling - enabled
		  * bit4 - enable internal regulator - disabled
		  * bit5 - enable pa predistortion - disabled
		  */
		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
		.eepromWriteEnableGpio = 6,
		.wlanDisableGpio = 0,
		.wlanLedGpio = 8,
		.rxBandSelectGpio = 0xff,
		.txrxgain = 0x21,
		.swreg = 0,
	 },
	.modalHeader2G = {
	/* ar9300_modal_eep_header  2g */
		/* 4 idle,t1,t2,b(4 bits per setting) */
		.antCtrlCommon = LE32(0x110),
		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
		.antCtrlCommon2 = LE32(0x44444),

		/*
		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
		 * rx1, rx12, b (2 bits each)
		 */
		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },

		/*
		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
		 * for ar9280 (0xa20c/b20c 5:0)
		 */
		.xatten1DB = {0, 0, 0},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for ar9280 (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0, 0, 0},
		.tempSlope = 25,
		.voltSlope = 0,

		/*
		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
		 * channels in usual fbin coding format
		 */
		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},

		/*
		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
		 * if the register is per chain
		 */
		.noiseFloorThreshCh = {-1, 0, 0},
694 695
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
696 697 698 699 700 701 702 703 704 705 706 707 708
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2c,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
		.papdRateMaskHt20 = LE32(0x0c80c080),
		.papdRateMaskHt40 = LE32(0x0080c080),
709
		.xlna_bias_strength = 0,
710
		.futureModal = {
711
			0, 0, 0, 0, 0, 0, 0,
712 713 714 715
		},
	 },
	 .base_ext1 = {
		.ant_div_control = 0,
716
		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	 },
	.calFreqPier2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1),
	 },
	/* ar9300_cal_data_per_freq_op_loop 2g */
	.calPierData2G = {
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
	 },
	.calTarget_freqbin_Cck = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2472, 1),
	 },
	.calTarget_freqbin_2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTarget_freqbin_2GHT20 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTarget_freqbin_2GHT40 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTargetPowerCck = {
		 /* 1L-5L,5S,11L,11S */
		 { {34, 34, 34, 34} },
		 { {34, 34, 34, 34} },
	},
	.calTargetPower2G = {
		 /* 6-24,36,48,54 */
		 { {34, 34, 32, 32} },
		 { {34, 34, 32, 32} },
		 { {34, 34, 32, 32} },
	},
	.calTargetPower2GHT20 = {
		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
	},
	.calTargetPower2GHT40 = {
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
	},
	.ctlIndex_2G =  {
		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
	},
	.ctl_freqbin_2G = {
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2457, 1),
			FREQ2FBIN(2462, 1)
		},
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},

		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},
		{
			FREQ2FBIN(2422, 1),
			FREQ2FBIN(2427, 1),
			FREQ2FBIN(2447, 1),
			FREQ2FBIN(2452, 1)
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
		},

		{
			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
		}
	 },
	.ctlPowerData_2G = {
856 857 858
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
859

860
		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
861 862
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863

864 865 866
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
867

868 869 870
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	 },
	.modalHeader5G = {
		/* 4 idle,t1,t2,b (4 bits per setting) */
		.antCtrlCommon = LE32(0x220),
		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
		.antCtrlCommon2 = LE32(0x11111),
		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
		.antCtrlChain = {
			LE16(0x150), LE16(0x150), LE16(0x150),
		},
		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
		.xatten1DB = {0, 0, 0},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for merlin (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0, 0, 0},
		.tempSlope = 68,
		.voltSlope = 0,
		/* spurChans spur channels in usual fbin coding format */
		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
		/* noiseFloorThreshCh Check if the register is per chain */
		.noiseFloorThreshCh = {-1, 0, 0},
895 896
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
897
		.xpaBiasLvl = 0xf,
898 899 900 901 902 903 904 905 906 907 908 909
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2d,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
910
		.xlna_bias_strength = 0,
911
		.futureModal = {
912
			0, 0, 0, 0, 0, 0, 0,
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		},
	 },
	.base_ext2 = {
		.tempSlopeLow = 72,
		.tempSlopeHigh = 105,
		.xatten1DBLow = {0, 0, 0},
		.xatten1MarginLow = {0, 0, 0},
		.xatten1DBHigh = {0, 0, 0},
		.xatten1MarginHigh = {0, 0, 0}
	 },
	.calFreqPier5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5785, 0)
	},
	.calPierData5G = {
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},

	},
	.calTarget_freqbin_5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5785, 0)
	},
	.calTarget_freqbin_5GHT20 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT40 = {
		FREQ2FBIN(5190, 0),
		FREQ2FBIN(5230, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5410, 0),
		FREQ2FBIN(5510, 0),
		FREQ2FBIN(5670, 0),
		FREQ2FBIN(5755, 0),
		FREQ2FBIN(5825, 0)
	 },
	.calTargetPower5G = {
		/* 6-24,36,48,54 */
		{ {42, 40, 40, 34} },
		{ {42, 40, 40, 34} },
		{ {42, 40, 40, 34} },
		{ {42, 40, 40, 34} },
		{ {42, 40, 40, 34} },
		{ {42, 40, 40, 34} },
		{ {42, 40, 40, 34} },
		{ {42, 40, 40, 34} },
	 },
	.calTargetPower5GHT20 = {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
	 },
	.calTargetPower5GHT40 =  {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
	 },
	.ctlIndex_5G =  {
		0x10, 0x16, 0x18, 0x40, 0x46,
		0x48, 0x30, 0x36, 0x38
	},
	.ctl_freqbin_5G =  {
		{
			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},
		{
			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
		},

		{
			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
			/* Data[5].ctlEdges[7].bChannel */ 0xFF
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
		}
	 },
	.ctlPowerData_5G = {
		{
			{
1141 1142
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1143 1144 1145 1146
			}
		},
		{
			{
1147 1148
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1149 1150 1151 1152
			}
		},
		{
			{
1153 1154
				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1155 1156 1157 1158
			}
		},
		{
			{
1159 1160
				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1161 1162 1163 1164
			}
		},
		{
			{
1165 1166
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1167 1168 1169 1170
			}
		},
		{
			{
1171 1172
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1173 1174 1175 1176
			}
		},
		{
			{
1177 1178
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 1180 1181 1182
			}
		},
		{
			{
1183 1184
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1185 1186 1187 1188
			}
		},
		{
			{
1189 1190
				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			}
		},
	 }
};


static const struct ar9300_eeprom ar9300_h112 = {
	.eepromVersion = 2,
	.templateVersion = 3,
	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
	.custData = {"h112-241-f0000"},
	.baseEepHeader = {
		.regDmn = { LE16(0), LE16(0x1f) },
		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
		.opCapFlags = {
1206
			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
			.eepMisc = 0,
		},
		.rfSilent = 0,
		.blueToothOptions = 0,
		.deviceCap = 0,
		.deviceType = 5, /* takes lower byte in eeprom location */
		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
		.params_for_tuning_caps = {0, 0},
		.featureEnable = 0x0d,
		/*
		 * bit0 - enable tx temp comp - disabled
		 * bit1 - enable tx volt comp - disabled
		 * bit2 - enable fastClock - enabled
		 * bit3 - enable doubling - enabled
		 * bit4 - enable internal regulator - disabled
		 * bit5 - enable pa predistortion - disabled
		 */
		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
		.eepromWriteEnableGpio = 6,
		.wlanDisableGpio = 0,
		.wlanLedGpio = 8,
		.rxBandSelectGpio = 0xff,
		.txrxgain = 0x10,
		.swreg = 0,
	},
	.modalHeader2G = {
		/* ar9300_modal_eep_header  2g */
		/* 4 idle,t1,t2,b(4 bits per setting) */
		.antCtrlCommon = LE32(0x110),
		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
		.antCtrlCommon2 = LE32(0x44444),

		/*
		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
		 * rx1, rx12, b (2 bits each)
		 */
		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },

		/*
		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
		 * for ar9280 (0xa20c/b20c 5:0)
		 */
		.xatten1DB = {0, 0, 0},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for ar9280 (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0, 0, 0},
		.tempSlope = 25,
		.voltSlope = 0,

		/*
		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
		 * channels in usual fbin coding format
		 */
		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},

		/*
		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
		 * if the register is per chain
		 */
		.noiseFloorThreshCh = {-1, 0, 0},
1270 1271
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2c,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
1283 1284
		.papdRateMaskHt20 = LE32(0x0c80c080),
		.papdRateMaskHt40 = LE32(0x0080c080),
1285
		.xlna_bias_strength = 0,
1286
		.futureModal = {
1287
			0, 0, 0, 0, 0, 0, 0,
1288 1289 1290 1291
		},
	},
	.base_ext1 = {
		.ant_div_control = 0,
1292
		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1293 1294 1295 1296
	},
	.calFreqPier2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
1297
		FREQ2FBIN(2462, 1),
1298 1299 1300 1301 1302 1303 1304 1305 1306
	},
	/* ar9300_cal_data_per_freq_op_loop 2g */
	.calPierData2G = {
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
	},
	.calTarget_freqbin_Cck = {
		FREQ2FBIN(2412, 1),
1307
		FREQ2FBIN(2472, 1),
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	},
	.calTarget_freqbin_2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	},
	.calTarget_freqbin_2GHT20 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	},
	.calTarget_freqbin_2GHT40 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	},
	.calTargetPowerCck = {
		/* 1L-5L,5S,11L,11S */
		{ {34, 34, 34, 34} },
		{ {34, 34, 34, 34} },
	},
	.calTargetPower2G = {
		/* 6-24,36,48,54 */
		{ {34, 34, 32, 32} },
		{ {34, 34, 32, 32} },
		{ {34, 34, 32, 32} },
	},
	.calTargetPower2GHT20 = {
		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
	},
	.calTargetPower2GHT40 = {
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
	},
	.ctlIndex_2G =  {
		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
	},
	.ctl_freqbin_2G = {
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2457, 1),
			FREQ2FBIN(2462, 1)
		},
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},

		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},
		{
			FREQ2FBIN(2422, 1),
			FREQ2FBIN(2427, 1),
			FREQ2FBIN(2447, 1),
			FREQ2FBIN(2452, 1)
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
		},

		{
			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
		}
	},
	.ctlPowerData_2G = {
1432 1433 1434
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1435

1436
		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1437 1438
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1439

1440 1441 1442
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443

1444 1445 1446
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	},
	.modalHeader5G = {
		/* 4 idle,t1,t2,b (4 bits per setting) */
		.antCtrlCommon = LE32(0x220),
		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
		.antCtrlCommon2 = LE32(0x44444),
		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
		.antCtrlChain = {
			LE16(0x150), LE16(0x150), LE16(0x150),
		},
		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
		.xatten1DB = {0, 0, 0},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for merlin (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0, 0, 0},
		.tempSlope = 45,
		.voltSlope = 0,
		/* spurChans spur channels in usual fbin coding format */
		.spurChans = {0, 0, 0, 0, 0},
		/* noiseFloorThreshCh Check if the register is per chain */
		.noiseFloorThreshCh = {-1, 0, 0},
1471 1472
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2d,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1486
		.xlna_bias_strength = 0,
1487
		.futureModal = {
1488
			0, 0, 0, 0, 0, 0, 0,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		},
	},
	.base_ext2 = {
		.tempSlopeLow = 40,
		.tempSlopeHigh = 50,
		.xatten1DBLow = {0, 0, 0},
		.xatten1MarginLow = {0, 0, 0},
		.xatten1DBHigh = {0, 0, 0},
		.xatten1MarginHigh = {0, 0, 0}
	},
	.calFreqPier5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5700, 0),
1507
		FREQ2FBIN(5785, 0)
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	},
	.calPierData5G = {
		{
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
		},
		{
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
		},
		{
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
		},

	},
	.calTarget_freqbin_5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT20 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT40 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTargetPower5G = {
		/* 6-24,36,48,54 */
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
	},
	.calTargetPower5GHT20 = {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
	},
	.calTargetPower5GHT40 =  {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
	},
	.ctlIndex_5G =  {
		0x10, 0x16, 0x18, 0x40, 0x46,
		0x48, 0x30, 0x36, 0x38
	},
	.ctl_freqbin_5G =  {
		{
			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},
		{
			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
		},

		{
			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
			/* Data[5].ctlEdges[7].bChannel */ 0xFF
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
		}
	},
	.ctlPowerData_5G = {
		{
			{
1717 1718
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1719 1720 1721 1722
			}
		},
		{
			{
1723 1724
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1725 1726 1727 1728
			}
		},
		{
			{
1729 1730
				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1731 1732 1733 1734
			}
		},
		{
			{
1735 1736
				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1737 1738 1739 1740
			}
		},
		{
			{
1741 1742
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1743 1744 1745 1746
			}
		},
		{
			{
1747 1748
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1749 1750 1751 1752
			}
		},
		{
			{
1753 1754
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1755 1756 1757 1758
			}
		},
		{
			{
1759 1760
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1761 1762 1763 1764
			}
		},
		{
			{
1765 1766
				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
			}
		},
	}
};


static const struct ar9300_eeprom ar9300_x112 = {
	.eepromVersion = 2,
	.templateVersion = 5,
	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
	.custData = {"x112-041-f0000"},
	.baseEepHeader = {
		.regDmn = { LE16(0), LE16(0x1f) },
		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
		.opCapFlags = {
1782
			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
			.eepMisc = 0,
		},
		.rfSilent = 0,
		.blueToothOptions = 0,
		.deviceCap = 0,
		.deviceType = 5, /* takes lower byte in eeprom location */
		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
		.params_for_tuning_caps = {0, 0},
		.featureEnable = 0x0d,
		/*
		 * bit0 - enable tx temp comp - disabled
		 * bit1 - enable tx volt comp - disabled
		 * bit2 - enable fastclock - enabled
		 * bit3 - enable doubling - enabled
		 * bit4 - enable internal regulator - disabled
		 * bit5 - enable pa predistortion - disabled
		 */
		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
		.eepromWriteEnableGpio = 6,
		.wlanDisableGpio = 0,
		.wlanLedGpio = 8,
		.rxBandSelectGpio = 0xff,
		.txrxgain = 0x0,
		.swreg = 0,
	},
	.modalHeader2G = {
		/* ar9300_modal_eep_header  2g */
		/* 4 idle,t1,t2,b(4 bits per setting) */
		.antCtrlCommon = LE32(0x110),
		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
		.antCtrlCommon2 = LE32(0x22222),

		/*
		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
		 * rx1, rx12, b (2 bits each)
		 */
		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },

		/*
		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
		 * for ar9280 (0xa20c/b20c 5:0)
		 */
		.xatten1DB = {0x1b, 0x1b, 0x1b},

		/*
		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
		 * for ar9280 (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0x15, 0x15, 0x15},
		.tempSlope = 50,
		.voltSlope = 0,

		/*
		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
		 * channels in usual fbin coding format
		 */
		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},

		/*
		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
		 * if the register is per chain
		 */
		.noiseFloorThreshCh = {-1, 0, 0},
1846 1847
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2c,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
		.papdRateMaskHt20 = LE32(0x0c80c080),
		.papdRateMaskHt40 = LE32(0x0080c080),
1861
		.xlna_bias_strength = 0,
1862
		.futureModal = {
1863
			0, 0, 0, 0, 0, 0, 0,
1864 1865 1866 1867
		},
	},
	.base_ext1 = {
		.ant_div_control = 0,
1868
		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	},
	.calFreqPier2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1),
	},
	/* ar9300_cal_data_per_freq_op_loop 2g */
	.calPierData2G = {
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
	},
	.calTarget_freqbin_Cck = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2472, 1),
	},
	.calTarget_freqbin_2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	},
	.calTarget_freqbin_2GHT20 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	},
	.calTarget_freqbin_2GHT40 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	},
	.calTargetPowerCck = {
		/* 1L-5L,5S,11L,11s */
		{ {38, 38, 38, 38} },
		{ {38, 38, 38, 38} },
	},
	.calTargetPower2G = {
		/* 6-24,36,48,54 */
		{ {38, 38, 36, 34} },
		{ {38, 38, 36, 34} },
		{ {38, 38, 34, 32} },
	},
	.calTargetPower2GHT20 = {
		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
	},
	.calTargetPower2GHT40 = {
		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
	},
	.ctlIndex_2G =  {
		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
	},
	.ctl_freqbin_2G = {
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2457, 1),
			FREQ2FBIN(2462, 1)
		},
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},

		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},
		{
			FREQ2FBIN(2422, 1),
			FREQ2FBIN(2427, 1),
			FREQ2FBIN(2447, 1),
			FREQ2FBIN(2452, 1)
		},

		{
			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
		},

		{
			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
			FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
		},

		{
			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
		},

		{
			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
		}
	},
	.ctlPowerData_2G = {
2008 2009 2010
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2011

2012
		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2013 2014
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2015

2016 2017 2018
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019

2020 2021 2022
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	},
	.modalHeader5G = {
		/* 4 idle,t1,t2,b (4 bits per setting) */
		.antCtrlCommon = LE32(0x110),
		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
		.antCtrlCommon2 = LE32(0x22222),
		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
		.antCtrlChain = {
			LE16(0x0), LE16(0x0), LE16(0x0),
		},
		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
		.xatten1DB = {0x13, 0x19, 0x17},

		/*
		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
		 * for merlin (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0x19, 0x19, 0x19},
		.tempSlope = 70,
		.voltSlope = 15,
		/* spurChans spur channels in usual fbin coding format */
		.spurChans = {0, 0, 0, 0, 0},
		/* noiseFloorThreshch check if the register is per chain */
		.noiseFloorThreshCh = {-1, 0, 0},
2047 2048
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2d,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2062
		.xlna_bias_strength = 0,
2063
		.futureModal = {
2064
			0, 0, 0, 0, 0, 0, 0,
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		},
	},
	.base_ext2 = {
		.tempSlopeLow = 72,
		.tempSlopeHigh = 105,
		.xatten1DBLow = {0x10, 0x14, 0x10},
		.xatten1MarginLow = {0x19, 0x19 , 0x19},
		.xatten1DBHigh = {0x1d, 0x20, 0x24},
		.xatten1MarginHigh = {0x10, 0x10, 0x10}
	},
	.calFreqPier5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5785, 0)
	},
	.calPierData5G = {
		{
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
		},
		{
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
		},
		{
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
			{0, 0, 0, 0, 0},
		},

	},
	.calTarget_freqbin_5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5725, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT20 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5725, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT40 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5725, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTargetPower5G = {
		/* 6-24,36,48,54 */
		{ {32, 32, 28, 26} },
		{ {32, 32, 28, 26} },
		{ {32, 32, 28, 26} },
		{ {32, 32, 26, 24} },
		{ {32, 32, 26, 24} },
		{ {32, 32, 24, 22} },
		{ {30, 30, 24, 22} },
		{ {30, 30, 24, 22} },
	},
	.calTargetPower5GHT20 = {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
	},
	.calTargetPower5GHT40 =  {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
	},
	.ctlIndex_5G =  {
		0x10, 0x16, 0x18, 0x40, 0x46,
		0x48, 0x30, 0x36, 0x38
	},
	.ctl_freqbin_5G =  {
		{
			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
		},
		{
			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
		},

		{
			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
			/* Data[3].ctledges[6].bchannel */ 0xFF,
			/* Data[3].ctledges[7].bchannel */ 0xFF,
		},

		{
			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
			/* Data[4].ctledges[4].bchannel */ 0xFF,
			/* Data[4].ctledges[5].bchannel */ 0xFF,
			/* Data[4].ctledges[6].bchannel */ 0xFF,
			/* Data[4].ctledges[7].bchannel */ 0xFF,
		},

		{
			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
			/* Data[5].ctledges[6].bchannel */ 0xFF,
			/* Data[5].ctledges[7].bchannel */ 0xFF
		},

		{
			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
		},

		{
			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
		}
	},
	.ctlPowerData_5G = {
		{
			{
2293 2294
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2295 2296 2297 2298
			}
		},
		{
			{
2299 2300
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2301 2302 2303 2304
			}
		},
		{
			{
2305 2306
				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2307 2308 2309 2310
			}
		},
		{
			{
2311 2312
				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2313 2314 2315 2316
			}
		},
		{
			{
2317 2318
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2319 2320 2321 2322
			}
		},
		{
			{
2323 2324
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2325 2326 2327 2328
			}
		},
		{
			{
2329 2330
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2331 2332 2333 2334
			}
		},
		{
			{
2335 2336
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2337 2338 2339 2340
			}
		},
		{
			{
2341 2342
				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
			}
		},
	}
};

static const struct ar9300_eeprom ar9300_h116 = {
	.eepromVersion = 2,
	.templateVersion = 4,
	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
	.custData = {"h116-041-f0000"},
	.baseEepHeader = {
		.regDmn = { LE16(0), LE16(0x1f) },
		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
		.opCapFlags = {
2357
			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
			.eepMisc = 0,
		},
		.rfSilent = 0,
		.blueToothOptions = 0,
		.deviceCap = 0,
		.deviceType = 5, /* takes lower byte in eeprom location */
		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
		.params_for_tuning_caps = {0, 0},
		.featureEnable = 0x0d,
		 /*
		  * bit0 - enable tx temp comp - disabled
		  * bit1 - enable tx volt comp - disabled
		  * bit2 - enable fastClock - enabled
		  * bit3 - enable doubling - enabled
		  * bit4 - enable internal regulator - disabled
		  * bit5 - enable pa predistortion - disabled
		  */
		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
		.eepromWriteEnableGpio = 6,
		.wlanDisableGpio = 0,
		.wlanLedGpio = 8,
		.rxBandSelectGpio = 0xff,
		.txrxgain = 0x10,
		.swreg = 0,
	 },
	.modalHeader2G = {
	/* ar9300_modal_eep_header  2g */
		/* 4 idle,t1,t2,b(4 bits per setting) */
		.antCtrlCommon = LE32(0x110),
		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
		.antCtrlCommon2 = LE32(0x44444),

		/*
		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
		 * rx1, rx12, b (2 bits each)
		 */
		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },

		/*
		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
		 * for ar9280 (0xa20c/b20c 5:0)
		 */
		.xatten1DB = {0x1f, 0x1f, 0x1f},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for ar9280 (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0x12, 0x12, 0x12},
		.tempSlope = 25,
		.voltSlope = 0,

		/*
		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
		 * channels in usual fbin coding format
		 */
		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},

		/*
		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
		 * if the register is per chain
		 */
		.noiseFloorThreshCh = {-1, 0, 0},
2421 2422
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2c,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
		.papdRateMaskHt20 = LE32(0x0c80C080),
		.papdRateMaskHt40 = LE32(0x0080C080),
2436
		.xlna_bias_strength = 0,
2437
		.futureModal = {
2438
			0, 0, 0, 0, 0, 0, 0,
2439 2440 2441 2442
		},
	 },
	 .base_ext1 = {
		.ant_div_control = 0,
2443
		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2444 2445 2446 2447
	 },
	.calFreqPier2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
2448
		FREQ2FBIN(2462, 1),
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	 },
	/* ar9300_cal_data_per_freq_op_loop 2g */
	.calPierData2G = {
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
	 },
	.calTarget_freqbin_Cck = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2472, 1),
	 },
	.calTarget_freqbin_2G = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTarget_freqbin_2GHT20 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTarget_freqbin_2GHT40 = {
		FREQ2FBIN(2412, 1),
		FREQ2FBIN(2437, 1),
		FREQ2FBIN(2472, 1)
	 },
	.calTargetPowerCck = {
		 /* 1L-5L,5S,11L,11S */
		 { {34, 34, 34, 34} },
		 { {34, 34, 34, 34} },
	},
	.calTargetPower2G = {
		 /* 6-24,36,48,54 */
		 { {34, 34, 32, 32} },
		 { {34, 34, 32, 32} },
		 { {34, 34, 32, 32} },
	},
	.calTargetPower2GHT20 = {
		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
	},
	.calTargetPower2GHT40 = {
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
	},
	.ctlIndex_2G =  {
		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
	},
	.ctl_freqbin_2G = {
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2457, 1),
			FREQ2FBIN(2462, 1)
		},
		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},

		{
			FREQ2FBIN(2412, 1),
			FREQ2FBIN(2417, 1),
			FREQ2FBIN(2462, 1),
			0xFF,
		},
		{
			FREQ2FBIN(2422, 1),
			FREQ2FBIN(2427, 1),
			FREQ2FBIN(2447, 1),
			FREQ2FBIN(2452, 1)
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			FREQ2FBIN(2472, 1),
			0,
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
		},

		{
			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
			0
		},

		{
			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
		}
	 },
	.ctlPowerData_2G = {
2583 2584 2585
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2586

2587
		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2588 2589
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590

2591 2592 2593
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2594

2595 2596 2597
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	 },
	.modalHeader5G = {
		/* 4 idle,t1,t2,b (4 bits per setting) */
		.antCtrlCommon = LE32(0x220),
		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
		.antCtrlCommon2 = LE32(0x44444),
		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
		.antCtrlChain = {
			LE16(0x150), LE16(0x150), LE16(0x150),
		},
		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
		.xatten1DB = {0x19, 0x19, 0x19},

		/*
		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
		 * for merlin (0xa20c/b20c 16:12
		 */
		.xatten1Margin = {0x14, 0x14, 0x14},
		.tempSlope = 70,
		.voltSlope = 0,
		/* spurChans spur channels in usual fbin coding format */
		.spurChans = {0, 0, 0, 0, 0},
		/* noiseFloorThreshCh Check if the register is per chain */
		.noiseFloorThreshCh = {-1, 0, 0},
2622 2623
		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		.quick_drop = 0,
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		.xpaBiasLvl = 0,
		.txFrameToDataStart = 0x0e,
		.txFrameToPaOn = 0x0e,
		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
		.antennaGain = 0,
		.switchSettling = 0x2d,
		.adcDesiredSize = -30,
		.txEndToXpaOff = 0,
		.txEndToRxOn = 0x2,
		.txFrameToXpaOn = 0xe,
		.thresh62 = 28,
		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2637
		.xlna_bias_strength = 0,
2638
		.futureModal = {
2639
			0, 0, 0, 0, 0, 0, 0,
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		},
	 },
	.base_ext2 = {
		.tempSlopeLow = 35,
		.tempSlopeHigh = 50,
		.xatten1DBLow = {0, 0, 0},
		.xatten1MarginLow = {0, 0, 0},
		.xatten1DBHigh = {0, 0, 0},
		.xatten1MarginHigh = {0, 0, 0}
	 },
	.calFreqPier5G = {
2651
		FREQ2FBIN(5160, 0),
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		FREQ2FBIN(5220, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5785, 0)
	},
	.calPierData5G = {
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},
			{
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
				{0, 0, 0, 0, 0},
			},

	},
	.calTarget_freqbin_5G = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5600, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT20 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5825, 0)
	},
	.calTarget_freqbin_5GHT40 = {
		FREQ2FBIN(5180, 0),
		FREQ2FBIN(5240, 0),
		FREQ2FBIN(5320, 0),
		FREQ2FBIN(5400, 0),
		FREQ2FBIN(5500, 0),
		FREQ2FBIN(5700, 0),
		FREQ2FBIN(5745, 0),
		FREQ2FBIN(5825, 0)
	 },
	.calTargetPower5G = {
		/* 6-24,36,48,54 */
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
		{ {30, 30, 28, 24} },
	 },
	.calTargetPower5GHT20 = {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
	 },
	.calTargetPower5GHT40 =  {
		/*
		 * 0_8_16,1-3_9-11_17-19,
		 * 4,5,6,7,12,13,14,15,20,21,22,23
		 */
		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
	 },
	.ctlIndex_5G =  {
		0x10, 0x16, 0x18, 0x40, 0x46,
		0x48, 0x30, 0x36, 0x38
	},
	.ctl_freqbin_5G =  {
		{
			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},
		{
			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
		},

		{
			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
		},

		{
			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
			/* Data[5].ctlEdges[7].bChannel */ 0xFF
		},

		{
			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
		},

		{
			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
		},

		{
			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
		}
	 },
	.ctlPowerData_5G = {
		{
			{
2868 2869
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2870 2871 2872 2873
			}
		},
		{
			{
2874 2875
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2876 2877 2878 2879
			}
		},
		{
			{
2880 2881
				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2882 2883 2884 2885
			}
		},
		{
			{
2886 2887
				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2888 2889 2890 2891
			}
		},
		{
			{
2892 2893
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2894 2895 2896 2897
			}
		},
		{
			{
2898 2899
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2900 2901 2902 2903
			}
		},
		{
			{
2904 2905
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2906 2907 2908 2909
			}
		},
		{
			{
2910 2911
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2912 2913 2914 2915
			}
		},
		{
			{
2916 2917
				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
			}
		},
	 }
};


static const struct ar9300_eeprom *ar9300_eep_templates[] = {
	&ar9300_default,
	&ar9300_x112,
	&ar9300_h116,
	&ar9300_h112,
	&ar9300_x113,
};

static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
{
#define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
	int it;

	for (it = 0; it < N_LOOP; it++)
		if (ar9300_eep_templates[it]->templateVersion == id)
			return ar9300_eep_templates[it];
	return NULL;
#undef N_LOOP
}

2944 2945 2946 2947 2948
static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
{
	return 0;
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
static int interpolate(int x, int xa, int xb, int ya, int yb)
{
	int bf, factor, plus;

	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
	factor = bf / 2;
	plus = bf % 2;
	return ya + factor + plus;
}

2959 2960 2961 2962 2963 2964 2965 2966
static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
				      enum eeprom_param param)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;

	switch (param) {
	case EEP_MAC_LSW:
2967
		return get_unaligned_be16(eep->macAddr);
2968
	case EEP_MAC_MID:
2969
		return get_unaligned_be16(eep->macAddr + 2);
2970
	case EEP_MAC_MSW:
2971
		return get_unaligned_be16(eep->macAddr + 4);
2972
	case EEP_REG_0:
2973
		return le16_to_cpu(pBase->regDmn[0]);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	case EEP_OP_CAP:
		return pBase->deviceCap;
	case EEP_OP_MODE:
		return pBase->opCapFlags.opFlags;
	case EEP_RF_SILENT:
		return pBase->rfSilent;
	case EEP_TX_MASK:
		return (pBase->txrxMask >> 4) & 0xf;
	case EEP_RX_MASK:
		return pBase->txrxMask & 0xf;
2984 2985
	case EEP_PAPRD:
		return !!(pBase->featureEnable & BIT(5));
2986 2987
	case EEP_CHAIN_MASK_REDUCE:
		return (pBase->miscConfiguration >> 0x3) & 0x1;
2988
	case EEP_ANT_DIV_CTL1:
R
Rajkumar Manoharan 已提交
2989
		return eep->base_ext1.ant_div_control;
2990 2991 2992 2993
	case EEP_ANTENNA_GAIN_5G:
		return eep->modalHeader5G.antennaGain;
	case EEP_ANTENNA_GAIN_2G:
		return eep->modalHeader2G.antennaGain;
2994 2995 2996 2997 2998
	default:
		return 0;
	}
}

2999 3000
static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
				    u8 *buffer)
3001
{
3002
	u16 val;
3003

3004 3005
	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
		return false;
3006

3007 3008 3009
	*buffer = (val >> (8 * (address % 2))) & 0xff;
	return true;
}
3010

3011 3012 3013 3014
static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
				    u8 *buffer)
{
	u16 val;
3015

3016 3017
	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
		return false;
3018

3019 3020
	buffer[0] = val >> 8;
	buffer[1] = val & 0xff;
3021

3022
	return true;
3023 3024
}

3025 3026
static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
			       int count)
3027 3028
{
	struct ath_common *common = ath9k_hw_common(ah);
3029
	int i;
3030

3031
	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3032
		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3033 3034 3035
		return false;
	}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	/*
	 * Since we're reading the bytes in reverse order from a little-endian
	 * word stream, an even address means we only use the lower half of
	 * the 16-bit word at that address
	 */
	if (address % 2 == 0) {
		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
			goto error;

		count--;
3046 3047
	}

3048 3049 3050
	for (i = 0; i < count / 2; i++) {
		if (!ar9300_eeprom_read_word(common, address, buffer))
			goto error;
3051

3052 3053 3054 3055 3056 3057 3058
		address -= 2;
		buffer += 2;
	}

	if (count % 2)
		if (!ar9300_eeprom_read_byte(common, address, buffer))
			goto error;
3059 3060

	return true;
3061 3062

error:
3063 3064
	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
		address);
3065
	return false;
3066 3067
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
{
	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));

	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
			   AR9300_OTP_STATUS_VALID, 1000))
		return false;

	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
	return true;
}

static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
			    int count)
{
	u32 data;
	int i;

	for (i = 0; i < count; i++) {
		int offset = 8 * ((address - i) % 4);
		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
			return false;

		buffer[i] = (data >> offset) & 0xff;
	}

	return true;
}


3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
				   int *length, int *major, int *minor)
{
	unsigned long value[4];

	value[0] = best[0];
	value[1] = best[1];
	value[2] = best[2];
	value[3] = best[3];
	*code = ((value[0] >> 5) & 0x0007);
	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
	*major = (value[2] & 0x000f);
	*minor = (value[3] & 0x00ff);
}

static u16 ar9300_comp_cksum(u8 *data, int dsize)
{
	int it, checksum = 0;

	for (it = 0; it < dsize; it++) {
		checksum += data[it];
		checksum &= 0xffff;
	}

	return checksum;
}

static bool ar9300_uncompress_block(struct ath_hw *ah,
				    u8 *mptr,
				    int mdataSize,
				    u8 *block,
				    int size)
{
	int it;
	int spot;
	int offset;
	int length;
	struct ath_common *common = ath9k_hw_common(ah);

	spot = 0;

	for (it = 0; it < size; it += (length+2)) {
		offset = block[it];
		offset &= 0xff;
		spot += offset;
		length = block[it+1];
		length &= 0xff;

3147
		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3148
			ath_dbg(common, EEPROM,
J
Joe Perches 已提交
3149 3150
				"Restore at %d: spot=%d offset=%d length=%d\n",
				it, spot, offset, length);
3151 3152 3153
			memcpy(&mptr[spot], &block[it+2], length);
			spot += length;
		} else if (length > 0) {
3154
			ath_dbg(common, EEPROM,
J
Joe Perches 已提交
3155 3156
				"Bad restore at %d: spot=%d offset=%d length=%d\n",
				it, spot, offset, length);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
			return false;
		}
	}
	return true;
}

static int ar9300_compress_decision(struct ath_hw *ah,
				    int it,
				    int code,
				    int reference,
				    u8 *mptr,
				    u8 *word, int length, int mdata_size)
{
	struct ath_common *common = ath9k_hw_common(ah);
3171
	const struct ar9300_eeprom *eep = NULL;
3172 3173 3174 3175

	switch (code) {
	case _CompressNone:
		if (length != mdata_size) {
3176
			ath_dbg(common, EEPROM,
J
Joe Perches 已提交
3177 3178
				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
				mdata_size, length);
3179 3180
			return -1;
		}
3181
		memcpy(mptr, word + COMP_HDR_LEN, length);
3182
		ath_dbg(common, EEPROM,
J
Joe Perches 已提交
3183 3184
			"restored eeprom %d: uncompressed, length %d\n",
			it, length);
3185 3186 3187 3188
		break;
	case _CompressBlock:
		if (reference == 0) {
		} else {
3189 3190
			eep = ar9003_eeprom_struct_find_by_id(reference);
			if (eep == NULL) {
3191
				ath_dbg(common, EEPROM,
L
Lucas De Marchi 已提交
3192
					"can't find reference eeprom struct %d\n",
J
Joe Perches 已提交
3193
					reference);
3194 3195
				return -1;
			}
3196
			memcpy(mptr, eep, mdata_size);
3197
		}
3198
		ath_dbg(common, EEPROM,
J
Joe Perches 已提交
3199 3200
			"restore eeprom %d: block, reference %d, length %d\n",
			it, reference, length);
3201
		ar9300_uncompress_block(ah, mptr, mdata_size,
3202
					(word + COMP_HDR_LEN), length);
3203 3204
		break;
	default:
3205
		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3206 3207 3208 3209 3210
		return -1;
	}
	return 0;
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
			       int count);

static bool ar9300_check_header(void *data)
{
	u32 *word = data;
	return !(*word == 0 || *word == ~0);
}

static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
				       int base_addr)
{
	u8 header[4];

	if (!read(ah, base_addr, header, 4))
		return false;

	return ar9300_check_header(header);
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
				       int mdata_size)
{
	struct ath_common *common = ath9k_hw_common(ah);
	u16 *data = (u16 *) mptr;
	int i;

	for (i = 0; i < mdata_size / 2; i++, data++)
		ath9k_hw_nvram_read(common, i, data);

	return 0;
}
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
/*
 * Read the configuration data from the eeprom.
 * The data can be put in any specified memory buffer.
 *
 * Returns -1 on error.
 * Returns address of next memory location on success.
 */
static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
					  u8 *mptr, int mdata_size)
{
#define MDEFAULT 15
#define MSTATE 100
	int cptr;
	u8 *word;
	int code;
	int reference, length, major, minor;
	int osize;
	int it;
	u16 checksum, mchecksum;
	struct ath_common *common = ath9k_hw_common(ah);
3263
	struct ar9300_eeprom *eep;
3264
	eeprom_read_op read;
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	if (ath9k_hw_use_flash(ah)) {
		u8 txrx;

		ar9300_eeprom_restore_flash(ah, mptr, mdata_size);

		/* check if eeprom contains valid data */
		eep = (struct ar9300_eeprom *) mptr;
		txrx = eep->baseEepHeader.txrxMask;
		if (txrx != 0 && txrx != 0xff)
			return 0;
	}
3277

3278 3279
	word = kzalloc(2048, GFP_KERNEL);
	if (!word)
L
Larry Finger 已提交
3280
		return -ENOMEM;
3281 3282 3283

	memcpy(mptr, &ar9300_default, mdata_size);

3284
	read = ar9300_read_eeprom;
3285 3286
	if (AR_SREV_9485(ah))
		cptr = AR9300_BASE_ADDR_4K;
3287 3288
	else if (AR_SREV_9330(ah))
		cptr = AR9300_BASE_ADDR_512;
3289 3290
	else
		cptr = AR9300_BASE_ADDR;
3291 3292
	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
		cptr);
3293 3294 3295 3296
	if (ar9300_check_eeprom_header(ah, read, cptr))
		goto found;

	cptr = AR9300_BASE_ADDR_512;
3297 3298
	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
		cptr);
3299 3300 3301 3302 3303
	if (ar9300_check_eeprom_header(ah, read, cptr))
		goto found;

	read = ar9300_read_otp;
	cptr = AR9300_BASE_ADDR;
3304
	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3305 3306 3307 3308
	if (ar9300_check_eeprom_header(ah, read, cptr))
		goto found;

	cptr = AR9300_BASE_ADDR_512;
3309
	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3310 3311 3312 3313 3314 3315
	if (ar9300_check_eeprom_header(ah, read, cptr))
		goto found;

	goto fail;

found:
3316
	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3317

3318
	for (it = 0; it < MSTATE; it++) {
3319
		if (!read(ah, cptr, word, COMP_HDR_LEN))
3320 3321
			goto fail;

3322
		if (!ar9300_check_header(word))
3323 3324 3325 3326
			break;

		ar9300_comp_hdr_unpack(word, &code, &reference,
				       &length, &major, &minor);
3327
		ath_dbg(common, EEPROM,
J
Joe Perches 已提交
3328 3329
			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
			cptr, code, reference, length, major, minor);
3330
		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3331
		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3332
			ath_dbg(common, EEPROM, "Skipping bad header\n");
3333 3334 3335 3336 3337
			cptr -= COMP_HDR_LEN;
			continue;
		}

		osize = length;
3338
		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3339
		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3340
		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3341 3342
		ath_dbg(common, EEPROM, "checksum %x %x\n",
			checksum, mchecksum);
3343 3344 3345 3346
		if (checksum == mchecksum) {
			ar9300_compress_decision(ah, it, code, reference, mptr,
						 word, length, mdata_size);
		} else {
3347
			ath_dbg(common, EEPROM,
J
Joe Perches 已提交
3348
				"skipping block with bad checksum\n");
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
		}
		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
	}

	kfree(word);
	return cptr;

fail:
	kfree(word);
	return -1;
}

/*
 * Restore the configuration structure by reading the eeprom.
 * This function destroys any existing in-memory structure
 * content.
 */
static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
{
3368
	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3369

3370 3371 3372
	if (ar9300_eeprom_restore_internal(ah, mptr,
			sizeof(struct ar9300_eeprom)) < 0)
		return false;
3373

3374
	return true;
3375 3376
}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
				    struct ar9300_modal_eep_header *modal_hdr)
{
	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
	PR_EEP("Switch Settle", modal_hdr->switchSettling);
	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
	PR_EEP("Temp Slope", modal_hdr->tempSlope);
	PR_EEP("Volt Slope", modal_hdr->voltSlope);
	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3404
	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3405
	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
	PR_EEP("txClip", modal_hdr->txClip);
	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);

	return len;
}

static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
				       u8 *buf, u32 len, u32 size)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct ar9300_base_eep_hdr *pBase;

	if (!dump_base_hdr) {
		len += snprintf(buf + len, size - len,
				"%20s :\n", "2GHz modal Header");
3425
		len = ar9003_dump_modal_eeprom(buf, len, size,
3426 3427 3428
						&eep->modalHeader2G);
		len += snprintf(buf + len, size - len,
				"%20s :\n", "5GHz modal Header");
3429
		len = ar9003_dump_modal_eeprom(buf, len, size,
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
						&eep->modalHeader5G);
		goto out;
	}

	pBase = &eep->baseEepHeader;

	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
				AR5416_OPFLAGS_11A));
	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
				AR5416_OPFLAGS_11G));
	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
					AR5416_OPFLAGS_N_2G_HT20));
	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
					AR5416_OPFLAGS_N_2G_HT40));
	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
					AR5416_OPFLAGS_N_5G_HT20));
	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
					AR5416_OPFLAGS_N_5G_HT40));
	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
	PR_EEP("RF Silent", pBase->rfSilent);
	PR_EEP("BT option", pBase->blueToothOptions);
	PR_EEP("Device Cap", pBase->deviceCap);
	PR_EEP("Device Type", pBase->deviceType);
	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3468
	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));

	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
			ah->eeprom.ar9300_eep.macAddr);
out:
	if (len > size)
		len = size;

	return len;
}
#else
static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
				       u8 *buf, u32 len, u32 size)
{
	return 0;
}
#endif

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
/* XXX: review hardware docs */
static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
{
	return ah->eeprom.ar9300_eep.eepromVersion;
}

/* XXX: could be read from the eepromVersion, not sure yet */
static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
{
	return 0;
}

3506 3507
static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
							   bool is2ghz)
3508 3509 3510 3511
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;

	if (is2ghz)
3512
		return &eep->modalHeader2G;
3513
	else
3514
		return &eep->modalHeader5G;
3515 3516 3517 3518
}

static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
{
3519
	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3520

3521
	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3522
		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3523
	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah))
3524
		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3525 3526
	else {
		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3527 3528 3529 3530 3531
		REG_RMW_FIELD(ah, AR_CH0_THERM,
				AR_CH0_THERM_XPABIASLVL_MSB,
				bias >> 2);
		REG_RMW_FIELD(ah, AR_CH0_THERM,
				AR_CH0_THERM_XPASHORT2GND, 1);
3532
	}
3533 3534
}

3535
static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3536
{
3537
	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3538 3539 3540
}


3541 3542
static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
{
3543
	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3544 3545 3546 3547
}

static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
{
3548
	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3549 3550
}

3551
static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3552 3553
					bool is2ghz)
{
3554
	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3555
	return le16_to_cpu(val);
3556 3557 3558 3559
}

static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
{
3560
	int chain;
3561 3562
	u32 regval;
	u32 ant_div_ctl1;
3563 3564 3565 3566 3567 3568
	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
			AR_PHY_SWITCH_CHAIN_0,
			AR_PHY_SWITCH_CHAIN_1,
			AR_PHY_SWITCH_CHAIN_2,
	};

3569
	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3570

3571
	if (AR_SREV_9462(ah)) {
3572
		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3573
				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3574 3575 3576
	} else if (AR_SREV_9550(ah)) {
		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3577 3578 3579 3580 3581 3582
	} else
		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
			      AR_SWITCH_TABLE_COM_ALL, value);


	/*
3583
	 *   AR9462 defines new switch table for BT/WLAN,
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	 *       here's new field name in XXX.ref for both 2G and 5G.
	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
	 *
	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
	 *
	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
	 */
3595
	if (AR_SREV_9462_20_OR_LATER(ah)) {
3596 3597 3598
		value = ar9003_switch_com_spdt_get(ah, is2ghz);
		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3599
		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3600
	}
3601 3602 3603 3604

	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);

3605 3606 3607 3608 3609 3610 3611 3612
	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
		if ((ah->rxchainmask & BIT(chain)) ||
		    (ah->txchainmask & BIT(chain))) {
			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
							     is2ghz);
			REG_RMW_FIELD(ah, switch_chain_reg[chain],
				      AR_SWITCH_TABLE_ALL, value);
		}
3613
	}
3614

3615
	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3616
		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
		/*
		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
		 * are the fields present
		 */
		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
		regval &= (~AR_ANT_DIV_CTRL_ALL);
		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
		/* enable_lnadiv */
		regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
		regval |= ((value >> 6) & 0x1) <<
				AR_PHY_9485_ANT_DIV_LNADIV_S;
		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);

		/*enable fast_div */
		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
		regval &= (~AR_FAST_DIV_ENABLE);
		regval |= ((value >> 7) & 0x1) <<
				AR_FAST_DIV_ENABLE_S;
		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
		ant_div_ctl1 =
			ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
		/* check whether antenna diversity is enabled */
		if ((ant_div_ctl1 >> 0x6) == 0x3) {
			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
			/*
			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
			 * main_tb, alt_tb
			 */
			regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
					AR_PHY_9485_ANT_DIV_ALT_LNACONF |
					AR_PHY_9485_ANT_DIV_ALT_GAINTB |
					AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
			/* by default use LNA1 for the main antenna */
			regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
			regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
					AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
		}


3658
	}
3659

3660 3661 3662 3663
}

static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
{
3664 3665
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3666 3667 3668
	int drive_strength;
	unsigned long reg;

3669
	drive_strength = pBase->miscConfiguration & BIT(0);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	if (!drive_strength)
		return;

	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
	reg &= ~0x00ffffc0;
	reg |= 0x5 << 21;
	reg |= 0x5 << 18;
	reg |= 0x5 << 15;
	reg |= 0x5 << 12;
	reg |= 0x5 << 9;
	reg |= 0x5 << 6;
	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);

	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
	reg &= ~0xffffffe0;
	reg |= 0x5 << 29;
	reg |= 0x5 << 26;
	reg |= 0x5 << 23;
	reg |= 0x5 << 20;
	reg |= 0x5 << 17;
	reg |= 0x5 << 14;
	reg |= 0x5 << 11;
	reg |= 0x5 << 8;
	reg |= 0x5 << 5;
	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);

	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
	reg &= ~0xff800000;
	reg |= 0x5 << 29;
	reg |= 0x5 << 26;
	reg |= 0x5 << 23;
	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
}

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
				     struct ath9k_channel *chan)
{
	int f[3], t[3];
	u16 value;
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;

	if (chain >= 0 && chain < 3) {
		if (IS_CHAN_2GHZ(chan))
			return eep->modalHeader2G.xatten1DB[chain];
		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
			t[0] = eep->base_ext2.xatten1DBLow[chain];
			f[0] = 5180;
			t[1] = eep->modalHeader5G.xatten1DB[chain];
			f[1] = 5500;
			t[2] = eep->base_ext2.xatten1DBHigh[chain];
			f[2] = 5785;
			value = ar9003_hw_power_interpolate((s32) chan->channel,
							    f, t, 3);
			return value;
		} else
			return eep->modalHeader5G.xatten1DB[chain];
	}

	return 0;
}


static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
					    struct ath9k_channel *chan)
{
	int f[3], t[3];
	u16 value;
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;

	if (chain >= 0 && chain < 3) {
		if (IS_CHAN_2GHZ(chan))
			return eep->modalHeader2G.xatten1Margin[chain];
		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
			t[0] = eep->base_ext2.xatten1MarginLow[chain];
			f[0] = 5180;
			t[1] = eep->modalHeader5G.xatten1Margin[chain];
			f[1] = 5500;
			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
			f[2] = 5785;
			value = ar9003_hw_power_interpolate((s32) chan->channel,
							    f, t, 3);
			return value;
		} else
			return eep->modalHeader5G.xatten1Margin[chain];
	}

	return 0;
}

static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
{
	int i;
	u16 value;
	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
					  AR_PHY_EXT_ATTEN_CTL_1,
					  AR_PHY_EXT_ATTEN_CTL_2,
					 };

	/* Test value. if 0 then attenuation is unused. Don't load anything. */
	for (i = 0; i < 3; i++) {
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
		if (ah->txchainmask & BIT(i)) {
			value = ar9003_hw_atten_chain_get(ah, i, chan);
			REG_RMW_FIELD(ah, ext_atten_reg[i],
				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);

			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
			REG_RMW_FIELD(ah, ext_atten_reg[i],
				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
				      value);
		}
3780 3781 3782
	}
}

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
{
	int timeout = 100;

	while (pmu_set != REG_READ(ah, pmu_reg)) {
		if (timeout-- == 0)
			return false;
		REG_WRITE(ah, pmu_reg, pmu_set);
		udelay(10);
	}

	return true;
}

3797
void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3798
{
3799 3800
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3801
	u32 reg_val;
3802

3803
	if (pBase->featureEnable & BIT(4)) {
3804
		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3805 3806 3807 3808 3809 3810 3811
			int reg_pmu_set;

			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
				return;

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
			if (AR_SREV_9330(ah)) {
				if (ah->is_clk_25mhz) {
					reg_pmu_set = (3 << 1) | (8 << 4) |
						      (3 << 8) | (1 << 14) |
						      (6 << 17) | (1 << 20) |
						      (3 << 24);
				} else {
					reg_pmu_set = (4 << 1)  | (7 << 4) |
						      (3 << 8)  | (1 << 14) |
						      (6 << 17) | (1 << 20) |
						      (3 << 24);
				}
			} else {
				reg_pmu_set = (5 << 1) | (7 << 4) |
3826
					      (2 << 8) | (2 << 14) |
3827 3828 3829
					      (6 << 17) | (1 << 20) |
					      (3 << 24) | (1 << 28);
			}
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845

			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
				return;

			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
					| (4 << 26);
			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
				return;

			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
					| (1 << 21);
			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
				return;
3846
		} else if (AR_SREV_9462(ah)) {
3847
			reg_val = le32_to_cpu(pBase->swreg);
3848
			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3849 3850
		} else {
			/* Internal regulator is ON. Write swreg register. */
3851
			reg_val = le32_to_cpu(pBase->swreg);
3852 3853 3854
			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3855
			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3856 3857 3858 3859 3860 3861
			/* Set REG_CONTROL1.SWREG_PROGRAM */
			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
				  REG_READ(ah,
					   AR_RTC_REG_CONTROL1) |
					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
		}
3862
	} else {
3863
		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3864 3865
			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3866
						AR_PHY_PMU2_PGM))
3867 3868 3869 3870
				udelay(10);

			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3871
						AR_PHY_PMU1_PWD))
3872 3873 3874
				udelay(10);
			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3875
						AR_PHY_PMU2_PGM))
3876
				udelay(10);
3877
		} else if (AR_SREV_9462(ah))
3878 3879 3880 3881 3882 3883
			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
		else {
			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
				AR_RTC_FORCE_SWREG_PRD;
			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
		}
3884
	}
3885

3886 3887
}

3888 3889 3890 3891 3892
static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];

3893 3894 3895
	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
		return;

3896 3897 3898 3899 3900 3901
	if (eep->baseEepHeader.featureEnable & 0x40) {
		tuning_caps_param &= 0x7f;
		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
			      tuning_caps_param);
		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
			      tuning_caps_param);
3902 3903 3904
	}
}

3905 3906 3907
static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3908 3909
	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
	int quick_drop;
3910 3911
	s32 t[3], f[3] = {5180, 5500, 5785};

3912
	if (!(pBase->miscConfiguration & BIT(1)))
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
		return;

	if (freq < 4000)
		quick_drop = eep->modalHeader2G.quick_drop;
	else {
		t[0] = eep->base_ext1.quick_drop_low;
		t[1] = eep->modalHeader5G.quick_drop;
		t[2] = eep->base_ext1.quick_drop_high;
		quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
	}
	REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
}

3926
static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
3927 3928 3929
{
	u32 value;

3930
	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
3931 3932 3933 3934 3935 3936 3937

	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
}

3938
static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	u8 xpa_ctl;

	if (!(eep->baseEepHeader.featureEnable & 0x80))
		return;

	if (!AR_SREV_9300(ah) && !AR_SREV_9340(ah) && !AR_SREV_9580(ah))
		return;

3949 3950
	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
	if (is2ghz)
3951 3952
		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
3953
	else
3954 3955 3956 3957
		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	u8 bias;

	if (!(eep->baseEepHeader.featureEnable & 0x40))
		return;

	if (!AR_SREV_9300(ah))
		return;

	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
		      bias & 0x3);
	bias >>= 2;
	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
		      bias & 0x3);
	bias >>= 2;
	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
		      bias & 0x3);
}

3980 3981 3982
static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
					     struct ath9k_channel *chan)
{
3983 3984 3985 3986
	bool is2ghz = IS_CHAN_2GHZ(chan);
	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
3987
	ar9003_hw_drive_strength_apply(ah);
3988
	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
3989
	ar9003_hw_atten_apply(ah, chan);
3990
	ar9003_hw_quick_drop_apply(ah, chan->channel);
3991
	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9550(ah))
3992
		ar9003_hw_internal_regulator_apply(ah);
3993
	ar9003_hw_apply_tuning_caps(ah);
3994
	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
}

static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
				      struct ath9k_channel *chan)
{
}

/*
 * Returns the interpolated y value corresponding to the specified x value
 * from the np ordered pairs of data (px,py).
 * The pairs do not have to be in any order.
 * If the specified x value is less than any of the px,
 * the returned y value is equal to the py for the lowest px.
 * If the specified x value is greater than any of the px,
 * the returned y value is equal to the py for the highest px.
 */
static int ar9003_hw_power_interpolate(int32_t x,
				       int32_t *px, int32_t *py, u_int16_t np)
{
	int ip = 0;
	int lx = 0, ly = 0, lhave = 0;
	int hx = 0, hy = 0, hhave = 0;
	int dx = 0;
	int y = 0;

	lhave = 0;
	hhave = 0;

	/* identify best lower and higher x calibration measurement */
	for (ip = 0; ip < np; ip++) {
		dx = x - px[ip];

		/* this measurement is higher than our desired x */
		if (dx <= 0) {
			if (!hhave || dx > (x - hx)) {
				/* new best higher x measurement */
				hx = px[ip];
				hy = py[ip];
				hhave = 1;
			}
		}
		/* this measurement is lower than our desired x */
		if (dx >= 0) {
			if (!lhave || dx < (x - lx)) {
				/* new best lower x measurement */
				lx = px[ip];
				ly = py[ip];
				lhave = 1;
			}
		}
	}

	/* the low x is good */
	if (lhave) {
		/* so is the high x */
		if (hhave) {
			/* they're the same, so just pick one */
			if (hx == lx)
				y = ly;
			else	/* interpolate  */
4055
				y = interpolate(x, lx, hx, ly, hy);
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
		} else		/* only low is good, use it */
			y = ly;
	} else if (hhave)	/* only high is good, use it */
		y = hy;
	else /* nothing is good,this should never happen unless np=0, ???? */
		y = -(1 << 30);
	return y;
}

static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
				       u16 rateIndex, u16 freq, bool is2GHz)
{
	u16 numPiers, i;
	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct cal_tgt_pow_legacy *pEepromTargetPwr;
	u8 *pFreqBin;

	if (is2GHz) {
4076
		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
		pEepromTargetPwr = eep->calTargetPower2G;
		pFreqBin = eep->calTarget_freqbin_2G;
	} else {
		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
		pEepromTargetPwr = eep->calTargetPower5G;
		pFreqBin = eep->calTarget_freqbin_5G;
	}

	/*
	 * create array of channels and targetpower from
	 * targetpower piers stored on eeprom
	 */
	for (i = 0; i < numPiers; i++) {
4090
		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
	}

	/* interpolate to get target power for given frequency */
	return (u8) ar9003_hw_power_interpolate((s32) freq,
						 freqArray,
						 targetPowerArray, numPiers);
}

static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
					    u16 rateIndex,
					    u16 freq, bool is2GHz)
{
	u16 numPiers, i;
	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct cal_tgt_pow_ht *pEepromTargetPwr;
	u8 *pFreqBin;

	if (is2GHz) {
4112
		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
		pEepromTargetPwr = eep->calTargetPower2GHT20;
		pFreqBin = eep->calTarget_freqbin_2GHT20;
	} else {
		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
		pEepromTargetPwr = eep->calTargetPower5GHT20;
		pFreqBin = eep->calTarget_freqbin_5GHT20;
	}

	/*
	 * create array of channels and targetpower
	 * from targetpower piers stored on eeprom
	 */
	for (i = 0; i < numPiers; i++) {
4126
		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
	}

	/* interpolate to get target power for given frequency */
	return (u8) ar9003_hw_power_interpolate((s32) freq,
						 freqArray,
						 targetPowerArray, numPiers);
}

static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
					    u16 rateIndex,
					    u16 freq, bool is2GHz)
{
	u16 numPiers, i;
	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct cal_tgt_pow_ht *pEepromTargetPwr;
	u8 *pFreqBin;

	if (is2GHz) {
		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
		pEepromTargetPwr = eep->calTargetPower2GHT40;
		pFreqBin = eep->calTarget_freqbin_2GHT40;
	} else {
		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
		pEepromTargetPwr = eep->calTargetPower5GHT40;
		pFreqBin = eep->calTarget_freqbin_5GHT40;
	}

	/*
	 * create array of channels and targetpower from
	 * targetpower piers stored on eeprom
	 */
	for (i = 0; i < numPiers; i++) {
4162
		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
	}

	/* interpolate to get target power for given frequency */
	return (u8) ar9003_hw_power_interpolate((s32) freq,
						 freqArray,
						 targetPowerArray, numPiers);
}

static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
					   u16 rateIndex, u16 freq)
{
	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
	u8 *pFreqBin = eep->calTarget_freqbin_Cck;

	/*
	 * create array of channels and targetpower from
	 * targetpower piers stored on eeprom
	 */
	for (i = 0; i < numPiers; i++) {
4187
		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
	}

	/* interpolate to get target power for given frequency */
	return (u8) ar9003_hw_power_interpolate((s32) freq,
						 freqArray,
						 targetPowerArray, numPiers);
}

/* Set tx power registers to array of values passed in */
static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
{
#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
	/* make sure forced gain is not set */
4202
	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4203 4204 4205 4206

	/* Write the OFDM power per rate set */

	/* 6 (LSB), 9, 12, 18 (MSB) */
4207
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4208 4209 4210 4211 4212 4213
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));

	/* 24 (LSB), 36, 48, 54 (MSB) */
4214
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4215 4216 4217 4218 4219 4220 4221 4222
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));

	/* Write the CCK power per rate set */

	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4223
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4224 4225 4226 4227 4228 4229
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));

	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4230
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4231 4232 4233 4234 4235 4236
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
	    );

4237 4238 4239
        /* Write the power for duplicated frames - HT40 */

        /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4240
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4241 4242 4243 4244 4245 4246
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
	    );

4247 4248 4249
	/* Write the HT20 power per rate set */

	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4250
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4251 4252 4253 4254 4255 4256 4257
		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
	    );

	/* 6 (LSB), 7, 12, 13 (MSB) */
4258
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4259 4260 4261 4262 4263 4264 4265
		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
	    );

	/* 14 (LSB), 15, 20, 21 */
4266
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4267 4268 4269 4270 4271 4272 4273 4274 4275
		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
	    );

	/* Mixed HT20 and HT40 rates */

	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4276
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
	    );

	/*
	 * Write the HT40 power per rate set
	 * correct PAR difference between HT40 and HT20/LEGACY
	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
	 */
4288
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4289 4290 4291 4292 4293 4294 4295
		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
	    );

	/* 6 (LSB), 7, 12, 13 (MSB) */
4296
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4297 4298 4299 4300 4301 4302 4303
		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
	    );

	/* 14 (LSB), 15, 20, 21 */
4304
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
	    );

	return 0;
#undef POW_SM
}

4315 4316 4317
static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
					       u8 *targetPowerValT2,
					       bool is2GHz)
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
{
	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
					 is2GHz);
	targetPowerValT2[ALL_TARGET_LEGACY_36] =
	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
					 is2GHz);
	targetPowerValT2[ALL_TARGET_LEGACY_48] =
	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
					 is2GHz);
	targetPowerValT2[ALL_TARGET_LEGACY_54] =
	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
					 is2GHz);
4331 4332 4333 4334 4335
}

static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
					    u8 *targetPowerValT2)
{
4336 4337 4338 4339 4340 4341 4342 4343 4344
	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
					     freq);
	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4345 4346 4347 4348 4349
}

static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
					     u8 *targetPowerValT2, bool is2GHz)
{
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
					      freq, is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_4] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_5] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_6] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_7] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_12] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_13] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_14] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_15] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_20] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_21] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_22] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
					      is2GHz);
	targetPowerValT2[ALL_TARGET_HT20_23] =
	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
					      is2GHz);
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
}

static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
						   u16 freq,
						   u8 *targetPowerValT2,
						   bool is2GHz)
{
	/* XXX: hard code for now, need to get from eeprom struct */
	u8 ht40PowerIncForPdadc = 0;

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
					      freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_4] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_5] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_6] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_7] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_12] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_13] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_14] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_15] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_20] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_21] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_22] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
					      is2GHz) + ht40PowerIncForPdadc;
	targetPowerValT2[ALL_TARGET_HT40_23] =
	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
					      is2GHz) + ht40PowerIncForPdadc;
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
}

static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
					      struct ath9k_channel *chan,
					      u8 *targetPowerValT2)
{
	bool is2GHz = IS_CHAN_2GHZ(chan);
	unsigned int i = 0;
	struct ath_common *common = ath9k_hw_common(ah);
	u16 freq = chan->channel;

	if (is2GHz)
		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);

	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);

	if (IS_CHAN_HT40(chan))
		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
						 is2GHz);
4465

4466
	for (i = 0; i < ar9300RateSize; i++) {
4467 4468
		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
			i, targetPowerValT2[i]);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
	}
}

static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
				  int mode,
				  int ipier,
				  int ichain,
				  int *pfrequency,
				  int *pcorrection,
				  int *ptemperature, int *pvoltage)
{
	u8 *pCalPier;
	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
	int is2GHz;
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
	struct ath_common *common = ath9k_hw_common(ah);

	if (ichain >= AR9300_MAX_CHAINS) {
4487
		ath_dbg(common, EEPROM,
J
Joe Perches 已提交
4488 4489
			"Invalid chain index, must be less than %d\n",
			AR9300_MAX_CHAINS);
4490 4491 4492 4493 4494
		return -1;
	}

	if (mode) {		/* 5GHz */
		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4495
			ath_dbg(common, EEPROM,
J
Joe Perches 已提交
4496 4497
				"Invalid 5GHz cal pier index, must be less than %d\n",
				AR9300_NUM_5G_CAL_PIERS);
4498 4499 4500 4501 4502 4503 4504
			return -1;
		}
		pCalPier = &(eep->calFreqPier5G[ipier]);
		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
		is2GHz = 0;
	} else {
		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4505
			ath_dbg(common, EEPROM,
J
Joe Perches 已提交
4506 4507
				"Invalid 2GHz cal pier index, must be less than %d\n",
				AR9300_NUM_2G_CAL_PIERS);
4508 4509 4510 4511 4512 4513 4514 4515
			return -1;
		}

		pCalPier = &(eep->calFreqPier2G[ipier]);
		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
		is2GHz = 1;
	}

4516
	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	*pcorrection = pCalPierStruct->refPower;
	*ptemperature = pCalPierStruct->tempMeas;
	*pvoltage = pCalPierStruct->voltMeas;

	return 0;
}

static int ar9003_hw_power_control_override(struct ath_hw *ah,
					    int frequency,
					    int *correction,
					    int *voltage, int *temperature)
{
	int tempSlope = 0;
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4531
	int f[3], t[3];
4532 4533 4534 4535

	REG_RMW(ah, AR_PHY_TPC_11_B0,
		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
		AR_PHY_TPC_OLPC_GAIN_DELTA);
4536 4537 4538 4539 4540 4541 4542 4543
	if (ah->caps.tx_chainmask & BIT(1))
		REG_RMW(ah, AR_PHY_TPC_11_B1,
			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
			AR_PHY_TPC_OLPC_GAIN_DELTA);
	if (ah->caps.tx_chainmask & BIT(2))
		REG_RMW(ah, AR_PHY_TPC_11_B2,
			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
			AR_PHY_TPC_OLPC_GAIN_DELTA);
4544 4545 4546 4547 4548

	/* enable open loop power control on chip */
	REG_RMW(ah, AR_PHY_TPC_6_B0,
		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
		AR_PHY_TPC_6_ERROR_EST_MODE);
4549 4550 4551 4552 4553 4554 4555 4556
	if (ah->caps.tx_chainmask & BIT(1))
		REG_RMW(ah, AR_PHY_TPC_6_B1,
			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
			AR_PHY_TPC_6_ERROR_EST_MODE);
	if (ah->caps.tx_chainmask & BIT(2))
		REG_RMW(ah, AR_PHY_TPC_6_B2,
			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
			AR_PHY_TPC_6_ERROR_EST_MODE);
4557 4558 4559 4560 4561 4562 4563

	/*
	 * enable temperature compensation
	 * Need to use register names
	 */
	if (frequency < 4000)
		tempSlope = eep->modalHeader2G.tempSlope;
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	else if (eep->base_ext2.tempSlopeLow != 0) {
		t[0] = eep->base_ext2.tempSlopeLow;
		f[0] = 5180;
		t[1] = eep->modalHeader5G.tempSlope;
		f[1] = 5500;
		t[2] = eep->base_ext2.tempSlopeHigh;
		f[2] = 5785;
		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
							f, t, 3);
	} else
4574 4575 4576
		tempSlope = eep->modalHeader5G.tempSlope;

	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4577

4578
	if (AR_SREV_9462_20(ah))
4579 4580 4581 4582
		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
			      AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);


4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
		      temperature[0]);

	return 0;
}

/* Apply the recorded correction values. */
static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
{
	int ichain, ipier, npier;
	int mode;
	int lfrequency[AR9300_MAX_CHAINS],
	    lcorrection[AR9300_MAX_CHAINS],
	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
	int hfrequency[AR9300_MAX_CHAINS],
	    hcorrection[AR9300_MAX_CHAINS],
	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
	int fdiff;
	int correction[AR9300_MAX_CHAINS],
	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
	int pfrequency, pcorrection, ptemperature, pvoltage;
	struct ath_common *common = ath9k_hw_common(ah);

	mode = (frequency >= 4000);
	if (mode)
		npier = AR9300_NUM_5G_CAL_PIERS;
	else
		npier = AR9300_NUM_2G_CAL_PIERS;

	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
		lfrequency[ichain] = 0;
		hfrequency[ichain] = 100000;
	}
	/* identify best lower and higher frequency calibration measurement */
	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
		for (ipier = 0; ipier < npier; ipier++) {
			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
						    &pfrequency, &pcorrection,
						    &ptemperature, &pvoltage)) {
				fdiff = frequency - pfrequency;

				/*
				 * this measurement is higher than
				 * our desired frequency
				 */
				if (fdiff <= 0) {
					if (hfrequency[ichain] <= 0 ||
					    hfrequency[ichain] >= 100000 ||
					    fdiff >
					    (frequency - hfrequency[ichain])) {
						/*
						 * new best higher
						 * frequency measurement
						 */
						hfrequency[ichain] = pfrequency;
						hcorrection[ichain] =
						    pcorrection;
						htemperature[ichain] =
						    ptemperature;
						hvoltage[ichain] = pvoltage;
					}
				}
				if (fdiff >= 0) {
					if (lfrequency[ichain] <= 0
					    || fdiff <
					    (frequency - lfrequency[ichain])) {
						/*
						 * new best lower
						 * frequency measurement
						 */
						lfrequency[ichain] = pfrequency;
						lcorrection[ichain] =
						    pcorrection;
						ltemperature[ichain] =
						    ptemperature;
						lvoltage[ichain] = pvoltage;
					}
				}
			}
		}
	}

	/* interpolate  */
	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4667
		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
J
Joe Perches 已提交
4668 4669 4670
			ichain, frequency, lfrequency[ichain],
			lcorrection[ichain], hfrequency[ichain],
			hcorrection[ichain]);
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
		/* they're the same, so just pick one */
		if (hfrequency[ichain] == lfrequency[ichain]) {
			correction[ichain] = lcorrection[ichain];
			voltage[ichain] = lvoltage[ichain];
			temperature[ichain] = ltemperature[ichain];
		}
		/* the low frequency is good */
		else if (frequency - lfrequency[ichain] < 1000) {
			/* so is the high frequency, interpolate */
			if (hfrequency[ichain] - frequency < 1000) {

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
				correction[ichain] = interpolate(frequency,
						lfrequency[ichain],
						hfrequency[ichain],
						lcorrection[ichain],
						hcorrection[ichain]);

				temperature[ichain] = interpolate(frequency,
						lfrequency[ichain],
						hfrequency[ichain],
						ltemperature[ichain],
						htemperature[ichain]);

				voltage[ichain] = interpolate(frequency,
						lfrequency[ichain],
						hfrequency[ichain],
						lvoltage[ichain],
						hvoltage[ichain]);
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
			}
			/* only low is good, use it */
			else {
				correction[ichain] = lcorrection[ichain];
				temperature[ichain] = ltemperature[ichain];
				voltage[ichain] = lvoltage[ichain];
			}
		}
		/* only high is good, use it */
		else if (hfrequency[ichain] - frequency < 1000) {
			correction[ichain] = hcorrection[ichain];
			temperature[ichain] = htemperature[ichain];
			voltage[ichain] = hvoltage[ichain];
		} else {	/* nothing is good, presume 0???? */
			correction[ichain] = 0;
			temperature[ichain] = 0;
			voltage[ichain] = 0;
		}
	}

	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
					 temperature);

4722
	ath_dbg(common, EEPROM,
J
Joe Perches 已提交
4723 4724
		"for frequency=%d, calibration correction = %d %d %d\n",
		frequency, correction[0], correction[1], correction[2]);
4725 4726 4727 4728

	return 0;
}

4729 4730 4731 4732 4733 4734 4735 4736 4737
static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
					   int idx,
					   int edge,
					   bool is2GHz)
{
	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;

	if (is2GHz)
4738
		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4739
	else
4740
		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
}

static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
					     int idx,
					     unsigned int edge,
					     u16 freq,
					     bool is2GHz)
{
	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;

	u8 *ctl_freqbin = is2GHz ?
		&eep->ctl_freqbin_2G[idx][0] :
		&eep->ctl_freqbin_5G[idx][0];

	if (is2GHz) {
		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4758 4759
		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4760 4761
	} else {
		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4762 4763
		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4764 4765
	}

4766
	return MAX_RATE_POWER;
4767 4768 4769 4770 4771 4772 4773 4774
}

/*
 * Find the maximum conformance test limit for the given channel and CTL info
 */
static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
					u16 freq, int idx, bool is2GHz)
{
4775
	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4776 4777 4778 4779 4780 4781 4782 4783 4784
	u8 *ctl_freqbin = is2GHz ?
		&eep->ctl_freqbin_2G[idx][0] :
		&eep->ctl_freqbin_5G[idx][0];
	u16 num_edges = is2GHz ?
		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
	unsigned int edge;

	/* Get the edge power */
	for (edge = 0;
4785
	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	     edge++) {
		/*
		 * If there's an exact channel match or an inband flag set
		 * on the lower channel use the given rdEdgePower
		 */
		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
			twiceMaxEdgePower =
				ar9003_hw_get_direct_edge_power(eep, idx,
								edge, is2GHz);
			break;
		} else if ((edge > 0) &&
			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
						      is2GHz))) {
			twiceMaxEdgePower =
				ar9003_hw_get_indirect_edge_power(eep, idx,
								  edge, freq,
								  is2GHz);
			/*
			 * Leave loop - no more affecting edges possible in
			 * this monotonic increasing list
			 */
			break;
		}
	}
	return twiceMaxEdgePower;
}

static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
					       struct ath9k_channel *chan,
					       u8 *pPwrArray, u16 cfgCtl,
4816
					       u8 antenna_reduction,
4817 4818 4819 4820
					       u16 powerLimit)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4821
	u16 twiceMaxEdgePower;
4822
	int i;
4823
	u16 scaledPower = 0, minCtlPower;
J
Joe Perches 已提交
4824
	static const u16 ctlModesFor11a[] = {
4825 4826
		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
	};
J
Joe Perches 已提交
4827
	static const u16 ctlModesFor11g[] = {
4828 4829 4830
		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
		CTL_11G_EXT, CTL_2GHT40
	};
J
Joe Perches 已提交
4831 4832 4833
	u16 numCtlModes;
	const u16 *pCtlMode;
	u16 ctlMode, freq;
4834 4835 4836 4837 4838 4839 4840
	struct chan_centers centers;
	u8 *ctlIndex;
	u8 ctlNum;
	u16 twiceMinEdgePower;
	bool is2ghz = IS_CHAN_2GHZ(chan);

	ath9k_hw_get_channel_centers(ah, chan, &centers);
4841 4842
	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
						antenna_reduction);
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882

	if (is2ghz) {
		/* Setup for CTL modes */
		/* CTL_11B, CTL_11G, CTL_2GHT20 */
		numCtlModes =
			ARRAY_SIZE(ctlModesFor11g) -
				   SUB_NUM_CTL_MODES_AT_2G_40;
		pCtlMode = ctlModesFor11g;
		if (IS_CHAN_HT40(chan))
			/* All 2G CTL's */
			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
	} else {
		/* Setup for CTL modes */
		/* CTL_11A, CTL_5GHT20 */
		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
					 SUB_NUM_CTL_MODES_AT_5G_40;
		pCtlMode = ctlModesFor11a;
		if (IS_CHAN_HT40(chan))
			/* All 5G CTL's */
			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
	}

	/*
	 * For MIMO, need to apply regulatory caps individually across
	 * dynamically running modes: CCK, OFDM, HT20, HT40
	 *
	 * The outer loop walks through each possible applicable runtime mode.
	 * The inner loop walks through each ctlIndex entry in EEPROM.
	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
	 */
	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
			(pCtlMode[ctlMode] == CTL_2GHT40);
		if (isHt40CtlMode)
			freq = centers.synth_center;
		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
			freq = centers.ext_center;
		else
			freq = centers.ctl_center;

4883
		ath_dbg(common, REGULATORY,
J
Joe Perches 已提交
4884 4885 4886
			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
			ctlMode, numCtlModes, isHt40CtlMode,
			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896

		/* walk through each CTL index stored in EEPROM */
		if (is2ghz) {
			ctlIndex = pEepData->ctlIndex_2G;
			ctlNum = AR9300_NUM_CTLS_2G;
		} else {
			ctlIndex = pEepData->ctlIndex_5G;
			ctlNum = AR9300_NUM_CTLS_5G;
		}

4897
		twiceMaxEdgePower = MAX_RATE_POWER;
4898
		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4899
			ath_dbg(common, REGULATORY,
J
Joe Perches 已提交
4900 4901 4902
				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
				chan->channel);
4903

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
			/*
			 * compare test group from regulatory
			 * channel list with test mode from pCtlMode
			 * list
			 */
			if ((((cfgCtl & ~CTL_MODE_M) |
			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
				ctlIndex[i]) ||
			    (((cfgCtl & ~CTL_MODE_M) |
			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
			     ((ctlIndex[i] & CTL_MODE_M) |
			       SD_NO_CTL))) {
				twiceMinEdgePower =
				  ar9003_hw_get_max_edge_power(pEepData,
							       freq, i,
							       is2ghz);

				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
					/*
					 * Find the minimum of all CTL
					 * edge powers that apply to
					 * this channel
					 */
					twiceMaxEdgePower =
						min(twiceMaxEdgePower,
						    twiceMinEdgePower);
				else {
					/* specific */
					twiceMaxEdgePower = twiceMinEdgePower;
					break;
4934 4935
				}
			}
4936
		}
4937

4938
		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4939

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		ath_dbg(common, REGULATORY,
			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
			scaledPower, minCtlPower);

		/* Apply ctl mode to correct target power set */
		switch (pCtlMode[ctlMode]) {
		case CTL_11B:
			for (i = ALL_TARGET_LEGACY_1L_5L;
			     i <= ALL_TARGET_LEGACY_11S; i++)
				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
						       minCtlPower);
			break;
		case CTL_11A:
		case CTL_11G:
			for (i = ALL_TARGET_LEGACY_6_24;
			     i <= ALL_TARGET_LEGACY_54; i++)
				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
						       minCtlPower);
			break;
		case CTL_5GHT20:
		case CTL_2GHT20:
			for (i = ALL_TARGET_HT20_0_8_16;
			     i <= ALL_TARGET_HT20_23; i++)
				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
						       minCtlPower);
			break;
		case CTL_5GHT40:
		case CTL_2GHT40:
			for (i = ALL_TARGET_HT40_0_8_16;
			     i <= ALL_TARGET_HT40_23; i++)
				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
						       minCtlPower);
			break;
		default:
			break;
		}
4977 4978 4979
	} /* end ctl mode checking */
}

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
{
	u8 mod_idx = mcs_idx % 8;

	if (mod_idx <= 3)
		return mod_idx ? (base_pwridx + 1) : base_pwridx;
	else
		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
}

4990 4991 4992
static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
					struct ath9k_channel *chan, u16 cfgCtl,
					u8 twiceAntennaReduction,
4993
					u8 powerLimit, bool test)
4994
{
4995
	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4996
	struct ath_common *common = ath9k_hw_common(ah);
4997
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4998
	struct ar9300_modal_eep_header *modal_hdr;
4999
	u8 targetPowerValT2[ar9300RateSize];
5000 5001
	u8 target_power_val_t2_eep[ar9300RateSize];
	unsigned int i = 0, paprd_scale_factor = 0;
5002
	u8 pwr_idx, min_pwridx = 0;
5003

5004 5005 5006 5007 5008 5009
	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));

	/*
	 * Get target powers from EEPROM - our baseline for TX Power
	 */
	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5010 5011 5012

	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
		if (IS_CHAN_2GHZ(chan))
5013
			modal_hdr = &eep->modalHeader2G;
5014
		else
5015 5016 5017 5018 5019 5020 5021 5022 5023
			modal_hdr = &eep->modalHeader5G;

		ah->paprd_ratemask =
			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
			AR9300_PAPRD_RATE_MASK;

		ah->paprd_ratemask_ht40 =
			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
			AR9300_PAPRD_RATE_MASK;
5024

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
						  ALL_TARGET_HT20_0_8_16;

		if (!ah->paprd_table_write_done) {
			memcpy(target_power_val_t2_eep, targetPowerValT2,
			       sizeof(targetPowerValT2));
			for (i = 0; i < 24; i++) {
				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
				if (ah->paprd_ratemask & (1 << i)) {
					if (targetPowerValT2[pwr_idx] &&
					    targetPowerValT2[pwr_idx] ==
					    target_power_val_t2_eep[pwr_idx])
						targetPowerValT2[pwr_idx] -=
							paprd_scale_factor;
				}
			}
		}
5043 5044 5045 5046
		memcpy(target_power_val_t2_eep, targetPowerValT2,
		       sizeof(targetPowerValT2));
	}

5047 5048 5049 5050 5051
	ar9003_hw_set_power_per_rate_table(ah, chan,
					   targetPowerValT2, cfgCtl,
					   twiceAntennaReduction,
					   powerLimit);

5052 5053 5054 5055 5056 5057 5058
	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
		for (i = 0; i < ar9300RateSize; i++) {
			if ((ah->paprd_ratemask & (1 << i)) &&
			    (abs(targetPowerValT2[i] -
				target_power_val_t2_eep[i]) >
			    paprd_scale_factor)) {
				ah->paprd_ratemask &= ~(1 << i);
5059
				ath_dbg(common, EEPROM,
5060 5061 5062 5063 5064
					"paprd disabled for mcs %d\n", i);
			}
		}
	}

5065 5066 5067 5068 5069 5070
	regulatory->max_power_level = 0;
	for (i = 0; i < ar9300RateSize; i++) {
		if (targetPowerValT2[i] > regulatory->max_power_level)
			regulatory->max_power_level = targetPowerValT2[i];
	}

5071 5072
	ath9k_hw_update_regulatory_maxpower(ah);

5073 5074 5075 5076
	if (test)
		return;

	for (i = 0; i < ar9300RateSize; i++) {
5077 5078
		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
			i, targetPowerValT2[i]);
5079 5080
	}

5081 5082
	/* Write target power array to registers */
	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5083
	ar9003_hw_calibration_apply(ah, chan->channel);
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

	if (IS_CHAN_2GHZ(chan)) {
		if (IS_CHAN_HT40(chan))
			i = ALL_TARGET_HT40_0_8_16;
		else
			i = ALL_TARGET_HT20_0_8_16;
	} else {
		if (IS_CHAN_HT40(chan))
			i = ALL_TARGET_HT40_7;
		else
			i = ALL_TARGET_HT20_7;
	}
	ah->paprd_target_power = targetPowerValT2[i];
5097 5098 5099 5100 5101 5102 5103 5104
}

static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
					    u16 i, bool is2GHz)
{
	return AR_NO_SPUR;
}

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;

	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
}

s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;

	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
}

5119
u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5120
{
5121
	return ar9003_modal_header(ah, is2ghz)->spurChans;
5122 5123
}

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
					   struct ath9k_channel *chan)
{
	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;

	if (IS_CHAN_2GHZ(chan))
		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
			  AR9300_PAPRD_SCALE_1);
	else {
		if (chan->channel >= 5700)
		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
			  AR9300_PAPRD_SCALE_1);
		else if (chan->channel >= 5400)
			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
				   AR9300_PAPRD_SCALE_2);
		else
			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
				  AR9300_PAPRD_SCALE_1);
	}
}

5145 5146 5147 5148
const struct eeprom_ops eep_ar9300_ops = {
	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5149
	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5150 5151 5152 5153 5154 5155 5156
	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
	.set_board_values = ath9k_hw_ar9300_set_board_values,
	.set_addac = ath9k_hw_ar9300_set_addac,
	.set_txpower = ath9k_hw_ar9300_set_txpower,
	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
};