mips.c 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11 12 13

#include <linux/errno.h>
#include <linux/err.h>
14
#include <linux/kdebug.h>
15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
19
#include <asm/fpu.h>
20 21 22
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
23
#include <asm/pgtable.h>
24 25 26

#include <linux/kvm_host.h>

27 28
#include "interrupt.h"
#include "commpage.h"
29 30 31 32 33 34 35 36

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

37
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38
struct kvm_stats_debugfs_item debugfs_entries[] = {
39 40 41 42 43 44 45 46 47 48 49 50 51
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53
	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
54
	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
55
	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
60
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
61 62 63 64 65 66
	{NULL}
};

static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
	int i;
67

68 69 70 71
	for_each_possible_cpu(i) {
		vcpu->arch.guest_kernel_asid[i] = 0;
		vcpu->arch.guest_user_asid[i] = 0;
	}
72

73 74 75
	return 0;
}

76 77 78
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
79 80 81 82 83 84 85 86 87 88 89
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

90
int kvm_arch_hardware_enable(void)
91 92 93 94 95 96 97 98 99 100 101
{
	return 0;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
102
	*(int *)rtn = 0;
103 104 105 106 107 108
}

static void kvm_mips_init_tlbs(struct kvm *kvm)
{
	unsigned long wired;

109 110 111 112
	/*
	 * Add a wired entry to the TLB, it is used to map the commpage to
	 * the Guest kernel
	 */
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	wired = read_c0_wired();
	write_c0_wired(wired + 1);
	mtc0_tlbw_hazard();
	kvm->arch.commpage_tlb = wired;

	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
		  kvm->arch.commpage_tlb);
}

static void kvm_mips_init_vm_percpu(void *arg)
{
	struct kvm *kvm = (struct kvm *)arg;

	kvm_mips_init_tlbs(kvm);
	kvm_mips_callbacks->vm_init(kvm);

}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
	if (atomic_inc_return(&kvm_mips_instance) == 1) {
134 135
		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
			  __func__);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
	}

	return 0;
}

void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	/* Put the pages we reserved for the guest pmap */
	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
	}
152
	kfree(kvm->arch.guest_pmap);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

static void kvm_mips_uninit_tlbs(void *arg)
{
	/* Restore wired count */
	write_c0_wired(0);
	mtc0_tlbw_hazard();
	/* Clear out all the TLBs */
	kvm_local_flush_tlb_all();
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);

	/* If this is the last instance, restore wired count */
	if (atomic_dec_return(&kvm_mips_instance) == 0) {
183 184
		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
			  __func__);
185 186 187 188
		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
	}
}

189 190
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
191
{
192
	return -ENOIOCTLCMD;
193 194
}

195 196
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
197 198 199 200 201
{
	return 0;
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
202
				   struct kvm_memory_slot *memslot,
203
				   const struct kvm_userspace_memory_region *mem,
204
				   enum kvm_mr_change change)
205 206 207 208 209
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
210
				   const struct kvm_userspace_memory_region *mem,
211
				   const struct kvm_memory_slot *old,
212
				   const struct kvm_memory_slot *new,
213
				   enum kvm_mr_change change)
214 215
{
	unsigned long npages = 0;
216
	int i;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);

	/* Setup Guest PMAP table */
	if (!kvm->arch.guest_pmap) {
		if (mem->slot == 0)
			npages = mem->memory_size >> PAGE_SHIFT;

		if (npages) {
			kvm->arch.guest_pmap_npages = npages;
			kvm->arch.guest_pmap =
			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);

			if (!kvm->arch.guest_pmap) {
233
				kvm_err("Failed to allocate guest PMAP\n");
234
				return;
235 236
			}

237 238
			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
				  npages, kvm->arch.guest_pmap);
239 240

			/* Now setup the page table */
241
			for (i = 0; i < npages; i++)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
		}
	}
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err, size, offset;
	void *gebase;
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

265
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
266

267 268
	/*
	 * Allocate space for host mode exception handlers that handle
269 270
	 * guest mode exits
	 */
271
	if (cpu_has_veic || cpu_has_vint)
272
		size = 0x200 + VECTORSPACING * 64;
273
	else
274
		size = 0x4000;
275 276 277 278 279 280 281 282

	/* Save Linux EBASE */
	vcpu->arch.host_ebase = (void *)read_c0_ebase();

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
283
		goto out_uninit_cpu;
284
	}
285 286
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

	/* Copy L1 Guest Exception handler to correct offset */

	/* TLB Refill, EXL = 0 */
	memcpy(gebase, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* General Exception Entry point */
	memcpy(gebase + 0x180, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
		       mips32_exceptionEnd - mips32_exception);
	}

	/* General handler, relocate to unmapped space for sanity's sake */
	offset = 0x2000;
311 312 313
	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
		  gebase + offset,
		  mips32_GuestExceptionEnd - mips32_GuestException);
314 315 316 317

	memcpy(gebase + offset, mips32_GuestException,
	       mips32_GuestExceptionEnd - mips32_GuestException);

318 319 320 321 322 323 324 325 326
#ifdef MODULE
	offset += mips32_GuestExceptionEnd - mips32_GuestException;
	memcpy(gebase + offset, (char *)__kvm_mips_vcpu_run,
	       __kvm_mips_vcpu_run_end - (char *)__kvm_mips_vcpu_run);
	vcpu->arch.vcpu_run = gebase + offset;
#else
	vcpu->arch.vcpu_run = __kvm_mips_vcpu_run;
#endif

327
	/* Invalidate the icache for these ranges */
328 329
	local_flush_icache_range((unsigned long)gebase,
				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
330

331 332 333 334
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
335 336 337 338 339 340 341
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

342
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
343 344 345 346 347 348
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	/* Start off the timer */
349
	kvm_mips_init_count(vcpu);
350 351 352 353 354 355

	return vcpu;

out_free_gebase:
	kfree(gebase);

356 357 358
out_uninit_cpu:
	kvm_vcpu_uninit(vcpu);

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

374 375
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
376
	kfree(vcpu);
377 378 379 380 381 382 383
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

384 385
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
386
{
387
	return -ENOIOCTLCMD;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = 0;
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

404 405
	lose_fpu(1);

406
	local_irq_disable();
407 408 409 410
	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

411
	__kvm_guest_enter();
412

413 414 415
	/* Disable hardware page table walking while in guest */
	htw_stop();

416
	r = vcpu->arch.vcpu_run(run, vcpu);
417

418 419 420
	/* Re-enable HTW before enabling interrupts */
	htw_start();

421
	__kvm_guest_exit();
422 423 424 425 426 427 428 429
	local_irq_enable();

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

430 431
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

458 459
	if (swait_active(&dvcpu->wq))
		swake_up(&dvcpu->wq);
460 461 462 463

	return 0;
}

464 465
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
466
{
467
	return -ENOIOCTLCMD;
468 469
}

470 471
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
472
{
473
	return -ENOIOCTLCMD;
474 475
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
	KVM_REG_MIPS_PC,

	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
516
	KVM_REG_MIPS_CP0_USERLOCAL,
517 518
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
519
	KVM_REG_MIPS_CP0_HWRENA,
520
	KVM_REG_MIPS_CP0_BADVADDR,
521
	KVM_REG_MIPS_CP0_COUNT,
522
	KVM_REG_MIPS_CP0_ENTRYHI,
523
	KVM_REG_MIPS_CP0_COMPARE,
524 525
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
526
	KVM_REG_MIPS_CP0_EPC,
527
	KVM_REG_MIPS_CP0_PRID,
528 529 530 531
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
532 533
	KVM_REG_MIPS_CP0_CONFIG4,
	KVM_REG_MIPS_CP0_CONFIG5,
534
	KVM_REG_MIPS_CP0_CONFIG7,
535 536 537 538
	KVM_REG_MIPS_CP0_ERROREPC,

	KVM_REG_MIPS_COUNT_CTL,
	KVM_REG_MIPS_COUNT_RESUME,
539
	KVM_REG_MIPS_COUNT_HZ,
540 541 542 543 544 545
};

static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
546
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
547
	int ret;
548
	s64 v;
J
James Hogan 已提交
549
	s64 vs[2];
J
James Hogan 已提交
550
	unsigned int idx;
551 552

	switch (reg->id) {
J
James Hogan 已提交
553
	/* General purpose registers */
554 555 556 557 558 559 560 561 562 563 564 565 566
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

J
James Hogan 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			v = get_fpr32(&fpu->fpr[idx], 0);
		else
			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		v = get_fpr64(&fpu->fpr[idx], 0);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.fpu_id;
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = fpu->fcr31;
		break;

J
James Hogan 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Can't access MSA registers in FR=0 mode */
		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
#else
		/* most significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.msa_id;
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = fpu->msacsr;
		break;

J
James Hogan 已提交
627
	/* Co-processor 0 registers */
628 629 630 631 632 633
	case KVM_REG_MIPS_CP0_INDEX:
		v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		v = (long)kvm_read_c0_guest_context(cop0);
		break;
634 635 636
	case KVM_REG_MIPS_CP0_USERLOCAL:
		v = (long)kvm_read_c0_guest_userlocal(cop0);
		break;
637 638 639 640 641 642
	case KVM_REG_MIPS_CP0_PAGEMASK:
		v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		v = (long)kvm_read_c0_guest_wired(cop0);
		break;
643 644 645
	case KVM_REG_MIPS_CP0_HWRENA:
		v = (long)kvm_read_c0_guest_hwrena(cop0);
		break;
646 647 648 649 650 651
	case KVM_REG_MIPS_CP0_BADVADDR:
		v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
652 653 654
	case KVM_REG_MIPS_CP0_COMPARE:
		v = (long)kvm_read_c0_guest_compare(cop0);
		break;
655 656 657 658 659 660
	case KVM_REG_MIPS_CP0_STATUS:
		v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		v = (long)kvm_read_c0_guest_cause(cop0);
		break;
661 662 663
	case KVM_REG_MIPS_CP0_EPC:
		v = (long)kvm_read_c0_guest_epc(cop0);
		break;
664 665 666
	case KVM_REG_MIPS_CP0_PRID:
		v = (long)kvm_read_c0_guest_prid(cop0);
		break;
667 668 669 670 671 672 673 674 675 676 677 678
	case KVM_REG_MIPS_CP0_CONFIG:
		v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		v = (long)kvm_read_c0_guest_config3(cop0);
		break;
679 680 681 682 683 684
	case KVM_REG_MIPS_CP0_CONFIG4:
		v = (long)kvm_read_c0_guest_config4(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG5:
		v = (long)kvm_read_c0_guest_config5(cop0);
		break;
685 686 687
	case KVM_REG_MIPS_CP0_CONFIG7:
		v = (long)kvm_read_c0_guest_config7(cop0);
		break;
688 689 690
	case KVM_REG_MIPS_CP0_ERROREPC:
		v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
691 692
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
693 694
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
695
	case KVM_REG_MIPS_COUNT_HZ:
696 697 698 699
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
700 701 702
	default:
		return -EINVAL;
	}
703 704
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
705

706 707 708 709
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
710

711
		return put_user(v32, uaddr32);
J
James Hogan 已提交
712 713 714
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

715
		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
716 717 718
	} else {
		return -EINVAL;
	}
719 720 721 722 723 724
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
725 726
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	s64 v;
J
James Hogan 已提交
727
	s64 vs[2];
J
James Hogan 已提交
728
	unsigned int idx;
729

730 731 732 733 734 735 736 737 738 739 740 741
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
J
James Hogan 已提交
742 743 744
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

745
		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
746 747 748
	} else {
		return -EINVAL;
	}
749 750

	switch (reg->id) {
J
James Hogan 已提交
751
	/* General purpose registers */
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

J
James Hogan 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			set_fpr32(&fpu->fpr[idx], 0, v);
		else
			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		set_fpr64(&fpu->fpr[idx], 0, v);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		fpu->fcr31 = v;
		break;

J
James Hogan 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
#else
		/* most significant byte first */
		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		fpu->msacsr = v;
		break;

J
James Hogan 已提交
825
	/* Co-processor 0 registers */
826 827 828 829 830 831
	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
832 833 834
	case KVM_REG_MIPS_CP0_USERLOCAL:
		kvm_write_c0_guest_userlocal(cop0, v);
		break;
835 836 837 838 839 840
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
841 842 843
	case KVM_REG_MIPS_CP0_HWRENA:
		kvm_write_c0_guest_hwrena(cop0, v);
		break;
844 845 846 847 848 849 850 851 852
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
853 854 855
	case KVM_REG_MIPS_CP0_EPC:
		kvm_write_c0_guest_epc(cop0, v);
		break;
856 857 858
	case KVM_REG_MIPS_CP0_PRID:
		kvm_write_c0_guest_prid(cop0, v);
		break;
859 860 861
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
862 863 864
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
	case KVM_REG_MIPS_CP0_COMPARE:
865
	case KVM_REG_MIPS_CP0_CAUSE:
866 867 868 869 870 871
	case KVM_REG_MIPS_CP0_CONFIG:
	case KVM_REG_MIPS_CP0_CONFIG1:
	case KVM_REG_MIPS_CP0_CONFIG2:
	case KVM_REG_MIPS_CP0_CONFIG3:
	case KVM_REG_MIPS_CP0_CONFIG4:
	case KVM_REG_MIPS_CP0_CONFIG5:
872 873
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
874
	case KVM_REG_MIPS_COUNT_HZ:
875
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
876 877 878 879 880 881
	default:
		return -EINVAL;
	}
	return 0;
}

J
James Hogan 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r = 0;

	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
		return -EINVAL;
	if (cap->flags)
		return -EINVAL;
	if (cap->args[0])
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_MIPS_FPU:
		vcpu->arch.fpu_enabled = true;
		break;
J
James Hogan 已提交
898 899 900
	case KVM_CAP_MIPS_MSA:
		vcpu->arch.msa_enabled = true;
		break;
J
James Hogan 已提交
901 902 903 904 905 906 907 908
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

909 910
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
911 912 913 914 915 916
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
917 918 919
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
920

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		u64 __user *reg_dest;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		reg_dest = user_list->reg;
		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
				 sizeof(kvm_mips_get_one_regs)))
			return -EFAULT;
		return 0;
	}
948 949 950 951 952 953 954
	case KVM_NMI:
		/* Treat the NMI as a CPU reset */
		r = kvm_mips_reset_vcpu(vcpu);
		break;
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
955

956 957 958 959 960 961 962 963 964 965
			r = -EFAULT;
			if (copy_from_user(&irq, argp, sizeof(irq)))
				goto out;

			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
J
James Hogan 已提交
966 967 968 969 970 971 972 973 974
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
975
	default:
976
		r = -ENOIOCTLCMD;
977 978 979 980 981 982
	}

out:
	return r;
}

983
/* Get (and clear) the dirty memory log for a memory slot. */
984 985
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
986
	struct kvm_memslots *slots;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	struct kvm_memory_slot *memslot;
	unsigned long ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1001 1002
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1003 1004 1005 1006

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

1007 1008
		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
			 ga_end);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;

}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
1027
		r = -ENOIOCTLCMD;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

1040
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1041 1042 1043 1044 1045 1046 1047
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

1048 1049
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1050
{
1051
	return -ENOIOCTLCMD;
1052 1053
}

1054 1055
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1056
{
1057
	return -ENOIOCTLCMD;
1058 1059
}

1060
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1061 1062 1063 1064 1065
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1066
	return -ENOIOCTLCMD;
1067 1068 1069 1070
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1071
	return -ENOIOCTLCMD;
1072 1073 1074 1075 1076 1077 1078
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

1079
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1080 1081 1082 1083
{
	int r;

	switch (ext) {
1084
	case KVM_CAP_ONE_REG:
J
James Hogan 已提交
1085
	case KVM_CAP_ENABLE_CAP:
1086 1087
		r = 1;
		break;
1088 1089 1090
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
J
James Hogan 已提交
1091
	case KVM_CAP_MIPS_FPU:
1092 1093
		/* We don't handle systems with inconsistent cpu_has_fpu */
		r = !!raw_cpu_has_fpu;
J
James Hogan 已提交
1094
		break;
J
James Hogan 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	case KVM_CAP_MIPS_MSA:
		/*
		 * We don't support MSA vector partitioning yet:
		 * 1) It would require explicit support which can't be tested
		 *    yet due to lack of support in current hardware.
		 * 2) It extends the state that would need to be saved/restored
		 *    by e.g. QEMU for migration.
		 *
		 * When vector partitioning hardware becomes available, support
		 * could be added by requiring a flag when enabling
		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
		 * to save/restore the appropriate extra state.
		 */
		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
		break;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

1130 1131 1132
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1133 1134

	for (i = 0; i < 32; i += 4) {
1135
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1136 1137 1138 1139
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
1140 1141
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1142 1143

	cop0 = vcpu->arch.cop0;
1144 1145 1146
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
1147

1148
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1149 1150 1151 1152 1153 1154 1155 1156

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1157
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1158
		vcpu->arch.gprs[i] = regs->gpr[i];
1159
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1160 1161 1162 1163
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

1164
	return 0;
1165 1166 1167 1168 1169 1170
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1171
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172
		regs->gpr[i] = vcpu->arch.gprs[i];
1173 1174 1175 1176 1177

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

1178
	return 0;
1179 1180
}

1181
static void kvm_mips_comparecount_func(unsigned long data)
1182 1183 1184 1185 1186 1187
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
1188 1189
	if (swait_active(&vcpu->wq))
		swake_up(&vcpu->wq);
1190 1191
}

1192
/* low level hrtimer wake routine */
1193
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1194 1195 1196 1197 1198
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
1199
	return kvm_mips_count_timeout(vcpu);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_init(vcpu);
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

1211 1212
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

1223
static void kvm_mips_set_c0_status(void)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
{
	uint32_t status = read_c0_status();

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	uint32_t cause = vcpu->arch.host_cp0_cause;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

1246 1247 1248
	/* re-enable HTW before enabling interrupts */
	htw_start();

1249 1250 1251 1252
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1253 1254 1255 1256
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1257 1258 1259 1260 1261 1262 1263
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);

1264 1265
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
1278 1279
	case EXCCODE_INT:
		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1280 1281 1282 1283

		++vcpu->stat.int_exits;
		trace_kvm_exit(vcpu, INT_EXITS);

1284
		if (need_resched())
1285 1286 1287 1288 1289
			cond_resched();

		ret = RESUME_GUEST;
		break;

1290 1291
	case EXCCODE_CPU:
		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1292 1293 1294 1295 1296

		++vcpu->stat.cop_unusable_exits;
		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1297
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1298 1299 1300
			ret = RESUME_HOST;
		break;

1301
	case EXCCODE_MOD:
1302 1303 1304 1305 1306
		++vcpu->stat.tlbmod_exits;
		trace_kvm_exit(vcpu, TLBMOD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

1307
	case EXCCODE_TLBS:
1308 1309 1310
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1311 1312 1313 1314 1315 1316

		++vcpu->stat.tlbmiss_st_exits;
		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

1317
	case EXCCODE_TLBL:
1318 1319 1320 1321 1322 1323 1324 1325
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

1326
	case EXCCODE_ADES:
1327 1328 1329 1330 1331
		++vcpu->stat.addrerr_st_exits;
		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

1332
	case EXCCODE_ADEL:
1333 1334 1335 1336 1337
		++vcpu->stat.addrerr_ld_exits;
		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

1338
	case EXCCODE_SYS:
1339 1340 1341 1342 1343
		++vcpu->stat.syscall_exits;
		trace_kvm_exit(vcpu, SYSCALL_EXITS);
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

1344
	case EXCCODE_RI:
1345 1346 1347 1348 1349
		++vcpu->stat.resvd_inst_exits;
		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

1350
	case EXCCODE_BP:
1351 1352 1353 1354 1355
		++vcpu->stat.break_inst_exits;
		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1356
	case EXCCODE_TR:
1357 1358 1359 1360 1361
		++vcpu->stat.trap_inst_exits;
		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1362
	case EXCCODE_MSAFPE:
1363 1364 1365 1366 1367
		++vcpu->stat.msa_fpe_exits;
		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
		break;

1368
	case EXCCODE_FPE:
1369 1370 1371 1372 1373
		++vcpu->stat.fpe_exits;
		trace_kvm_exit(vcpu, FPE_EXITS);
		ret = kvm_mips_callbacks->handle_fpe(vcpu);
		break;

1374
	case EXCCODE_MSADIS:
1375 1376
		++vcpu->stat.msa_disabled_exits;
		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1377 1378 1379
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1380
	default:
1381 1382 1383
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1398
		/* Only check for signals if not already exiting to userspace */
1399 1400 1401 1402 1403 1404 1405 1406
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
			trace_kvm_exit(vcpu, SIGNAL_EXITS);
		}
	}

1407 1408
	if (ret == RESUME_GUEST) {
		/*
1409 1410
		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
		 * is live), restore FCR31 / MSACSR.
1411 1412
		 *
		 * This should be before returning to the guest exception
1413 1414
		 * vector, as it may well cause an [MSA] FP exception if there
		 * are pending exception bits unmasked. (see
1415 1416 1417 1418 1419
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);
1420 1421 1422 1423

		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
		    read_c0_config5() & MIPS_CONF5_MSAEN)
			__kvm_restore_msacsr(&vcpu->arch);
1424 1425
	}

1426 1427 1428
	/* Disable HTW before returning to guest or host */
	htw_stop();

1429 1430 1431
	return ret;
}

1432 1433 1434 1435 1436 1437 1438 1439
/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	sr = kvm_read_c0_guest_status(cop0);

	/*
	 * If MSA state is already live, it is undefined how it interacts with
	 * FR=0 FPU state, and we don't want to hit reserved instruction
	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
	 * play it safe and save it first.
	 *
	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
	 * get called when guest CU1 is set, however we can't trust the guest
	 * not to clobber the status register directly via the commpage.
	 */
	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
		kvm_lose_fpu(vcpu);

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
		__kvm_restore_fpu(&vcpu->arch);
		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
	}

	preempt_enable();
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
#ifdef CONFIG_CPU_HAS_MSA
/* Enable MSA for guest and restore context */
void kvm_own_msa(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU if enabled in guest, since we're restoring FPU context
	 * anyway. We set FR and FRE according to guest context.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		sr = kvm_read_c0_guest_status(cop0);

		/*
		 * If FR=0 FPU state is already live, it is undefined how it
		 * interacts with MSA state, so play it safe and save it first.
		 */
		if (!(sr & ST0_FR) &&
		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
			kvm_lose_fpu(vcpu);

		change_c0_status(ST0_CU1 | ST0_FR, sr);
		if (sr & ST0_CU1 && cpu_has_fre) {
			cfg5 = kvm_read_c0_guest_config5(cop0);
			change_c0_config5(MIPS_CONF5_FRE, cfg5);
		}
	}

	/* Enable MSA for guest */
	set_c0_config5(MIPS_CONF5_MSAEN);
	enable_fpu_hazard();

	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
	case KVM_MIPS_FPU_FPU:
		/*
		 * Guest FPU state already loaded, only restore upper MSA state
		 */
		__kvm_restore_msa_upper(&vcpu->arch);
		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
		break;
	case 0:
		/* Neither FPU or MSA already active, restore full MSA state */
		__kvm_restore_msa(&vcpu->arch);
		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
		if (kvm_mips_guest_has_fpu(&vcpu->arch))
			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
		break;
	default:
		break;
	}

	preempt_enable();
}
#endif

/* Drop FPU & MSA without saving it */
1536 1537 1538
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
1539 1540 1541 1542
	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
		disable_msa();
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
	}
1543 1544 1545 1546 1547 1548 1549
	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
		clear_c0_status(ST0_CU1 | ST0_FR);
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
	}
	preempt_enable();
}

1550
/* Save and disable FPU & MSA */
1551 1552 1553
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
1554 1555 1556
	 * FPU & MSA get disabled in root context (hardware) when it is disabled
	 * in guest context (software), but the register state in the hardware
	 * may still be in use. This is why we explicitly re-enable the hardware
1557 1558 1559 1560
	 * before saving.
	 */

	preempt_disable();
1561 1562 1563 1564 1565 1566 1567 1568
	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
		set_c0_config5(MIPS_CONF5_MSAEN);
		enable_fpu_hazard();

		__kvm_save_msa(&vcpu->arch);

		/* Disable MSA & FPU */
		disable_msa();
1569
		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1570
			clear_c0_status(ST0_CU1 | ST0_FR);
1571 1572
			disable_fpu_hazard();
		}
1573 1574
		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1575 1576 1577 1578 1579 1580 1581 1582
		set_c0_status(ST0_CU1);
		enable_fpu_hazard();

		__kvm_save_fpu(&vcpu->arch);
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
1583
		disable_fpu_hazard();
1584 1585 1586 1587 1588
	}
	preempt_enable();
}

/*
1589 1590 1591
 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
 * exception if cause bits are set in the value being written.
1592 1593 1594 1595 1596 1597 1598 1599
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

1600 1601
	/* Only interested in FPE and MSAFPE */
	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
1618 1619 1620 1621 1622 1623 1624
	case DIE_MSAFP:
		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
		if (!cpu_has_msa ||
		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
			return NOTIFY_DONE;
		break;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

1637
static int __init kvm_mips_init(void)
1638 1639 1640 1641 1642 1643 1644 1645
{
	int ret;

	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1646 1647
	register_die_notifier(&kvm_mips_csr_die_notifier);

1648 1649 1650
	/*
	 * On MIPS, kernel modules are executed from "mapped space", which
	 * requires TLBs. The TLB handling code is statically linked with
1651
	 * the rest of the kernel (tlb.c) to avoid the possibility of
1652 1653 1654
	 * double faulting. The issue is that the TLB code references
	 * routines that are part of the the KVM module, which are only
	 * available once the module is loaded.
1655 1656 1657 1658 1659 1660 1661 1662
	 */
	kvm_mips_gfn_to_pfn = gfn_to_pfn;
	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
	kvm_mips_is_error_pfn = is_error_pfn;

	return 0;
}

1663
static void __exit kvm_mips_exit(void)
1664 1665 1666 1667 1668 1669
{
	kvm_exit();

	kvm_mips_gfn_to_pfn = NULL;
	kvm_mips_release_pfn_clean = NULL;
	kvm_mips_is_error_pfn = NULL;
1670 1671

	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1672 1673 1674 1675 1676 1677
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);