percpu.c 85.7 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
7 8 9
 * Copyright (C) 2017		Facebook Inc.
 * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
 *
10
 * This file is released under the GPLv2 license.
11
 *
12 13 14 15
 * The percpu allocator handles both static and dynamic areas.  Percpu
 * areas are allocated in chunks which are divided into units.  There is
 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
 * based on NUMA properties of the machine.
16 17 18 19 20 21
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
22 23 24 25 26 27 28 29 30
 * Allocation is done by offsets into a unit's address space.  Ie., an
 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
 * and even sparse.  Access is handled by configuring percpu base
 * registers according to the cpu to unit mappings and offsetting the
 * base address using pcpu_unit_size.
 *
 * There is special consideration for the first chunk which must handle
 * the static percpu variables in the kernel image as allocation services
31
 * are not online yet.  In short, the first chunk is structured like so:
32 33 34 35 36 37 38
 *
 *                  <Static | [Reserved] | Dynamic>
 *
 * The static data is copied from the original section managed by the
 * linker.  The reserved section, if non-zero, primarily manages static
 * percpu variables from kernel modules.  Finally, the dynamic section
 * takes care of normal allocations.
39
 *
40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * The allocator organizes chunks into lists according to free size and
 * tries to allocate from the fullest chunk first.  Each chunk is managed
 * by a bitmap with metadata blocks.  The allocation map is updated on
 * every allocation and free to reflect the current state while the boundary
 * map is only updated on allocation.  Each metadata block contains
 * information to help mitigate the need to iterate over large portions
 * of the bitmap.  The reverse mapping from page to chunk is stored in
 * the page's index.  Lastly, units are lazily backed and grow in unison.
 *
 * There is a unique conversion that goes on here between bytes and bits.
 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
 * tracks the number of pages it is responsible for in nr_pages.  Helper
 * functions are used to convert from between the bytes, bits, and blocks.
 * All hints are managed in bits unless explicitly stated.
54
 *
55
 * To use this allocator, arch code should do the following:
56 57
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 59
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
60
 *
61 62
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
63 64
 */

65 66
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

67
#include <linux/bitmap.h>
M
Mike Rapoport 已提交
68
#include <linux/memblock.h>
69
#include <linux/err.h>
70
#include <linux/lcm.h>
71
#include <linux/list.h>
72
#include <linux/log2.h>
73 74 75 76 77 78
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
79
#include <linux/spinlock.h>
80
#include <linux/vmalloc.h>
81
#include <linux/workqueue.h>
82
#include <linux/kmemleak.h>
83
#include <linux/sched.h>
84 85

#include <asm/cacheflush.h>
86
#include <asm/sections.h>
87
#include <asm/tlbflush.h>
88
#include <asm/io.h>
89

90 91 92
#define CREATE_TRACE_POINTS
#include <trace/events/percpu.h>

93 94
#include "percpu-internal.h"

95 96 97
/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
#define PCPU_SLOT_BASE_SHIFT		5

98 99
#define PCPU_EMPTY_POP_PAGES_LOW	2
#define PCPU_EMPTY_POP_PAGES_HIGH	4
100

101
#ifdef CONFIG_SMP
102 103 104
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
105 106 107
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
108 109 110
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
111 112 113
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
114
#endif
115 116 117 118 119
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
120

121 122 123 124
static int pcpu_unit_pages __ro_after_init;
static int pcpu_unit_size __ro_after_init;
static int pcpu_nr_units __ro_after_init;
static int pcpu_atom_size __ro_after_init;
125
int pcpu_nr_slots __ro_after_init;
126
static size_t pcpu_chunk_struct_size __ro_after_init;
127

T
Tejun Heo 已提交
128
/* cpus with the lowest and highest unit addresses */
129 130
static unsigned int pcpu_low_unit_cpu __ro_after_init;
static unsigned int pcpu_high_unit_cpu __ro_after_init;
131

132
/* the address of the first chunk which starts with the kernel static area */
133
void *pcpu_base_addr __ro_after_init;
134 135
EXPORT_SYMBOL_GPL(pcpu_base_addr);

136 137
static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
138

139
/* group information, used for vm allocation */
140 141 142
static int pcpu_nr_groups __ro_after_init;
static const unsigned long *pcpu_group_offsets __ro_after_init;
static const size_t *pcpu_group_sizes __ro_after_init;
143

144 145 146 147 148
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
149
struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150 151 152

/*
 * Optional reserved chunk.  This chunk reserves part of the first
153 154
 * chunk and serves it for reserved allocations.  When the reserved
 * region doesn't exist, the following variable is NULL.
155
 */
156
struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157

158
DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
159
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
160

161
struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162

163 164 165
/* chunks which need their map areas extended, protected by pcpu_lock */
static LIST_HEAD(pcpu_map_extend_chunks);

166 167 168 169
/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
170
int pcpu_nr_empty_pop_pages;
171

172 173 174 175 176 177 178 179
/*
 * The number of populated pages in use by the allocator, protected by
 * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 * and increments/decrements this count by 1).
 */
static unsigned long pcpu_nr_populated;

180 181 182 183 184 185
/*
 * Balance work is used to populate or destroy chunks asynchronously.  We
 * try to keep the number of populated free pages between
 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 * empty chunk.
 */
186 187
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
188 189 190 191 192 193 194 195
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;

static void pcpu_schedule_balance_work(void)
{
	if (pcpu_async_enabled)
		schedule_work(&pcpu_balance_work);
}
196

197
/**
198 199 200
 * pcpu_addr_in_chunk - check if the address is served from this chunk
 * @chunk: chunk of interest
 * @addr: percpu address
201 202
 *
 * RETURNS:
203
 * True if the address is served from this chunk.
204
 */
205
static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
206
{
207 208
	void *start_addr, *end_addr;

209
	if (!chunk)
210
		return false;
211

212 213 214
	start_addr = chunk->base_addr + chunk->start_offset;
	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
		   chunk->end_offset;
215 216

	return addr >= start_addr && addr < end_addr;
217 218
}

219
static int __pcpu_size_to_slot(int size)
220
{
T
Tejun Heo 已提交
221
	int highbit = fls(size);	/* size is in bytes */
222 223 224
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

225 226 227 228 229 230 231
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

232 233
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
234
	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
235 236
		return 0;

237
	return pcpu_size_to_slot(chunk->free_bytes);
238 239
}

240 241 242 243 244 245 246 247 248 249 250 251 252
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
253
{
254
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
255 256
}

257 258 259 260 261
static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
{
	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
}

262 263
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
264
{
265 266
	return (unsigned long)chunk->base_addr +
	       pcpu_unit_page_offset(cpu, page_idx);
267 268
}

269
static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
T
Tejun Heo 已提交
270
{
271 272
	*rs = find_next_zero_bit(bitmap, end, *rs);
	*re = find_next_bit(bitmap, end, *rs + 1);
T
Tejun Heo 已提交
273 274
}

275
static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
T
Tejun Heo 已提交
276
{
277 278
	*rs = find_next_bit(bitmap, end, *rs);
	*re = find_next_zero_bit(bitmap, end, *rs + 1);
T
Tejun Heo 已提交
279 280 281
}

/*
282 283 284
 * Bitmap region iterators.  Iterates over the bitmap between
 * [@start, @end) in @chunk.  @rs and @re should be integer variables
 * and will be set to start and end index of the current free region.
T
Tejun Heo 已提交
285
 */
286 287 288 289
#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
T
Tejun Heo 已提交
290

291 292 293 294
#define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
T
Tejun Heo 已提交
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * The following are helper functions to help access bitmaps and convert
 * between bitmap offsets to address offsets.
 */
static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
{
	return chunk->alloc_map +
	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
}

static unsigned long pcpu_off_to_block_index(int off)
{
	return off / PCPU_BITMAP_BLOCK_BITS;
}

static unsigned long pcpu_off_to_block_off(int off)
{
	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
}

316 317 318 319 320
static unsigned long pcpu_block_off_to_off(int index, int off)
{
	return index * PCPU_BITMAP_BLOCK_BITS + off;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/**
 * pcpu_next_md_free_region - finds the next hint free area
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Helper function for pcpu_for_each_md_free_region.  It checks
 * block->contig_hint and performs aggregation across blocks to find the
 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 * loop.
 */
static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
				     int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
			return;
		}

		/*
		 * This checks three things.  First is there a contig_hint to
		 * check.  Second, have we checked this hint before by
		 * comparing the block_off.  Third, is this the same as the
		 * right contig hint.  In the last case, it spills over into
		 * the next block and should be handled by the contig area
		 * across blocks code.
		 */
		*bits = block->contig_hint;
		if (*bits && block->contig_hint_start >= block_off &&
		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
			*bit_off = pcpu_block_off_to_off(i,
					block->contig_hint_start);
			return;
		}
365 366
		/* reset to satisfy the second predicate above */
		block_off = 0;
367 368 369 370 371 372

		*bits = block->right_free;
		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
	}
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/**
 * pcpu_next_fit_region - finds fit areas for a given allocation request
 * @chunk: chunk of interest
 * @alloc_bits: size of allocation
 * @align: alignment of area (max PAGE_SIZE)
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Finds the next free region that is viable for use with a given size and
 * alignment.  This only returns if there is a valid area to be used for this
 * allocation.  block->first_free is returned if the allocation request fits
 * within the block to see if the request can be fulfilled prior to the contig
 * hint.
 */
static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
				 int align, int *bit_off, int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (*bits >= alloc_bits)
				return;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
		}

		/* check block->contig_hint */
		*bits = ALIGN(block->contig_hint_start, align) -
			block->contig_hint_start;
		/*
		 * This uses the block offset to determine if this has been
		 * checked in the prior iteration.
		 */
		if (block->contig_hint &&
		    block->contig_hint_start >= block_off &&
		    block->contig_hint >= *bits + alloc_bits) {
			*bits += alloc_bits + block->contig_hint_start -
				 block->first_free;
			*bit_off = pcpu_block_off_to_off(i, block->first_free);
			return;
		}
421 422
		/* reset to satisfy the second predicate above */
		block_off = 0;
423 424 425 426 427 428 429 430 431 432 433 434 435

		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
				 align);
		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
		*bit_off = pcpu_block_off_to_off(i, *bit_off);
		if (*bits >= alloc_bits)
			return;
	}

	/* no valid offsets were found - fail condition */
	*bit_off = pcpu_chunk_map_bits(chunk);
}

436 437 438
/*
 * Metadata free area iterators.  These perform aggregation of free areas
 * based on the metadata blocks and return the offset @bit_off and size in
439 440
 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 * a fit is found for the allocation request.
441 442 443 444 445 446 447
 */
#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
	     (bit_off) += (bits) + 1,					\
	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))

448 449 450 451 452 453 454 455
#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits));				      \
	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
	     (bit_off) += (bits),					      \
	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits)))

456
/**
457
 * pcpu_mem_zalloc - allocate memory
458
 * @size: bytes to allocate
459
 * @gfp: allocation flags
460
 *
461
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
462 463 464
 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 * This is to facilitate passing through whitelisted flags.  The
 * returned memory is always zeroed.
465 466
 *
 * RETURNS:
467
 * Pointer to the allocated area on success, NULL on failure.
468
 */
469
static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
470
{
471 472 473
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

474
	if (size <= PAGE_SIZE)
475
		return kzalloc(size, gfp);
476
	else
477
		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
478
}
479

480 481 482 483
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 *
484
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
485
 */
486
static void pcpu_mem_free(void *ptr)
487
{
488
	kvfree(ptr);
489 490 491 492 493 494 495 496 497
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
498 499
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
500 501 502
 *
 * CONTEXT:
 * pcpu_lock.
503 504 505 506 507
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

508
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
509 510 511 512 513 514 515
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

516
/**
517
 * pcpu_cnt_pop_pages- counts populated backing pages in range
518
 * @chunk: chunk of interest
519 520
 * @bit_off: start offset
 * @bits: size of area to check
521
 *
522 523 524
 * Calculates the number of populated pages in the region
 * [page_start, page_end).  This keeps track of how many empty populated
 * pages are available and decide if async work should be scheduled.
525
 *
526
 * RETURNS:
527
 * The nr of populated pages.
528
 */
529 530
static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
				     int bits)
531
{
532 533
	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
534

535
	if (page_start >= page_end)
536 537
		return 0;

538 539 540 541 542 543 544 545 546
	/*
	 * bitmap_weight counts the number of bits set in a bitmap up to
	 * the specified number of bits.  This is counting the populated
	 * pages up to page_end and then subtracting the populated pages
	 * up to page_start to count the populated pages in
	 * [page_start, page_end).
	 */
	return bitmap_weight(chunk->populated, page_end) -
	       bitmap_weight(chunk->populated, page_start);
547 548 549
}

/**
550
 * pcpu_chunk_update - updates the chunk metadata given a free area
551
 * @chunk: chunk of interest
552 553
 * @bit_off: chunk offset
 * @bits: size of free area
554
 *
555
 * This updates the chunk's contig hint and starting offset given a free area.
556
 * Choose the best starting offset if the contig hint is equal.
557 558 559
 */
static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
{
560 561
	if (bits > chunk->contig_bits) {
		chunk->contig_bits_start = bit_off;
562
		chunk->contig_bits = bits;
563 564 565 566 567
	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
		   (!bit_off ||
		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
		/* use the start with the best alignment */
		chunk->contig_bits_start = bit_off;
568
	}
569 570 571 572 573
}

/**
 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 * @chunk: chunk of interest
574
 *
575 576 577
 * Iterates over the metadata blocks to find the largest contig area.
 * It also counts the populated pages and uses the delta to update the
 * global count.
578
 *
579 580
 * Updates:
 *      chunk->contig_bits
581
 *      chunk->contig_bits_start
582
 *      nr_empty_pop_pages (chunk and global)
583
 */
584
static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
585
{
586
	int bit_off, bits, nr_empty_pop_pages;
587

588 589
	/* clear metadata */
	chunk->contig_bits = 0;
590

591
	bit_off = chunk->first_bit;
592
	bits = nr_empty_pop_pages = 0;
593 594
	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
		pcpu_chunk_update(chunk, bit_off, bits);
595

596
		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
597
	}
598

599 600 601 602 603 604 605 606 607 608 609
	/*
	 * Keep track of nr_empty_pop_pages.
	 *
	 * The chunk maintains the previous number of free pages it held,
	 * so the delta is used to update the global counter.  The reserved
	 * chunk is not part of the free page count as they are populated
	 * at init and are special to serving reserved allocations.
	 */
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages +=
			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
610

611 612
	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
}
613

614 615 616 617 618 619 620
/**
 * pcpu_block_update - updates a block given a free area
 * @block: block of interest
 * @start: start offset in block
 * @end: end offset in block
 *
 * Updates a block given a known free area.  The region [start, end) is
621 622
 * expected to be the entirety of the free area within a block.  Chooses
 * the best starting offset if the contig hints are equal.
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
 */
static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
{
	int contig = end - start;

	block->first_free = min(block->first_free, start);
	if (start == 0)
		block->left_free = contig;

	if (end == PCPU_BITMAP_BLOCK_BITS)
		block->right_free = contig;

	if (contig > block->contig_hint) {
		block->contig_hint_start = start;
		block->contig_hint = contig;
638 639 640 641
	} else if (block->contig_hint_start && contig == block->contig_hint &&
		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
		/* use the start with the best alignment */
		block->contig_hint_start = start;
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	}
}

/**
 * pcpu_block_refresh_hint
 * @chunk: chunk of interest
 * @index: index of the metadata block
 *
 * Scans over the block beginning at first_free and updates the block
 * metadata accordingly.
 */
static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
{
	struct pcpu_block_md *block = chunk->md_blocks + index;
	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
	int rs, re;	/* region start, region end */

	/* clear hints */
	block->contig_hint = 0;
	block->left_free = block->right_free = 0;

	/* iterate over free areas and update the contig hints */
	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
				   PCPU_BITMAP_BLOCK_BITS) {
		pcpu_block_update(block, rs, re);
	}
}

/**
 * pcpu_block_update_hint_alloc - update hint on allocation path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
675 676 677 678
 *
 * Updates metadata for the allocation path.  The metadata only has to be
 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 * scans are required if the block's contig hint is broken.
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
 */
static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
					 int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

	/*
	 * Update s_block.
703 704 705
	 * block->first_free must be updated if the allocation takes its place.
	 * If the allocation breaks the contig_hint, a scan is required to
	 * restore this hint.
706
	 */
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	if (s_off == s_block->first_free)
		s_block->first_free = find_next_zero_bit(
					pcpu_index_alloc_map(chunk, s_index),
					PCPU_BITMAP_BLOCK_BITS,
					s_off + bits);

	if (s_off >= s_block->contig_hint_start &&
	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
		/* block contig hint is broken - scan to fix it */
		pcpu_block_refresh_hint(chunk, s_index);
	} else {
		/* update left and right contig manually */
		s_block->left_free = min(s_block->left_free, s_off);
		if (s_index == e_index)
			s_block->right_free = min_t(int, s_block->right_free,
					PCPU_BITMAP_BLOCK_BITS - e_off);
		else
			s_block->right_free = 0;
	}
726 727 728 729 730

	/*
	 * Update e_block.
	 */
	if (s_index != e_index) {
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		/*
		 * When the allocation is across blocks, the end is along
		 * the left part of the e_block.
		 */
		e_block->first_free = find_next_zero_bit(
				pcpu_index_alloc_map(chunk, e_index),
				PCPU_BITMAP_BLOCK_BITS, e_off);

		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
			/* reset the block */
			e_block++;
		} else {
			if (e_off > e_block->contig_hint_start) {
				/* contig hint is broken - scan to fix it */
				pcpu_block_refresh_hint(chunk, e_index);
			} else {
				e_block->left_free = 0;
				e_block->right_free =
					min_t(int, e_block->right_free,
					      PCPU_BITMAP_BLOCK_BITS - e_off);
			}
		}
753 754 755 756 757 758 759 760 761

		/* update in-between md_blocks */
		for (block = s_block + 1; block < e_block; block++) {
			block->contig_hint = 0;
			block->left_free = 0;
			block->right_free = 0;
		}
	}

762 763 764 765 766 767 768 769
	/*
	 * The only time a full chunk scan is required is if the chunk
	 * contig hint is broken.  Otherwise, it means a smaller space
	 * was used and therefore the chunk contig hint is still correct.
	 */
	if (bit_off >= chunk->contig_bits_start  &&
	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
		pcpu_chunk_refresh_hint(chunk);
770 771 772 773 774 775 776
}

/**
 * pcpu_block_update_hint_free - updates the block hints on the free path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
777 778 779 780 781 782 783 784 785 786 787
 *
 * Updates metadata for the allocation path.  This avoids a blind block
 * refresh by making use of the block contig hints.  If this fails, it scans
 * forward and backward to determine the extent of the free area.  This is
 * capped at the boundary of blocks.
 *
 * A chunk update is triggered if a page becomes free, a block becomes free,
 * or the free spans across blocks.  This tradeoff is to minimize iterating
 * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
 * may be off by up to a page, but it will never be more than the available
 * space.  If the contig hint is contained in one block, it will be accurate.
788 789 790 791 792 793 794
 */
static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
					int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */
795
	int start, end;		/* start and end of the whole free area */
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	/*
	 * Check if the freed area aligns with the block->contig_hint.
	 * If it does, then the scan to find the beginning/end of the
	 * larger free area can be avoided.
	 *
	 * start and end refer to beginning and end of the free area
	 * within each their respective blocks.  This is not necessarily
	 * the entire free area as it may span blocks past the beginning
	 * or end of the block.
	 */
	start = s_off;
	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
		start = s_block->contig_hint_start;
	} else {
		/*
		 * Scan backwards to find the extent of the free area.
		 * find_last_bit returns the starting bit, so if the start bit
		 * is returned, that means there was no last bit and the
		 * remainder of the chunk is free.
		 */
		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
					  start);
		start = (start == l_bit) ? 0 : l_bit + 1;
	}

	end = e_off;
	if (e_off == e_block->contig_hint_start)
		end = e_block->contig_hint_start + e_block->contig_hint;
	else
		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
				    PCPU_BITMAP_BLOCK_BITS, end);

843
	/* update s_block */
844 845
	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
	pcpu_block_update(s_block, start, e_off);
846 847 848 849

	/* freeing in the same block */
	if (s_index != e_index) {
		/* update e_block */
850
		pcpu_block_update(e_block, 0, end);
851 852 853 854 855 856 857 858 859 860 861

		/* reset md_blocks in the middle */
		for (block = s_block + 1; block < e_block; block++) {
			block->first_free = 0;
			block->contig_hint_start = 0;
			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
			block->left_free = PCPU_BITMAP_BLOCK_BITS;
			block->right_free = PCPU_BITMAP_BLOCK_BITS;
		}
	}

862 863 864 865 866 867 868 869 870 871 872 873 874
	/*
	 * Refresh chunk metadata when the free makes a page free, a block
	 * free, or spans across blocks.  The contig hint may be off by up to
	 * a page, but if the hint is contained in a block, it will be accurate
	 * with the else condition below.
	 */
	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
	    s_index != e_index)
		pcpu_chunk_refresh_hint(chunk);
	else
		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
				  s_block->contig_hint);
875 876
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
/**
 * pcpu_is_populated - determines if the region is populated
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of area
 * @next_off: return value for the next offset to start searching
 *
 * For atomic allocations, check if the backing pages are populated.
 *
 * RETURNS:
 * Bool if the backing pages are populated.
 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 */
static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
			      int *next_off)
{
	int page_start, page_end, rs, re;
894

895 896
	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
897

898 899 900 901
	rs = page_start;
	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
	if (rs >= page_end)
		return true;
902

903 904
	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
	return false;
905 906
}

907
/**
908 909 910 911 912 913
 * pcpu_find_block_fit - finds the block index to start searching
 * @chunk: chunk of interest
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE bytes)
 * @pop_only: use populated regions only
 *
914 915 916 917 918 919 920 921
 * Given a chunk and an allocation spec, find the offset to begin searching
 * for a free region.  This iterates over the bitmap metadata blocks to
 * find an offset that will be guaranteed to fit the requirements.  It is
 * not quite first fit as if the allocation does not fit in the contig hint
 * of a block or chunk, it is skipped.  This errs on the side of caution
 * to prevent excess iteration.  Poor alignment can cause the allocator to
 * skip over blocks and chunks that have valid free areas.
 *
922 923 924
 * RETURNS:
 * The offset in the bitmap to begin searching.
 * -1 if no offset is found.
925
 */
926 927
static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
			       size_t align, bool pop_only)
928
{
929
	int bit_off, bits, next_off;
930

931 932 933 934 935 936 937 938 939 940 941
	/*
	 * Check to see if the allocation can fit in the chunk's contig hint.
	 * This is an optimization to prevent scanning by assuming if it
	 * cannot fit in the global hint, there is memory pressure and creating
	 * a new chunk would happen soon.
	 */
	bit_off = ALIGN(chunk->contig_bits_start, align) -
		  chunk->contig_bits_start;
	if (bit_off + alloc_bits > chunk->contig_bits)
		return -1;

942 943 944
	bit_off = chunk->first_bit;
	bits = 0;
	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
945
		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
946
						   &next_off))
947
			break;
948

949
		bit_off = next_off;
950
		bits = 0;
951
	}
952 953 954 955 956

	if (bit_off == pcpu_chunk_map_bits(chunk))
		return -1;

	return bit_off;
957 958
}

959
/**
960
 * pcpu_alloc_area - allocates an area from a pcpu_chunk
961
 * @chunk: chunk of interest
962 963 964
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE)
 * @start: bit_off to start searching
965
 *
966
 * This function takes in a @start offset to begin searching to fit an
967 968 969 970 971 972
 * allocation of @alloc_bits with alignment @align.  It needs to scan
 * the allocation map because if it fits within the block's contig hint,
 * @start will be block->first_free. This is an attempt to fill the
 * allocation prior to breaking the contig hint.  The allocation and
 * boundary maps are updated accordingly if it confirms a valid
 * free area.
973
 *
974
 * RETURNS:
975 976
 * Allocated addr offset in @chunk on success.
 * -1 if no matching area is found.
977
 */
978 979
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
			   size_t align, int start)
980
{
981 982
	size_t align_mask = (align) ? (align - 1) : 0;
	int bit_off, end, oslot;
983

984
	lockdep_assert_held(&pcpu_lock);
985

986
	oslot = pcpu_chunk_slot(chunk);
987

988 989 990
	/*
	 * Search to find a fit.
	 */
991
	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
992 993 994 995
	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
					     alloc_bits, align_mask);
	if (bit_off >= end)
		return -1;
996

997 998
	/* update alloc map */
	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
A
Al Viro 已提交
999

1000 1001 1002 1003
	/* update boundary map */
	set_bit(bit_off, chunk->bound_map);
	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
	set_bit(bit_off + alloc_bits, chunk->bound_map);
1004

1005
	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1006

1007 1008 1009 1010 1011 1012 1013
	/* update first free bit */
	if (bit_off == chunk->first_bit)
		chunk->first_bit = find_next_zero_bit(
					chunk->alloc_map,
					pcpu_chunk_map_bits(chunk),
					bit_off + alloc_bits);

1014
	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1015 1016 1017

	pcpu_chunk_relocate(chunk, oslot);

1018
	return bit_off * PCPU_MIN_ALLOC_SIZE;
1019 1020 1021
}

/**
1022
 * pcpu_free_area - frees the corresponding offset
1023
 * @chunk: chunk of interest
1024
 * @off: addr offset into chunk
1025
 *
1026 1027
 * This function determines the size of an allocation to free using
 * the boundary bitmap and clears the allocation map.
1028
 */
1029
static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1030
{
1031
	int bit_off, bits, end, oslot;
1032

1033
	lockdep_assert_held(&pcpu_lock);
1034
	pcpu_stats_area_dealloc(chunk);
1035

1036
	oslot = pcpu_chunk_slot(chunk);
1037

1038
	bit_off = off / PCPU_MIN_ALLOC_SIZE;
A
Al Viro 已提交
1039

1040 1041 1042 1043 1044
	/* find end index */
	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
			    bit_off + 1);
	bits = end - bit_off;
	bitmap_clear(chunk->alloc_map, bit_off, bits);
1045

1046 1047
	/* update metadata */
	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1048

1049 1050 1051
	/* update first free bit */
	chunk->first_bit = min(chunk->first_bit, bit_off);

1052
	pcpu_block_update_hint_free(chunk, bit_off, bits);
1053 1054 1055 1056

	pcpu_chunk_relocate(chunk, oslot);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
{
	struct pcpu_block_md *md_block;

	for (md_block = chunk->md_blocks;
	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
	     md_block++) {
		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
	}
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/**
 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
 * @tmp_addr: the start of the region served
 * @map_size: size of the region served
 *
 * This is responsible for creating the chunks that serve the first chunk.  The
 * base_addr is page aligned down of @tmp_addr while the region end is page
 * aligned up.  Offsets are kept track of to determine the region served. All
 * this is done to appease the bitmap allocator in avoiding partial blocks.
 *
 * RETURNS:
 * Chunk serving the region at @tmp_addr of @map_size.
 */
1083
static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1084
							 int map_size)
1085 1086
{
	struct pcpu_chunk *chunk;
1087
	unsigned long aligned_addr, lcm_align;
1088
	int start_offset, offset_bits, region_size, region_bits;
1089
	size_t alloc_size;
1090 1091 1092 1093 1094

	/* region calculations */
	aligned_addr = tmp_addr & PAGE_MASK;

	start_offset = tmp_addr - aligned_addr;
1095

1096 1097 1098 1099 1100 1101 1102
	/*
	 * Align the end of the region with the LCM of PAGE_SIZE and
	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
	 * the other.
	 */
	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
	region_size = ALIGN(start_offset + map_size, lcm_align);
1103

1104
	/* allocate chunk */
1105 1106 1107 1108 1109 1110
	alloc_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(region_size >> PAGE_SHIFT);
	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!chunk)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);
1111

1112
	INIT_LIST_HEAD(&chunk->list);
1113 1114

	chunk->base_addr = (void *)aligned_addr;
1115
	chunk->start_offset = start_offset;
1116
	chunk->end_offset = region_size - chunk->start_offset - map_size;
1117

1118
	chunk->nr_pages = region_size >> PAGE_SHIFT;
1119
	region_bits = pcpu_chunk_map_bits(chunk);
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!chunk->alloc_map)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);

	alloc_size =
		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!chunk->bound_map)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);

	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!chunk->md_blocks)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);

1140
	pcpu_init_md_blocks(chunk);
1141 1142 1143

	/* manage populated page bitmap */
	chunk->immutable = true;
1144 1145
	bitmap_fill(chunk->populated, chunk->nr_pages);
	chunk->nr_populated = chunk->nr_pages;
1146 1147 1148
	chunk->nr_empty_pop_pages =
		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
				   map_size / PCPU_MIN_ALLOC_SIZE);
1149

1150 1151
	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
	chunk->free_bytes = map_size;
1152 1153 1154

	if (chunk->start_offset) {
		/* hide the beginning of the bitmap */
1155 1156 1157 1158
		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map, 0, offset_bits);
		set_bit(0, chunk->bound_map);
		set_bit(offset_bits, chunk->bound_map);
1159

1160 1161
		chunk->first_bit = offset_bits;

1162
		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1163 1164
	}

1165 1166
	if (chunk->end_offset) {
		/* hide the end of the bitmap */
1167 1168 1169 1170 1171 1172 1173
		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map,
			   pcpu_chunk_map_bits(chunk) - offset_bits,
			   offset_bits);
		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
			chunk->bound_map);
		set_bit(region_bits, chunk->bound_map);
1174

1175 1176 1177
		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
					     - offset_bits, offset_bits);
	}
1178

1179 1180 1181
	return chunk;
}

1182
static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1183 1184
{
	struct pcpu_chunk *chunk;
1185
	int region_bits;
1186

1187
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1188 1189 1190
	if (!chunk)
		return NULL;

1191 1192 1193
	INIT_LIST_HEAD(&chunk->list);
	chunk->nr_pages = pcpu_unit_pages;
	region_bits = pcpu_chunk_map_bits(chunk);
1194

1195
	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1196
					   sizeof(chunk->alloc_map[0]), gfp);
1197 1198
	if (!chunk->alloc_map)
		goto alloc_map_fail;
1199

1200
	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1201
					   sizeof(chunk->bound_map[0]), gfp);
1202 1203
	if (!chunk->bound_map)
		goto bound_map_fail;
1204

1205
	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1206
					   sizeof(chunk->md_blocks[0]), gfp);
1207 1208 1209 1210 1211
	if (!chunk->md_blocks)
		goto md_blocks_fail;

	pcpu_init_md_blocks(chunk);

1212 1213 1214
	/* init metadata */
	chunk->contig_bits = region_bits;
	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1215

1216
	return chunk;
1217

1218 1219
md_blocks_fail:
	pcpu_mem_free(chunk->bound_map);
1220 1221 1222 1223 1224 1225
bound_map_fail:
	pcpu_mem_free(chunk->alloc_map);
alloc_map_fail:
	pcpu_mem_free(chunk);

	return NULL;
1226 1227 1228 1229 1230 1231
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
1232
	pcpu_mem_free(chunk->md_blocks);
1233 1234
	pcpu_mem_free(chunk->bound_map);
	pcpu_mem_free(chunk->alloc_map);
1235
	pcpu_mem_free(chunk);
1236 1237
}

1238 1239 1240 1241 1242
/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
1243
 * @for_alloc: if this is to populate for allocation
1244 1245 1246 1247
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
1248 1249 1250
 *
 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
 * is to serve an allocation in that area.
1251
 */
1252 1253
static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
				 int page_end, bool for_alloc)
1254 1255 1256 1257 1258 1259 1260
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
1261
	pcpu_nr_populated += nr;
1262 1263 1264 1265 1266

	if (!for_alloc) {
		chunk->nr_empty_pop_pages += nr;
		pcpu_nr_empty_pop_pages += nr;
	}
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
1288
	chunk->nr_empty_pop_pages -= nr;
1289
	pcpu_nr_empty_pop_pages -= nr;
1290
	pcpu_nr_populated -= nr;
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1307
 */
1308
static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1309
			       int page_start, int page_end, gfp_t gfp);
1310 1311
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
				  int page_start, int page_end);
1312
static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1313 1314 1315
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1316

1317 1318 1319
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
1320
#include "percpu-vm.c"
1321
#endif
1322

1323 1324 1325 1326
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
1327 1328 1329
 * This is an internal function that handles all but static allocations.
 * Static percpu address values should never be passed into the allocator.
 *
1330 1331 1332 1333 1334
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
1335
	/* is it in the dynamic region (first chunk)? */
1336
	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1337
		return pcpu_first_chunk;
1338 1339

	/* is it in the reserved region? */
1340
	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1341
		return pcpu_reserved_chunk;
1342 1343 1344 1345 1346 1347 1348 1349 1350

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1351
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1352 1353
}

1354
/**
1355
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1356
 * @size: size of area to allocate in bytes
1357
 * @align: alignment of area (max PAGE_SIZE)
1358
 * @reserved: allocate from the reserved chunk if available
1359
 * @gfp: allocation flags
1360
 *
1361
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1362 1363 1364
 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
 * then no warning will be triggered on invalid or failed allocation
 * requests.
1365 1366 1367 1368
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1369 1370
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
1371
{
1372 1373
	/* whitelisted flags that can be passed to the backing allocators */
	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1374 1375
	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
	bool do_warn = !(gfp & __GFP_NOWARN);
1376
	static int warn_limit = 10;
1377
	struct pcpu_chunk *chunk;
1378
	const char *err;
1379
	int slot, off, cpu, ret;
1380
	unsigned long flags;
1381
	void __percpu *ptr;
1382
	size_t bits, bit_align;
1383

1384
	/*
1385 1386 1387 1388
	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
	 * therefore alignment must be a minimum of that many bytes.
	 * An allocation may have internal fragmentation from rounding up
	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1389
	 */
1390 1391
	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
		align = PCPU_MIN_ALLOC_SIZE;
1392

1393
	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1394 1395
	bits = size >> PCPU_MIN_ALLOC_SHIFT;
	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
V
Viro 已提交
1396

1397 1398
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
		     !is_power_of_2(align))) {
1399
		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
J
Joe Perches 已提交
1400
		     size, align);
1401 1402 1403
		return NULL;
	}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (!is_atomic) {
		/*
		 * pcpu_balance_workfn() allocates memory under this mutex,
		 * and it may wait for memory reclaim. Allow current task
		 * to become OOM victim, in case of memory pressure.
		 */
		if (gfp & __GFP_NOFAIL)
			mutex_lock(&pcpu_alloc_mutex);
		else if (mutex_lock_killable(&pcpu_alloc_mutex))
			return NULL;
	}
1415

1416
	spin_lock_irqsave(&pcpu_lock, flags);
1417

1418 1419 1420
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1421

1422 1423
		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
		if (off < 0) {
1424
			err = "alloc from reserved chunk failed";
1425
			goto fail_unlock;
1426
		}
1427

1428
		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1429 1430
		if (off >= 0)
			goto area_found;
1431

1432
		err = "alloc from reserved chunk failed";
1433
		goto fail_unlock;
1434 1435
	}

1436
restart:
1437
	/* search through normal chunks */
1438 1439
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1440 1441 1442
			off = pcpu_find_block_fit(chunk, bits, bit_align,
						  is_atomic);
			if (off < 0)
1443
				continue;
1444

1445
			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1446 1447
			if (off >= 0)
				goto area_found;
1448

1449 1450 1451
		}
	}

1452
	spin_unlock_irqrestore(&pcpu_lock, flags);
1453

T
Tejun Heo 已提交
1454 1455 1456 1457 1458
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
1459 1460
	if (is_atomic) {
		err = "atomic alloc failed, no space left";
1461
		goto fail;
1462
	}
1463

T
Tejun Heo 已提交
1464
	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1465
		chunk = pcpu_create_chunk(pcpu_gfp);
T
Tejun Heo 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474
		if (!chunk) {
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
1475
	}
1476 1477

	goto restart;
1478 1479

area_found:
1480
	pcpu_stats_area_alloc(chunk, size);
1481
	spin_unlock_irqrestore(&pcpu_lock, flags);
1482

1483
	/* populate if not all pages are already there */
1484
	if (!is_atomic) {
1485
		int page_start, page_end, rs, re;
1486

1487 1488
		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
1489

1490 1491
		pcpu_for_each_unpop_region(chunk->populated, rs, re,
					   page_start, page_end) {
1492 1493
			WARN_ON(chunk->immutable);

1494
			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1495 1496 1497

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
1498
				pcpu_free_area(chunk, off);
1499 1500 1501
				err = "failed to populate";
				goto fail_unlock;
			}
1502
			pcpu_chunk_populated(chunk, rs, re, true);
1503
			spin_unlock_irqrestore(&pcpu_lock, flags);
1504
		}
1505

1506 1507
		mutex_unlock(&pcpu_alloc_mutex);
	}
1508

1509 1510 1511
	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
		pcpu_schedule_balance_work();

1512 1513 1514 1515
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

1516
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1517
	kmemleak_alloc_percpu(ptr, size, gfp);
1518 1519 1520 1521

	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
			chunk->base_addr, off, ptr);

1522
	return ptr;
1523 1524

fail_unlock:
1525
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
1526
fail:
1527 1528
	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);

1529
	if (!is_atomic && do_warn && warn_limit) {
1530
		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
J
Joe Perches 已提交
1531
			size, align, is_atomic, err);
1532 1533
		dump_stack();
		if (!--warn_limit)
1534
			pr_info("limit reached, disable warning\n");
1535
	}
1536 1537 1538 1539
	if (is_atomic) {
		/* see the flag handling in pcpu_blance_workfn() */
		pcpu_atomic_alloc_failed = true;
		pcpu_schedule_balance_work();
1540 1541
	} else {
		mutex_unlock(&pcpu_alloc_mutex);
1542
	}
1543
	return NULL;
1544
}
1545 1546

/**
1547
 * __alloc_percpu_gfp - allocate dynamic percpu area
1548 1549
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
1550
 * @gfp: allocation flags
1551
 *
1552 1553
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1554 1555 1556
 * be called from any context but is a lot more likely to fail. If @gfp
 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
 * allocation requests.
1557
 *
1558 1559 1560
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
1574
void __percpu *__alloc_percpu(size_t size, size_t align)
1575
{
1576
	return pcpu_alloc(size, align, false, GFP_KERNEL);
1577
}
1578 1579
EXPORT_SYMBOL_GPL(__alloc_percpu);

1580 1581 1582 1583 1584
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
1585 1586 1587 1588
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
1589
 *
1590 1591 1592
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1593 1594 1595
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1596
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1597
{
1598
	return pcpu_alloc(size, align, true, GFP_KERNEL);
1599 1600
}

1601
/**
1602
 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1603 1604
 * @work: unused
 *
1605 1606 1607 1608 1609 1610
 * Reclaim all fully free chunks except for the first one.  This is also
 * responsible for maintaining the pool of empty populated pages.  However,
 * it is possible that this is called when physical memory is scarce causing
 * OOM killer to be triggered.  We should avoid doing so until an actual
 * allocation causes the failure as it is possible that requests can be
 * serviced from already backed regions.
1611
 */
1612
static void pcpu_balance_workfn(struct work_struct *work)
1613
{
1614
	/* gfp flags passed to underlying allocators */
1615
	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1616 1617
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1618
	struct pcpu_chunk *chunk, *next;
1619
	int slot, nr_to_pop, ret;
1620

1621 1622 1623 1624
	/*
	 * There's no reason to keep around multiple unused chunks and VM
	 * areas can be scarce.  Destroy all free chunks except for one.
	 */
1625 1626
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1627

1628
	list_for_each_entry_safe(chunk, next, free_head, list) {
1629 1630 1631
		WARN_ON(chunk->immutable);

		/* spare the first one */
1632
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1633 1634
			continue;

1635
		list_move(&chunk->list, &to_free);
1636 1637
	}

1638
	spin_unlock_irq(&pcpu_lock);
1639

1640
	list_for_each_entry_safe(chunk, next, &to_free, list) {
1641
		int rs, re;
1642

1643 1644
		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
					 chunk->nr_pages) {
1645
			pcpu_depopulate_chunk(chunk, rs, re);
1646 1647 1648
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
1649
		}
1650
		pcpu_destroy_chunk(chunk);
1651
		cond_resched();
1652
	}
T
Tejun Heo 已提交
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * Ensure there are certain number of free populated pages for
	 * atomic allocs.  Fill up from the most packed so that atomic
	 * allocs don't increase fragmentation.  If atomic allocation
	 * failed previously, always populate the maximum amount.  This
	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
	 * failing indefinitely; however, large atomic allocs are not
	 * something we support properly and can be highly unreliable and
	 * inefficient.
	 */
retry_pop:
	if (pcpu_atomic_alloc_failed) {
		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
		/* best effort anyway, don't worry about synchronization */
		pcpu_atomic_alloc_failed = false;
	} else {
		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
				  pcpu_nr_empty_pop_pages,
				  0, PCPU_EMPTY_POP_PAGES_HIGH);
	}

	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
		int nr_unpop = 0, rs, re;

		if (!nr_to_pop)
			break;

		spin_lock_irq(&pcpu_lock);
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1683
			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1684 1685 1686 1687 1688 1689 1690 1691 1692
			if (nr_unpop)
				break;
		}
		spin_unlock_irq(&pcpu_lock);

		if (!nr_unpop)
			continue;

		/* @chunk can't go away while pcpu_alloc_mutex is held */
1693 1694
		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
					   chunk->nr_pages) {
1695 1696
			int nr = min(re - rs, nr_to_pop);

1697
			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1698 1699 1700
			if (!ret) {
				nr_to_pop -= nr;
				spin_lock_irq(&pcpu_lock);
1701
				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
				spin_unlock_irq(&pcpu_lock);
			} else {
				nr_to_pop = 0;
			}

			if (!nr_to_pop)
				break;
		}
	}

	if (nr_to_pop) {
		/* ran out of chunks to populate, create a new one and retry */
1714
		chunk = pcpu_create_chunk(gfp);
1715 1716 1717 1718 1719 1720 1721 1722
		if (chunk) {
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_relocate(chunk, -1);
			spin_unlock_irq(&pcpu_lock);
			goto retry_pop;
		}
	}

T
Tejun Heo 已提交
1723
	mutex_unlock(&pcpu_alloc_mutex);
1724 1725 1726 1727 1728 1729
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1730 1731 1732 1733
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1734
 */
1735
void free_percpu(void __percpu *ptr)
1736
{
1737
	void *addr;
1738
	struct pcpu_chunk *chunk;
1739
	unsigned long flags;
1740
	int off;
1741 1742 1743 1744

	if (!ptr)
		return;

1745 1746
	kmemleak_free_percpu(ptr);

1747 1748
	addr = __pcpu_ptr_to_addr(ptr);

1749
	spin_lock_irqsave(&pcpu_lock, flags);
1750 1751

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1752
	off = addr - chunk->base_addr;
1753

1754
	pcpu_free_area(chunk, off);
1755

1756
	/* if there are more than one fully free chunks, wake up grim reaper */
1757
	if (chunk->free_bytes == pcpu_unit_size) {
1758 1759
		struct pcpu_chunk *pos;

1760
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1761
			if (pos != chunk) {
1762
				pcpu_schedule_balance_work();
1763 1764 1765 1766
				break;
			}
	}

1767 1768
	trace_percpu_free_percpu(chunk->base_addr, off, ptr);

1769
	spin_unlock_irqrestore(&pcpu_lock, flags);
1770 1771 1772
}
EXPORT_SYMBOL_GPL(free_percpu);

1773
bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1774
{
1775
#ifdef CONFIG_SMP
1776 1777 1778 1779 1780 1781
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);
1782
		void *va = (void *)addr;
1783

1784
		if (va >= start && va < start + static_size) {
1785
			if (can_addr) {
1786
				*can_addr = (unsigned long) (va - start);
1787 1788 1789
				*can_addr += (unsigned long)
					per_cpu_ptr(base, get_boot_cpu_id());
			}
1790
			return true;
1791 1792
		}
	}
1793 1794
#endif
	/* on UP, can't distinguish from other static vars, always false */
1795 1796 1797
	return false;
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
	return __is_kernel_percpu_address(addr, NULL);
}

1814 1815 1816 1817 1818 1819 1820 1821 1822
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1823 1824 1825 1826 1827
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
1828
 * The addr can be translated simply without checking if it falls into the
1829 1830 1831 1832 1833
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1834 1835 1836 1837 1838
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1839 1840
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1841
	unsigned long first_low, first_high;
1842 1843 1844
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1845
	 * The following test on unit_low/high isn't strictly
1846 1847
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
1848 1849 1850 1851 1852
	 *
	 * The address check is against full chunk sizes.  pcpu_base_addr
	 * points to the beginning of the first chunk including the
	 * static region.  Assumes good intent as the first chunk may
	 * not be full (ie. < pcpu_unit_pages in size).
1853
	 */
1854 1855 1856 1857
	first_low = (unsigned long)pcpu_base_addr +
		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
	first_high = (unsigned long)pcpu_base_addr +
		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
T
Tejun Heo 已提交
1858 1859
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1871
		if (!is_vmalloc_addr(addr))
1872 1873
			return __pa(addr);
		else
1874 1875
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1876
	} else
1877 1878
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1879 1880
}

1881
/**
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1908
	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1933
	memblock_free_early(__pa(ai), ai->__ai_size);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1945
{
1946
	int group_width = 1, cpu_width = 1, width;
1947
	char empty_str[] = "--------";
1948 1949 1950 1951 1952 1953 1954
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1955

1956
	v = num_possible_cpus();
1957
	while (v /= 10)
1958 1959
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1960

1961 1962 1963
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1964

1965 1966 1967
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1968

1969 1970 1971 1972 1973 1974 1975 1976
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1977
				pr_cont("\n");
1978 1979
				printk("%spcpu-alloc: ", lvl);
			}
1980
			pr_cont("[%0*d] ", group_width, group);
1981 1982 1983

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1984 1985
					pr_cont("%0*d ",
						cpu_width, gi->cpu_map[unit]);
1986
				else
1987
					pr_cont("%s ", empty_str);
1988 1989
		}
	}
1990
	pr_cont("\n");
1991 1992
}

1993
/**
1994
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1995
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1996
 * @base_addr: mapped address
1997 1998 1999
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
2000
 * setup path.
2001
 *
2002 2003 2004 2005 2006 2007
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2008 2009 2010 2011 2012 2013 2014
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
2015 2016 2017
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2018
 *
2019 2020 2021
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
2022
 *
2023 2024
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
2025
 *
2026 2027 2028 2029 2030 2031 2032 2033 2034
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
2035
 *
2036 2037
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
2038
 *
2039 2040 2041 2042 2043 2044 2045
 * The first chunk will always contain a static and a dynamic region.
 * However, the static region is not managed by any chunk.  If the first
 * chunk also contains a reserved region, it is served by two chunks -
 * one for the reserved region and one for the dynamic region.  They
 * share the same vm, but use offset regions in the area allocation map.
 * The chunk serving the dynamic region is circulated in the chunk slots
 * and available for dynamic allocation like any other chunk.
2046
 *
2047
 * RETURNS:
T
Tejun Heo 已提交
2048
 * 0 on success, -errno on failure.
2049
 */
T
Tejun Heo 已提交
2050 2051
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
2052
{
2053
	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2054
	size_t static_size, dyn_size;
2055
	struct pcpu_chunk *chunk;
2056 2057
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
2058
	unsigned long *unit_off;
2059
	unsigned int cpu;
2060 2061
	int *unit_map;
	int group, unit, i;
2062 2063
	int map_size;
	unsigned long tmp_addr;
2064
	size_t alloc_size;
2065

2066 2067
#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
2068 2069
		pr_emerg("failed to initialize, %s\n", #cond);		\
		pr_emerg("cpu_possible_mask=%*pb\n",			\
2070
			 cpumask_pr_args(cpu_possible_mask));		\
2071 2072 2073 2074 2075
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

2076
	/* sanity checks */
2077
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2078
#ifdef CONFIG_SMP
2079
	PCPU_SETUP_BUG_ON(!ai->static_size);
2080
	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2081
#endif
2082
	PCPU_SETUP_BUG_ON(!base_addr);
2083
	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2084
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2085
	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2086
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2087
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2088
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2089
	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2090
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2091 2092
	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2093
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2094

2095
	/* process group information and build config tables accordingly */
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!group_offsets)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);

	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!group_sizes)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);

	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!unit_map)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);

	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
	if (!unit_off)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      alloc_size);
2119

2120
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2121
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
2122 2123 2124

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
2125

2126 2127
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
2128

2129 2130 2131
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

2132 2133 2134 2135
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
2136

D
Dan Carpenter 已提交
2137
			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2138 2139
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2140

2141
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
2142 2143
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
2144 2145 2146 2147 2148 2149 2150
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
2151
		}
2152
	}
2153 2154 2155
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
2156 2157 2158 2159
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
2160
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2161

2162 2163 2164
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
2165
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
2166
	pcpu_unit_offsets = unit_off;
2167 2168

	/* determine basic parameters */
2169
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2170
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2171
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
2172 2173
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2174

2175 2176
	pcpu_stats_save_ai(ai);

2177 2178 2179 2180 2181
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2182 2183
	pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
				   SMP_CACHE_BYTES);
2184 2185 2186
	if (!pcpu_slot)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      pcpu_nr_slots * sizeof(pcpu_slot[0]));
2187 2188 2189
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * The end of the static region needs to be aligned with the
	 * minimum allocation size as this offsets the reserved and
	 * dynamic region.  The first chunk ends page aligned by
	 * expanding the dynamic region, therefore the dynamic region
	 * can be shrunk to compensate while still staying above the
	 * configured sizes.
	 */
	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
	dyn_size = ai->dyn_size - (static_size - ai->static_size);

2201
	/*
2202 2203 2204 2205 2206 2207
	 * Initialize first chunk.
	 * If the reserved_size is non-zero, this initializes the reserved
	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
	 * and the dynamic region is initialized here.  The first chunk,
	 * pcpu_first_chunk, will always point to the chunk that serves
	 * the dynamic region.
2208
	 */
2209 2210
	tmp_addr = (unsigned long)base_addr + static_size;
	map_size = ai->reserved_size ?: dyn_size;
2211
	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2212

2213
	/* init dynamic chunk if necessary */
2214
	if (ai->reserved_size) {
2215
		pcpu_reserved_chunk = chunk;
2216

2217
		tmp_addr = (unsigned long)base_addr + static_size +
2218
			   ai->reserved_size;
2219
		map_size = dyn_size;
2220
		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2221 2222
	}

2223
	/* link the first chunk in */
2224
	pcpu_first_chunk = chunk;
2225
	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2226
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2227

2228 2229 2230
	/* include all regions of the first chunk */
	pcpu_nr_populated += PFN_DOWN(size_sum);

2231
	pcpu_stats_chunk_alloc();
2232
	trace_percpu_create_chunk(base_addr);
2233

2234
	/* we're done */
T
Tejun Heo 已提交
2235
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
2236
	return 0;
2237
}
2238

2239 2240
#ifdef CONFIG_SMP

2241
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2242 2243 2244 2245
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
2246

2247
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2248

2249 2250
static int __init percpu_alloc_setup(char *str)
{
2251 2252 2253
	if (!str)
		return -EINVAL;

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
2265
		pr_warn("unknown allocator %s specified\n", str);
2266

2267
	return 0;
2268
}
2269
early_param("percpu_alloc", percpu_alloc_setup);
2270

2271 2272 2273 2274 2275
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
2276 2277
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
2299
 * Groups are always multiples of atom size and CPUs which are of
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
2337
	 * which can accommodate 4k aligned segments which are equal to
2338 2339 2340 2341
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

2342
	/* determine the maximum # of units that can fit in an allocation */
2343 2344
	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
2345
	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
2369 2370 2371
	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
	 * Expand the unit_size until we use >= 75% of the units allocated.
	 * Related to atom_size, which could be much larger than the unit_size.
2372 2373 2374 2375 2376
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

2377
		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

2423
	for (group = 0, unit = 0; group < nr_groups; group++) {
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
2446 2447 2448
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
2449
 * @dyn_size: minimum free size for dynamic allocation in bytes
2450 2451 2452
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
2453
 * @free_fn: function to free percpu page
2454 2455 2456 2457 2458
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
2469
 *
2470
 * @dyn_size specifies the minimum dynamic area size.
2471 2472
 *
 * If the needed size is smaller than the minimum or specified unit
2473
 * size, the leftover is returned using @free_fn.
2474 2475
 *
 * RETURNS:
T
Tejun Heo 已提交
2476
 * 0 on success, -errno on failure.
2477
 */
2478
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2479 2480 2481 2482
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
2483
{
2484 2485
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
2486
	struct pcpu_alloc_info *ai;
2487 2488
	size_t size_sum, areas_size;
	unsigned long max_distance;
2489
	int group, i, highest_group, rc;
2490

2491 2492
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
2493 2494
	if (IS_ERR(ai))
		return PTR_ERR(ai);
2495

2496
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2497
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2498

2499
	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2500
	if (!areas) {
T
Tejun Heo 已提交
2501
		rc = -ENOMEM;
2502
		goto out_free;
2503
	}
2504

2505 2506
	/* allocate, copy and determine base address & max_distance */
	highest_group = 0;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
2522 2523
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
2524
		areas[group] = ptr;
2525

2526
		base = min(ptr, base);
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		if (ptr > areas[highest_group])
			highest_group = group;
	}
	max_distance = areas[highest_group] - base;
	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
				max_distance, VMALLOC_TOTAL);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free_areas;
#endif
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
2563
	}
2564

2565
	/* base address is now known, determine group base offsets */
2566
	for (group = 0; group < ai->nr_groups; group++) {
2567
		ai->groups[group].base_offset = areas[group] - base;
2568
	}
2569

2570
	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2571 2572
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
2573

T
Tejun Heo 已提交
2574
	rc = pcpu_setup_first_chunk(ai, base);
2575 2576 2577 2578
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
2579 2580 2581
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
2582
out_free:
2583
	pcpu_free_alloc_info(ai);
2584
	if (areas)
2585
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
2586
	return rc;
2587
}
2588
#endif /* BUILD_EMBED_FIRST_CHUNK */
2589

2590
#ifdef BUILD_PAGE_FIRST_CHUNK
2591
/**
2592
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2593 2594
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
2595
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2596 2597
 * @populate_pte_fn: function to populate pte
 *
2598 2599
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2600 2601 2602 2603 2604
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
2605
 * 0 on success, -errno on failure.
2606
 */
T
Tejun Heo 已提交
2607 2608 2609 2610
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2611
{
2612
	static struct vm_struct vm;
2613
	struct pcpu_alloc_info *ai;
2614
	char psize_str[16];
T
Tejun Heo 已提交
2615
	int unit_pages;
2616
	size_t pages_size;
T
Tejun Heo 已提交
2617
	struct page **pages;
T
Tejun Heo 已提交
2618
	int unit, i, j, rc;
2619 2620
	int upa;
	int nr_g0_units;
2621

2622 2623
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

2624
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2625 2626 2627
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
2628 2629
	upa = ai->alloc_size/ai->unit_size;
	nr_g0_units = roundup(num_possible_cpus(), upa);
2630
	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2631 2632 2633
		pcpu_free_alloc_info(ai);
		return -EINVAL;
	}
2634 2635

	unit_pages = ai->unit_size >> PAGE_SHIFT;
2636 2637

	/* unaligned allocations can't be freed, round up to page size */
2638 2639
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
2640
	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2641 2642 2643
	if (!pages)
		panic("%s: Failed to allocate %zu bytes\n", __func__,
		      pages_size);
2644

2645
	/* allocate pages */
2646
	j = 0;
2647 2648
	for (unit = 0; unit < num_possible_cpus(); unit++) {
		unsigned int cpu = ai->groups[0].cpu_map[unit];
T
Tejun Heo 已提交
2649
		for (i = 0; i < unit_pages; i++) {
2650 2651
			void *ptr;

2652
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2653
			if (!ptr) {
2654
				pr_warn("failed to allocate %s page for cpu%u\n",
2655
						psize_str, cpu);
2656 2657
				goto enomem;
			}
2658 2659
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
2660
			pages[j++] = virt_to_page(ptr);
2661
		}
2662
	}
2663

2664 2665
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2666
	vm.size = num_possible_cpus() * ai->unit_size;
2667 2668
	vm_area_register_early(&vm, PAGE_SIZE);

2669
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2670
		unsigned long unit_addr =
2671
			(unsigned long)vm.addr + unit * ai->unit_size;
2672

T
Tejun Heo 已提交
2673
		for (i = 0; i < unit_pages; i++)
2674 2675 2676
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2677 2678 2679 2680
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2681

2682 2683 2684 2685 2686 2687 2688 2689 2690
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2691
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2692 2693 2694
	}

	/* we're ready, commit */
2695
	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2696 2697
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2698

T
Tejun Heo 已提交
2699
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2700 2701 2702 2703
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2704
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2705
	rc = -ENOMEM;
2706
out_free_ar:
2707
	memblock_free_early(__pa(pages), pages_size);
2708
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2709
	return rc;
2710
}
2711
#endif /* BUILD_PAGE_FIRST_CHUNK */
2712

2713
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2714
/*
2715
 * Generic SMP percpu area setup.
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2729 2730 2731
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
2732
	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2733
}
2734

2735 2736
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
2737
	memblock_free_early(__pa(ptr), size);
2738 2739
}

2740 2741 2742 2743
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2744
	int rc;
2745 2746 2747 2748 2749

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2750
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2751 2752
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2753
	if (rc < 0)
2754
		panic("Failed to initialize percpu areas.");
2755 2756 2757

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2758
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2759
}
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
2780
	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
2781 2782
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
2783 2784
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
2795
	pcpu_free_alloc_info(ai);
2796 2797 2798
}

#endif	/* CONFIG_SMP */
2799

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
/*
 * pcpu_nr_pages - calculate total number of populated backing pages
 *
 * This reflects the number of pages populated to back chunks.  Metadata is
 * excluded in the number exposed in meminfo as the number of backing pages
 * scales with the number of cpus and can quickly outweigh the memory used for
 * metadata.  It also keeps this calculation nice and simple.
 *
 * RETURNS:
 * Total number of populated backing pages in use by the allocator.
 */
unsigned long pcpu_nr_pages(void)
{
	return pcpu_nr_populated * pcpu_nr_units;
}

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
/*
 * Percpu allocator is initialized early during boot when neither slab or
 * workqueue is available.  Plug async management until everything is up
 * and running.
 */
static int __init percpu_enable_async(void)
{
	pcpu_async_enabled = true;
	return 0;
}
subsys_initcall(percpu_enable_async);