dax.c 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * fs/dax.c - Direct Access filesystem code
 * Copyright (c) 2013-2014 Intel Corporation
 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/genhd.h>
22 23 24
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
25
#include <linux/mutex.h>
26
#include <linux/pmem.h>
27
#include <linux/sched.h>
28
#include <linux/uio.h>
29
#include <linux/vmstat.h>
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
int dax_clear_blocks(struct inode *inode, sector_t block, long size)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	sector_t sector = block << (inode->i_blkbits - 9);

	might_sleep();
	do {
		void *addr;
		unsigned long pfn;
		long count;

		count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
		if (count < 0)
			return count;
		BUG_ON(size < count);
		while (count > 0) {
			unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
			if (pgsz > count)
				pgsz = count;
50
			clear_pmem((void __pmem *)addr, pgsz);
51 52 53 54 55 56 57 58 59
			addr += pgsz;
			size -= pgsz;
			count -= pgsz;
			BUG_ON(pgsz & 511);
			sector += pgsz / 512;
			cond_resched();
		}
	} while (size);

60
	wmb_pmem();
61 62 63 64
	return 0;
}
EXPORT_SYMBOL_GPL(dax_clear_blocks);

65 66 67 68 69 70 71
static long dax_get_addr(struct buffer_head *bh, void **addr, unsigned blkbits)
{
	unsigned long pfn;
	sector_t sector = bh->b_blocknr << (blkbits - 9);
	return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
}

72
/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
73 74 75 76 77 78
static void dax_new_buf(void *addr, unsigned size, unsigned first, loff_t pos,
			loff_t end)
{
	loff_t final = end - pos + first; /* The final byte of the buffer */

	if (first > 0)
79
		clear_pmem((void __pmem *)addr, first);
80
	if (final < size)
81
		clear_pmem((void __pmem *)addr + final, size - final);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
}

static bool buffer_written(struct buffer_head *bh)
{
	return buffer_mapped(bh) && !buffer_unwritten(bh);
}

/*
 * When ext4 encounters a hole, it returns without modifying the buffer_head
 * which means that we can't trust b_size.  To cope with this, we set b_state
 * to 0 before calling get_block and, if any bit is set, we know we can trust
 * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
 * and would save us time calling get_block repeatedly.
 */
static bool buffer_size_valid(struct buffer_head *bh)
{
	return bh->b_state != 0;
}

O
Omar Sandoval 已提交
101 102 103
static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
		      loff_t start, loff_t end, get_block_t get_block,
		      struct buffer_head *bh)
104 105 106 107 108 109 110
{
	ssize_t retval = 0;
	loff_t pos = start;
	loff_t max = start;
	loff_t bh_max = start;
	void *addr;
	bool hole = false;
111
	bool need_wmb = false;
112

O
Omar Sandoval 已提交
113
	if (iov_iter_rw(iter) != WRITE)
114 115 116
		end = min(end, i_size_read(inode));

	while (pos < end) {
117
		size_t len;
118 119 120 121 122 123 124 125 126 127
		if (pos == max) {
			unsigned blkbits = inode->i_blkbits;
			sector_t block = pos >> blkbits;
			unsigned first = pos - (block << blkbits);
			long size;

			if (pos == bh_max) {
				bh->b_size = PAGE_ALIGN(end - pos);
				bh->b_state = 0;
				retval = get_block(inode, block, bh,
O
Omar Sandoval 已提交
128
						   iov_iter_rw(iter) == WRITE);
129 130 131 132 133 134 135 136 137 138 139 140
				if (retval)
					break;
				if (!buffer_size_valid(bh))
					bh->b_size = 1 << blkbits;
				bh_max = pos - first + bh->b_size;
			} else {
				unsigned done = bh->b_size -
						(bh_max - (pos - first));
				bh->b_blocknr += done >> blkbits;
				bh->b_size -= done;
			}

O
Omar Sandoval 已提交
141
			hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
142 143 144 145 146 147 148
			if (hole) {
				addr = NULL;
				size = bh->b_size - first;
			} else {
				retval = dax_get_addr(bh, &addr, blkbits);
				if (retval < 0)
					break;
149
				if (buffer_unwritten(bh) || buffer_new(bh)) {
150 151
					dax_new_buf(addr, retval, first, pos,
									end);
152 153
					need_wmb = true;
				}
154 155 156 157 158 159
				addr += first;
				size = retval - first;
			}
			max = min(pos + size, end);
		}

160 161 162 163 164
		if (iov_iter_rw(iter) == WRITE) {
			len = copy_from_iter_pmem((void __pmem *)addr,
					max - pos, iter);
			need_wmb = true;
		} else if (!hole)
165 166 167 168 169 170 171 172 173 174 175
			len = copy_to_iter(addr, max - pos, iter);
		else
			len = iov_iter_zero(max - pos, iter);

		if (!len)
			break;

		pos += len;
		addr += len;
	}

176 177 178
	if (need_wmb)
		wmb_pmem();

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	return (pos == start) ? retval : pos - start;
}

/**
 * dax_do_io - Perform I/O to a DAX file
 * @iocb: The control block for this I/O
 * @inode: The file which the I/O is directed at
 * @iter: The addresses to do I/O from or to
 * @pos: The file offset where the I/O starts
 * @get_block: The filesystem method used to translate file offsets to blocks
 * @end_io: A filesystem callback for I/O completion
 * @flags: See below
 *
 * This function uses the same locking scheme as do_blockdev_direct_IO:
 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
 * caller for writes.  For reads, we take and release the i_mutex ourselves.
 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
 * is in progress.
 */
O
Omar Sandoval 已提交
199 200 201
ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
		  dio_iodone_t end_io, int flags)
202 203 204 205 206 207 208
{
	struct buffer_head bh;
	ssize_t retval = -EINVAL;
	loff_t end = pos + iov_iter_count(iter);

	memset(&bh, 0, sizeof(bh));

O
Omar Sandoval 已提交
209
	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
210 211 212 213 214 215 216 217 218 219
		struct address_space *mapping = inode->i_mapping;
		mutex_lock(&inode->i_mutex);
		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
		if (retval) {
			mutex_unlock(&inode->i_mutex);
			goto out;
		}
	}

	/* Protects against truncate */
220 221
	if (!(flags & DIO_SKIP_DIO_COUNT))
		inode_dio_begin(inode);
222

O
Omar Sandoval 已提交
223
	retval = dax_io(inode, iter, pos, end, get_block, &bh);
224

O
Omar Sandoval 已提交
225
	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
226 227 228 229 230
		mutex_unlock(&inode->i_mutex);

	if ((retval > 0) && end_io)
		end_io(iocb, pos, retval, bh.b_private);

231 232
	if (!(flags & DIO_SKIP_DIO_COUNT))
		inode_dio_end(inode);
233 234 235 236
 out:
	return retval;
}
EXPORT_SYMBOL_GPL(dax_do_io);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

/*
 * The user has performed a load from a hole in the file.  Allocating
 * a new page in the file would cause excessive storage usage for
 * workloads with sparse files.  We allocate a page cache page instead.
 * We'll kick it out of the page cache if it's ever written to,
 * otherwise it will simply fall out of the page cache under memory
 * pressure without ever having been dirtied.
 */
static int dax_load_hole(struct address_space *mapping, struct page *page,
							struct vm_fault *vmf)
{
	unsigned long size;
	struct inode *inode = mapping->host;
	if (!page)
		page = find_or_create_page(mapping, vmf->pgoff,
						GFP_KERNEL | __GFP_ZERO);
	if (!page)
		return VM_FAULT_OOM;
	/* Recheck i_size under page lock to avoid truncate race */
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size) {
		unlock_page(page);
		page_cache_release(page);
		return VM_FAULT_SIGBUS;
	}

	vmf->page = page;
	return VM_FAULT_LOCKED;
}

static int copy_user_bh(struct page *to, struct buffer_head *bh,
			unsigned blkbits, unsigned long vaddr)
{
	void *vfrom, *vto;
	if (dax_get_addr(bh, &vfrom, blkbits) < 0)
		return -EIO;
	vto = kmap_atomic(to);
	copy_user_page(vto, vfrom, vaddr, to);
	kunmap_atomic(vto);
	return 0;
}

static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
			struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct address_space *mapping = inode->i_mapping;
	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
	void *addr;
	unsigned long pfn;
	pgoff_t size;
	int error;

	i_mmap_lock_read(mapping);

	/*
	 * Check truncate didn't happen while we were allocating a block.
	 * If it did, this block may or may not be still allocated to the
	 * file.  We can't tell the filesystem to free it because we can't
	 * take i_mutex here.  In the worst case, the file still has blocks
	 * allocated past the end of the file.
	 */
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (unlikely(vmf->pgoff >= size)) {
		error = -EIO;
		goto out;
	}

	error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
	if (error < 0)
		goto out;
	if (error < PAGE_SIZE) {
		error = -EIO;
		goto out;
	}

314 315 316 317
	if (buffer_unwritten(bh) || buffer_new(bh)) {
		clear_pmem((void __pmem *)addr, PAGE_SIZE);
		wmb_pmem();
	}
318 319 320 321 322 323 324 325 326

	error = vm_insert_mixed(vma, vaddr, pfn);

 out:
	i_mmap_unlock_read(mapping);

	return error;
}

327 328 329 330 331 332 333 334 335 336 337
/**
 * __dax_fault - handle a page fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * When a page fault occurs, filesystems may call this helper in their
 * fault handler for DAX files. __dax_fault() assumes the caller has done all
 * the necessary locking for the page fault to proceed successfully.
 */
int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
338
			get_block_t get_block, dax_iodone_t complete_unwritten)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	struct file *file = vma->vm_file;
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;
	struct page *page;
	struct buffer_head bh;
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
	unsigned blkbits = inode->i_blkbits;
	sector_t block;
	pgoff_t size;
	int error;
	int major = 0;

	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		return VM_FAULT_SIGBUS;

	memset(&bh, 0, sizeof(bh));
	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
	bh.b_size = PAGE_SIZE;

 repeat:
	page = find_get_page(mapping, vmf->pgoff);
	if (page) {
		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
			page_cache_release(page);
			return VM_FAULT_RETRY;
		}
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
			page_cache_release(page);
			goto repeat;
		}
		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (unlikely(vmf->pgoff >= size)) {
			/*
			 * We have a struct page covering a hole in the file
			 * from a read fault and we've raced with a truncate
			 */
			error = -EIO;
			goto unlock_page;
		}
	}

	error = get_block(inode, block, &bh, 0);
	if (!error && (bh.b_size < PAGE_SIZE))
		error = -EIO;		/* fs corruption? */
	if (error)
		goto unlock_page;

	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
		if (vmf->flags & FAULT_FLAG_WRITE) {
			error = get_block(inode, block, &bh, 1);
			count_vm_event(PGMAJFAULT);
			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
			major = VM_FAULT_MAJOR;
			if (!error && (bh.b_size < PAGE_SIZE))
				error = -EIO;
			if (error)
				goto unlock_page;
		} else {
			return dax_load_hole(mapping, page, vmf);
		}
	}

	if (vmf->cow_page) {
		struct page *new_page = vmf->cow_page;
		if (buffer_written(&bh))
			error = copy_user_bh(new_page, &bh, blkbits, vaddr);
		else
			clear_user_highpage(new_page, vaddr);
		if (error)
			goto unlock_page;
		vmf->page = page;
		if (!page) {
			i_mmap_lock_read(mapping);
			/* Check we didn't race with truncate */
			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
								PAGE_SHIFT;
			if (vmf->pgoff >= size) {
				i_mmap_unlock_read(mapping);
				error = -EIO;
				goto out;
			}
		}
		return VM_FAULT_LOCKED;
	}

	/* Check we didn't race with a read fault installing a new page */
	if (!page && major)
		page = find_lock_page(mapping, vmf->pgoff);

	if (page) {
		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
							PAGE_CACHE_SIZE, 0);
		delete_from_page_cache(page);
		unlock_page(page);
		page_cache_release(page);
	}

439 440 441 442 443 444 445 446 447 448
	/*
	 * If we successfully insert the new mapping over an unwritten extent,
	 * we need to ensure we convert the unwritten extent. If there is an
	 * error inserting the mapping, the filesystem needs to leave it as
	 * unwritten to prevent exposure of the stale underlying data to
	 * userspace, but we still need to call the completion function so
	 * the private resources on the mapping buffer can be released. We
	 * indicate what the callback should do via the uptodate variable, same
	 * as for normal BH based IO completions.
	 */
449
	error = dax_insert_mapping(inode, &bh, vma, vmf);
450 451
	if (buffer_unwritten(&bh))
		complete_unwritten(&bh, !error);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

 out:
	if (error == -ENOMEM)
		return VM_FAULT_OOM | major;
	/* -EBUSY is fine, somebody else faulted on the same PTE */
	if ((error < 0) && (error != -EBUSY))
		return VM_FAULT_SIGBUS | major;
	return VM_FAULT_NOPAGE | major;

 unlock_page:
	if (page) {
		unlock_page(page);
		page_cache_release(page);
	}
	goto out;
}
468
EXPORT_SYMBOL(__dax_fault);
469 470 471 472 473 474 475 476 477 478 479

/**
 * dax_fault - handle a page fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * When a page fault occurs, filesystems may call this helper in their
 * fault handler for DAX files.
 */
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
480
	      get_block_t get_block, dax_iodone_t complete_unwritten)
481 482 483 484 485 486 487 488
{
	int result;
	struct super_block *sb = file_inode(vma->vm_file)->i_sb;

	if (vmf->flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(sb);
		file_update_time(vma->vm_file);
	}
489
	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
490 491 492 493 494 495
	if (vmf->flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(sb);

	return result;
}
EXPORT_SYMBOL_GPL(dax_fault);
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/**
 * dax_pfn_mkwrite - handle first write to DAX page
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 *
 */
int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct super_block *sb = file_inode(vma->vm_file)->i_sb;

	sb_start_pagefault(sb);
	file_update_time(vma->vm_file);
	sb_end_pagefault(sb);
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);

514
/**
M
Matthew Wilcox 已提交
515
 * dax_zero_page_range - zero a range within a page of a DAX file
516 517
 * @inode: The file being truncated
 * @from: The file offset that is being truncated to
M
Matthew Wilcox 已提交
518
 * @length: The number of bytes to zero
519 520
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
M
Matthew Wilcox 已提交
521 522 523 524
 * This function can be called by a filesystem when it is zeroing part of a
 * page in a DAX file.  This is intended for hole-punch operations.  If
 * you are truncating a file, the helper function dax_truncate_page() may be
 * more convenient.
525 526 527 528 529
 *
 * We work in terms of PAGE_CACHE_SIZE here for commonality with
 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 * took care of disposing of the unnecessary blocks.  Even if the filesystem
 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
M
Matthew Wilcox 已提交
530
 * since the file might be mmapped.
531
 */
M
Matthew Wilcox 已提交
532 533
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
							get_block_t get_block)
534 535 536 537 538 539 540 541 542
{
	struct buffer_head bh;
	pgoff_t index = from >> PAGE_CACHE_SHIFT;
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	int err;

	/* Block boundary? Nothing to do */
	if (!length)
		return 0;
M
Matthew Wilcox 已提交
543
	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
544 545 546 547 548 549 550 551 552 553 554

	memset(&bh, 0, sizeof(bh));
	bh.b_size = PAGE_CACHE_SIZE;
	err = get_block(inode, index, &bh, 0);
	if (err < 0)
		return err;
	if (buffer_written(&bh)) {
		void *addr;
		err = dax_get_addr(&bh, &addr, inode->i_blkbits);
		if (err < 0)
			return err;
555 556
		clear_pmem((void __pmem *)addr + offset, length);
		wmb_pmem();
557 558 559 560
	}

	return 0;
}
M
Matthew Wilcox 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
EXPORT_SYMBOL_GPL(dax_zero_page_range);

/**
 * dax_truncate_page - handle a partial page being truncated in a DAX file
 * @inode: The file being truncated
 * @from: The file offset that is being truncated to
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * Similar to block_truncate_page(), this function can be called by a
 * filesystem when it is truncating a DAX file to handle the partial page.
 *
 * We work in terms of PAGE_CACHE_SIZE here for commonality with
 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 * took care of disposing of the unnecessary blocks.  Even if the filesystem
 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
 * since the file might be mmapped.
 */
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
{
	unsigned length = PAGE_CACHE_ALIGN(from) - from;
	return dax_zero_page_range(inode, from, length, get_block);
}
583
EXPORT_SYMBOL_GPL(dax_truncate_page);