amdgpu_amdkfd_gpuvm.c 65.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2014-2018 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
22
#include <linux/dma-buf.h>
23
#include <linux/list.h>
24
#include <linux/pagemap.h>
25
#include <linux/sched/mm.h>
26 27
#include <linux/sched/task.h>

28
#include "amdgpu_object.h"
29
#include "amdgpu_gem.h"
30 31
#include "amdgpu_vm.h"
#include "amdgpu_amdkfd.h"
32
#include "amdgpu_dma_buf.h"
33
#include <uapi/linux/kfd_ioctl.h>
34
#include "amdgpu_xgmi.h"
35

36 37 38 39 40
/* Userptr restore delay, just long enough to allow consecutive VM
 * changes to accumulate
 */
#define AMDGPU_USERPTR_RESTORE_DELAY_MS 1

41 42 43
/* Impose limit on how much memory KFD can use */
static struct {
	uint64_t max_system_mem_limit;
44
	uint64_t max_ttm_mem_limit;
45
	int64_t system_mem_used;
46
	int64_t ttm_mem_used;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	spinlock_t mem_limit_lock;
} kfd_mem_limit;

/* Struct used for amdgpu_amdkfd_bo_validate */
struct amdgpu_vm_parser {
	uint32_t        domain;
	bool            wait;
};

static const char * const domain_bit_to_string[] = {
		"CPU",
		"GTT",
		"VRAM",
		"GDS",
		"GWS",
		"OA"
};

#define domain_string(domain) domain_bit_to_string[ffs(domain)-1]

67
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
68 69 70 71 72 73 74


static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
{
	return (struct amdgpu_device *)kgd;
}

75
static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
76 77
		struct kgd_mem *mem)
{
78
	struct kfd_mem_attachment *entry;
79

80
	list_for_each_entry(entry, &mem->attachments, list)
81
		if (entry->bo_va->base.vm == avm)
82
			return true;
83

84
	return false;
85 86 87
}

/* Set memory usage limits. Current, limits are
88
 *  System (TTM + userptr) memory - 15/16th System RAM
89
 *  TTM memory - 3/8th System RAM
90 91 92 93 94 95 96
 */
void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
{
	struct sysinfo si;
	uint64_t mem;

	si_meminfo(&si);
97
	mem = si.freeram - si.freehigh;
98 99 100
	mem *= si.mem_unit;

	spin_lock_init(&kfd_mem_limit.mem_limit_lock);
101
	kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4);
102 103
	kfd_mem_limit.max_ttm_mem_limit = (mem >> 1) - (mem >> 3);
	pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
104
		(kfd_mem_limit.max_system_mem_limit >> 20),
105
		(kfd_mem_limit.max_ttm_mem_limit >> 20));
106 107
}

108 109 110 111 112
void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
{
	kfd_mem_limit.system_mem_used += size;
}

113 114 115 116 117 118 119 120 121 122 123 124
/* Estimate page table size needed to represent a given memory size
 *
 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory
 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize
 * for 2MB pages for TLB efficiency. However, small allocations and
 * fragmented system memory still need some 4KB pages. We choose a
 * compromise that should work in most cases without reserving too
 * much memory for page tables unnecessarily (factor 16K, >> 14).
 */
#define ESTIMATE_PT_SIZE(mem_size) ((mem_size) >> 14)

125 126 127 128 129 130 131 132 133 134
static size_t amdgpu_amdkfd_acc_size(uint64_t size)
{
	size >>= PAGE_SHIFT;
	size *= sizeof(dma_addr_t) + sizeof(void *);

	return __roundup_pow_of_two(sizeof(struct amdgpu_bo)) +
		__roundup_pow_of_two(sizeof(struct ttm_tt)) +
		PAGE_ALIGN(size);
}

135
static int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
136
		uint64_t size, u32 domain, bool sg)
137
{
138 139
	uint64_t reserved_for_pt =
		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
140
	size_t acc_size, system_mem_needed, ttm_mem_needed, vram_needed;
141 142
	int ret = 0;

143
	acc_size = amdgpu_amdkfd_acc_size(size);
144

145
	vram_needed = 0;
146
	if (domain == AMDGPU_GEM_DOMAIN_GTT) {
147 148 149 150 151 152 153 154 155 156 157
		/* TTM GTT memory */
		system_mem_needed = acc_size + size;
		ttm_mem_needed = acc_size + size;
	} else if (domain == AMDGPU_GEM_DOMAIN_CPU && !sg) {
		/* Userptr */
		system_mem_needed = acc_size + size;
		ttm_mem_needed = acc_size;
	} else {
		/* VRAM and SG */
		system_mem_needed = acc_size;
		ttm_mem_needed = acc_size;
158 159
		if (domain == AMDGPU_GEM_DOMAIN_VRAM)
			vram_needed = size;
160 161
	}

162 163
	spin_lock(&kfd_mem_limit.mem_limit_lock);

164 165 166 167
	if (kfd_mem_limit.system_mem_used + system_mem_needed >
	    kfd_mem_limit.max_system_mem_limit)
		pr_debug("Set no_system_mem_limit=1 if using shared memory\n");

168
	if ((kfd_mem_limit.system_mem_used + system_mem_needed >
169
	     kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
170 171 172 173
	    (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
	     kfd_mem_limit.max_ttm_mem_limit) ||
	    (adev->kfd.vram_used + vram_needed >
	     adev->gmc.real_vram_size - reserved_for_pt)) {
174
		ret = -ENOMEM;
175
	} else {
176 177
		kfd_mem_limit.system_mem_used += system_mem_needed;
		kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
178
		adev->kfd.vram_used += vram_needed;
179
	}
180

181 182 183 184
	spin_unlock(&kfd_mem_limit.mem_limit_lock);
	return ret;
}

185
static void unreserve_mem_limit(struct amdgpu_device *adev,
186
		uint64_t size, u32 domain, bool sg)
187 188 189
{
	size_t acc_size;

190
	acc_size = amdgpu_amdkfd_acc_size(size);
191 192

	spin_lock(&kfd_mem_limit.mem_limit_lock);
193
	if (domain == AMDGPU_GEM_DOMAIN_GTT) {
194
		kfd_mem_limit.system_mem_used -= (acc_size + size);
195 196 197 198 199
		kfd_mem_limit.ttm_mem_used -= (acc_size + size);
	} else if (domain == AMDGPU_GEM_DOMAIN_CPU && !sg) {
		kfd_mem_limit.system_mem_used -= (acc_size + size);
		kfd_mem_limit.ttm_mem_used -= acc_size;
	} else {
200
		kfd_mem_limit.system_mem_used -= acc_size;
201
		kfd_mem_limit.ttm_mem_used -= acc_size;
202 203 204 205 206
		if (domain == AMDGPU_GEM_DOMAIN_VRAM) {
			adev->kfd.vram_used -= size;
			WARN_ONCE(adev->kfd.vram_used < 0,
				  "kfd VRAM memory accounting unbalanced");
		}
207
	}
208 209
	WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
		  "kfd system memory accounting unbalanced");
210 211
	WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
		  "kfd TTM memory accounting unbalanced");
212 213 214 215

	spin_unlock(&kfd_mem_limit.mem_limit_lock);
}

216
void amdgpu_amdkfd_unreserve_memory_limit(struct amdgpu_bo *bo)
217
{
218 219 220
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
	u32 domain = bo->preferred_domains;
	bool sg = (bo->preferred_domains == AMDGPU_GEM_DOMAIN_CPU);
221

222
	if (bo->flags & AMDGPU_AMDKFD_CREATE_USERPTR_BO) {
223 224
		domain = AMDGPU_GEM_DOMAIN_CPU;
		sg = false;
225 226
	}

227
	unreserve_mem_limit(adev, amdgpu_bo_size(bo), domain, sg);
228 229 230
}


231
/* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
232 233 234
 *  reservation object.
 *
 * @bo: [IN] Remove eviction fence(s) from this BO
235
 * @ef: [IN] This eviction fence is removed if it
236 237 238 239 240
 *  is present in the shared list.
 *
 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
 */
static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
241
					struct amdgpu_amdkfd_fence *ef)
242
{
243 244
	struct dma_resv *resv = bo->tbo.base.resv;
	struct dma_resv_list *old, *new;
245
	unsigned int i, j, k;
246

247
	if (!ef)
248 249
		return -EINVAL;

250
	old = dma_resv_get_list(resv);
251
	if (!old)
252 253
		return 0;

254
	new = kmalloc(struct_size(new, shared, old->shared_max), GFP_KERNEL);
255 256
	if (!new)
		return -ENOMEM;
257

258 259
	/* Go through all the shared fences in the resevation object and sort
	 * the interesting ones to the end of the list.
260
	 */
261
	for (i = 0, j = old->shared_count, k = 0; i < old->shared_count; ++i) {
262 263
		struct dma_fence *f;

264
		f = rcu_dereference_protected(old->shared[i],
265
					      dma_resv_held(resv));
266

267
		if (f->context == ef->base.context)
268 269 270
			RCU_INIT_POINTER(new->shared[--j], f);
		else
			RCU_INIT_POINTER(new->shared[k++], f);
271
	}
272 273
	new->shared_max = old->shared_max;
	new->shared_count = k;
274

275 276 277
	/* Install the new fence list, seqcount provides the barriers */
	write_seqcount_begin(&resv->seq);
	RCU_INIT_POINTER(resv->fence, new);
278 279
	write_seqcount_end(&resv->seq);

280 281 282 283 284
	/* Drop the references to the removed fences or move them to ef_list */
	for (i = j, k = 0; i < old->shared_count; ++i) {
		struct dma_fence *f;

		f = rcu_dereference_protected(new->shared[i],
285
					      dma_resv_held(resv));
286
		dma_fence_put(f);
287 288
	}
	kfree_rcu(old, rcu);
289 290 291 292

	return 0;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo)
{
	struct amdgpu_bo *root = bo;
	struct amdgpu_vm_bo_base *vm_bo;
	struct amdgpu_vm *vm;
	struct amdkfd_process_info *info;
	struct amdgpu_amdkfd_fence *ef;
	int ret;

	/* we can always get vm_bo from root PD bo.*/
	while (root->parent)
		root = root->parent;

	vm_bo = root->vm_bo;
	if (!vm_bo)
		return 0;

	vm = vm_bo->vm;
	if (!vm)
		return 0;

	info = vm->process_info;
	if (!info || !info->eviction_fence)
		return 0;

	ef = container_of(dma_fence_get(&info->eviction_fence->base),
			struct amdgpu_amdkfd_fence, base);

	BUG_ON(!dma_resv_trylock(bo->tbo.base.resv));
	ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef);
	dma_resv_unlock(bo->tbo.base.resv);

	dma_fence_put(&ef->base);
	return ret;
}

329 330 331 332 333 334 335 336 337 338
static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
				     bool wait)
{
	struct ttm_operation_ctx ctx = { false, false };
	int ret;

	if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
		 "Called with userptr BO"))
		return -EINVAL;

339
	amdgpu_bo_placement_from_domain(bo, domain);
340 341 342 343

	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
	if (ret)
		goto validate_fail;
344
	if (wait)
345
		amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

validate_fail:
	return ret;
}

static int amdgpu_amdkfd_validate(void *param, struct amdgpu_bo *bo)
{
	struct amdgpu_vm_parser *p = param;

	return amdgpu_amdkfd_bo_validate(bo, p->domain, p->wait);
}

/* vm_validate_pt_pd_bos - Validate page table and directory BOs
 *
 * Page directories are not updated here because huge page handling
 * during page table updates can invalidate page directory entries
 * again. Page directories are only updated after updating page
 * tables.
 */
365
static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm)
366
{
367
	struct amdgpu_bo *pd = vm->root.base.bo;
368 369 370 371 372 373 374
	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
	struct amdgpu_vm_parser param;
	int ret;

	param.domain = AMDGPU_GEM_DOMAIN_VRAM;
	param.wait = false;

375
	ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate,
376 377
					&param);
	if (ret) {
378
		pr_err("failed to validate PT BOs\n");
379 380 381 382 383
		return ret;
	}

	ret = amdgpu_amdkfd_validate(&param, pd);
	if (ret) {
384
		pr_err("failed to validate PD\n");
385 386 387
		return ret;
	}

388
	vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.base.bo);
389

390
	if (vm->use_cpu_for_update) {
391 392
		ret = amdgpu_bo_kmap(pd, NULL);
		if (ret) {
393
			pr_err("failed to kmap PD, ret=%d\n", ret);
394 395 396 397 398 399 400 401 402 403 404 405 406
			return ret;
		}
	}

	return 0;
}

static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
{
	struct amdgpu_bo *pd = vm->root.base.bo;
	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
	int ret;

407
	ret = amdgpu_vm_update_pdes(adev, vm, false);
408 409 410
	if (ret)
		return ret;

411
	return amdgpu_sync_fence(sync, vm->last_update);
412 413
}

414 415
static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
{
416
	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
417
	bool coherent = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT;
418
	bool uncached = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED;
419
	uint32_t mapping_flags;
420 421
	uint64_t pte_flags;
	bool snoop = false;
422 423

	mapping_flags = AMDGPU_VM_PAGE_READABLE;
424
	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
425
		mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
426
	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
427 428
		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;

429 430
	switch (adev->asic_type) {
	case CHIP_ARCTURUS:
431
		if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
432 433 434 435
			if (bo_adev == adev)
				mapping_flags |= coherent ?
					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
			else
436 437
				mapping_flags |= coherent ?
					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
438 439 440 441 442
		} else {
			mapping_flags |= coherent ?
				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
		}
		break;
443
	case CHIP_ALDEBARAN:
444 445 446 447 448 449
		if (coherent && uncached) {
			if (adev->gmc.xgmi.connected_to_cpu ||
				!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM))
				snoop = true;
			mapping_flags |= AMDGPU_VM_MTYPE_UC;
		} else if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
450
			if (bo_adev == adev) {
451 452
				mapping_flags |= coherent ?
					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
453 454 455
				if (adev->gmc.xgmi.connected_to_cpu)
					snoop = true;
			} else {
456 457
				mapping_flags |= coherent ?
					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
458 459 460 461 462
				if (amdgpu_xgmi_same_hive(adev, bo_adev))
					snoop = true;
			}
		} else {
			snoop = true;
463 464
			mapping_flags |= coherent ?
				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
465 466
		}
		break;
467 468 469 470
	default:
		mapping_flags |= coherent ?
			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
	}
471

472 473 474 475
	pte_flags = amdgpu_gem_va_map_flags(adev, mapping_flags);
	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;

	return pte_flags;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static int
kfd_mem_dmamap_userptr(struct kgd_mem *mem,
		       struct kfd_mem_attachment *attachment)
{
	enum dma_data_direction direction =
		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
	struct ttm_operation_ctx ctx = {.interruptible = true};
	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
	struct amdgpu_device *adev = attachment->adev;
	struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
	struct ttm_tt *ttm = bo->tbo.ttm;
	int ret;

	ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
	if (unlikely(!ttm->sg))
		return -ENOMEM;

	if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
		return -EINVAL;

	/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
	ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
					ttm->num_pages, 0,
					(u64)ttm->num_pages << PAGE_SHIFT,
					GFP_KERNEL);
	if (unlikely(ret))
		goto free_sg;

	ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
	if (unlikely(ret))
		goto release_sg;

	drm_prime_sg_to_dma_addr_array(ttm->sg, ttm->dma_address,
				       ttm->num_pages);

	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
	if (ret)
		goto unmap_sg;

	return 0;

unmap_sg:
	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
release_sg:
	pr_err("DMA map userptr failed: %d\n", ret);
	sg_free_table(ttm->sg);
free_sg:
	kfree(ttm->sg);
	ttm->sg = NULL;
	return ret;
}

static int
kfd_mem_dmamap_attachment(struct kgd_mem *mem,
			  struct kfd_mem_attachment *attachment)
{
	switch (attachment->type) {
	case KFD_MEM_ATT_SHARED:
		return 0;
	case KFD_MEM_ATT_USERPTR:
		return kfd_mem_dmamap_userptr(mem, attachment);
	default:
		WARN_ON_ONCE(1);
	}
	return -EINVAL;
}

static void
kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
			 struct kfd_mem_attachment *attachment)
{
	enum dma_data_direction direction =
		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
	struct ttm_operation_ctx ctx = {.interruptible = false};
	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
	struct amdgpu_device *adev = attachment->adev;
	struct ttm_tt *ttm = bo->tbo.ttm;

	if (unlikely(!ttm->sg))
		return;

	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);

	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
	sg_free_table(ttm->sg);
	ttm->sg = NULL;
}

static void
kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
			    struct kfd_mem_attachment *attachment)
{
	switch (attachment->type) {
	case KFD_MEM_ATT_SHARED:
		break;
	case KFD_MEM_ATT_USERPTR:
		kfd_mem_dmaunmap_userptr(mem, attachment);
		break;
	default:
		WARN_ON_ONCE(1);
	}
}

585
/* kfd_mem_attach - Add a BO to a VM
586 587 588 589 590
 *
 * Everything that needs to bo done only once when a BO is first added
 * to a VM. It can later be mapped and unmapped many times without
 * repeating these steps.
 *
591
 * 0. Create BO for DMA mapping, if needed
592 593 594 595 596 597
 * 1. Allocate and initialize BO VA entry data structure
 * 2. Add BO to the VM
 * 3. Determine ASIC-specific PTE flags
 * 4. Alloc page tables and directories if needed
 * 4a.  Validate new page tables and directories
 */
598
static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
599
		struct amdgpu_vm *vm, bool is_aql)
600
{
601
	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
602
	unsigned long bo_size = mem->bo->tbo.base.size;
603
	uint64_t va = mem->va;
604 605
	struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
	struct amdgpu_bo *bo[2] = {NULL, NULL};
606
	struct drm_gem_object *gobj;
607
	int i, ret;
608 609 610 611 612 613

	if (!va) {
		pr_err("Invalid VA when adding BO to VM\n");
		return -EINVAL;
	}

614 615 616 617 618 619
	for (i = 0; i <= is_aql; i++) {
		attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
		if (unlikely(!attachment[i])) {
			ret = -ENOMEM;
			goto unwind;
		}
620

621 622
		pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
			 va + bo_size, vm);
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		if (adev == bo_adev || (mem->domain == AMDGPU_GEM_DOMAIN_VRAM &&
					amdgpu_xgmi_same_hive(adev, bo_adev))) {
			/* Mappings on the local GPU and VRAM mappings in the
			 * local hive share the original BO
			 */
			attachment[i]->type = KFD_MEM_ATT_SHARED;
			bo[i] = mem->bo;
			drm_gem_object_get(&bo[i]->tbo.base);
		} else if (i > 0) {
			/* Multiple mappings on the same GPU share the BO */
			attachment[i]->type = KFD_MEM_ATT_SHARED;
			bo[i] = bo[0];
			drm_gem_object_get(&bo[i]->tbo.base);
		} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
			/* Create an SG BO to DMA-map userptrs on other GPUs */
			attachment[i]->type = KFD_MEM_ATT_USERPTR;
			ret = amdgpu_gem_object_create(adev, bo_size, 1,
						       AMDGPU_GEM_DOMAIN_CPU,
						       0, ttm_bo_type_sg,
						       mem->bo->tbo.base.resv,
						       &gobj);
			if (ret)
				goto unwind;
			bo[i] = gem_to_amdgpu_bo(gobj);
			bo[i]->parent = amdgpu_bo_ref(mem->bo);
		} else {
			/* FIXME: Need to DMA-map other BO types */
			attachment[i]->type = KFD_MEM_ATT_SHARED;
			bo[i] = mem->bo;
			drm_gem_object_get(&bo[i]->tbo.base);
		}
655

656 657 658 659 660 661 662 663
		/* Add BO to VM internal data structures */
		attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
		if (unlikely(!attachment[i]->bo_va)) {
			ret = -ENOMEM;
			pr_err("Failed to add BO object to VM. ret == %d\n",
			       ret);
			goto unwind;
		}
664

665 666 667 668
		attachment[i]->va = va;
		attachment[i]->pte_flags = get_pte_flags(adev, mem);
		attachment[i]->adev = adev;
		list_add(&attachment[i]->list, &mem->attachments);
669

670 671
		va += bo_size;
	}
672

673
	/* Allocate validate page tables if needed */
674
	ret = vm_validate_pt_pd_bos(vm);
675
	if (unlikely(ret)) {
676
		pr_err("validate_pt_pd_bos() failed\n");
677
		goto unwind;
678 679 680 681
	}

	return 0;

682 683 684 685 686 687 688 689 690 691 692 693
unwind:
	for (; i >= 0; i--) {
		if (!attachment[i])
			continue;
		if (attachment[i]->bo_va) {
			amdgpu_vm_bo_rmv(adev, attachment[i]->bo_va);
			list_del(&attachment[i]->list);
		}
		if (bo[i])
			drm_gem_object_put(&bo[i]->tbo.base);
		kfree(attachment[i]);
	}
694 695 696
	return ret;
}

697
static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
698
{
699 700
	struct amdgpu_bo *bo = attachment->bo_va->base.bo;

701 702 703
	pr_debug("\t remove VA 0x%llx in entry %p\n",
			attachment->va, attachment);
	amdgpu_vm_bo_rmv(attachment->adev, attachment->bo_va);
704
	drm_gem_object_put(&bo->tbo.base);
705 706
	list_del(&attachment->list);
	kfree(attachment);
707 708 709
}

static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
710 711
				struct amdkfd_process_info *process_info,
				bool userptr)
712 713 714 715 716
{
	struct ttm_validate_buffer *entry = &mem->validate_list;
	struct amdgpu_bo *bo = mem->bo;

	INIT_LIST_HEAD(&entry->head);
717
	entry->num_shared = 1;
718 719
	entry->bo = &bo->tbo;
	mutex_lock(&process_info->lock);
720 721 722 723
	if (userptr)
		list_add_tail(&entry->head, &process_info->userptr_valid_list);
	else
		list_add_tail(&entry->head, &process_info->kfd_bo_list);
724 725 726
	mutex_unlock(&process_info->lock);
}

727 728 729 730 731 732 733 734 735 736 737
static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
		struct amdkfd_process_info *process_info)
{
	struct ttm_validate_buffer *bo_list_entry;

	bo_list_entry = &mem->validate_list;
	mutex_lock(&process_info->lock);
	list_del(&bo_list_entry->head);
	mutex_unlock(&process_info->lock);
}

738 739 740 741 742 743 744 745 746 747 748 749
/* Initializes user pages. It registers the MMU notifier and validates
 * the userptr BO in the GTT domain.
 *
 * The BO must already be on the userptr_valid_list. Otherwise an
 * eviction and restore may happen that leaves the new BO unmapped
 * with the user mode queues running.
 *
 * Takes the process_info->lock to protect against concurrent restore
 * workers.
 *
 * Returns 0 for success, negative errno for errors.
 */
750
static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr)
751 752 753 754 755 756 757 758
{
	struct amdkfd_process_info *process_info = mem->process_info;
	struct amdgpu_bo *bo = mem->bo;
	struct ttm_operation_ctx ctx = { true, false };
	int ret = 0;

	mutex_lock(&process_info->lock);

759
	ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
760 761 762 763 764 765 766 767 768 769 770 771
	if (ret) {
		pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
		goto out;
	}

	ret = amdgpu_mn_register(bo, user_addr);
	if (ret) {
		pr_err("%s: Failed to register MMU notifier: %d\n",
		       __func__, ret);
		goto out;
	}

772
	ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
773 774
	if (ret) {
		pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
775
		goto unregister_out;
776 777 778 779 780 781 782
	}

	ret = amdgpu_bo_reserve(bo, true);
	if (ret) {
		pr_err("%s: Failed to reserve BO\n", __func__);
		goto release_out;
	}
783
	amdgpu_bo_placement_from_domain(bo, mem->domain);
784 785 786 787 788 789
	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
	if (ret)
		pr_err("%s: failed to validate BO\n", __func__);
	amdgpu_bo_unreserve(bo);

release_out:
790
	amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
791 792 793 794 795 796 797 798
unregister_out:
	if (ret)
		amdgpu_mn_unregister(bo);
out:
	mutex_unlock(&process_info->lock);
	return ret;
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/* Reserving a BO and its page table BOs must happen atomically to
 * avoid deadlocks. Some operations update multiple VMs at once. Track
 * all the reservation info in a context structure. Optionally a sync
 * object can track VM updates.
 */
struct bo_vm_reservation_context {
	struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */
	unsigned int n_vms;		    /* Number of VMs reserved	    */
	struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries  */
	struct ww_acquire_ctx ticket;	    /* Reservation ticket	    */
	struct list_head list, duplicates;  /* BO lists			    */
	struct amdgpu_sync *sync;	    /* Pointer to sync object	    */
	bool reserved;			    /* Whether BOs are reserved	    */
};

enum bo_vm_match {
	BO_VM_NOT_MAPPED = 0,	/* Match VMs where a BO is not mapped */
	BO_VM_MAPPED,		/* Match VMs where a BO is mapped     */
	BO_VM_ALL,		/* Match all VMs a BO was added to    */
};

/**
 * reserve_bo_and_vm - reserve a BO and a VM unconditionally.
 * @mem: KFD BO structure.
 * @vm: the VM to reserve.
 * @ctx: the struct that will be used in unreserve_bo_and_vms().
 */
static int reserve_bo_and_vm(struct kgd_mem *mem,
			      struct amdgpu_vm *vm,
			      struct bo_vm_reservation_context *ctx)
{
	struct amdgpu_bo *bo = mem->bo;
	int ret;

	WARN_ON(!vm);

	ctx->reserved = false;
	ctx->n_vms = 1;
	ctx->sync = &mem->sync;

	INIT_LIST_HEAD(&ctx->list);
	INIT_LIST_HEAD(&ctx->duplicates);

	ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL);
	if (!ctx->vm_pd)
		return -ENOMEM;

	ctx->kfd_bo.priority = 0;
	ctx->kfd_bo.tv.bo = &bo->tbo;
848
	ctx->kfd_bo.tv.num_shared = 1;
849 850 851 852 853
	list_add(&ctx->kfd_bo.tv.head, &ctx->list);

	amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]);

	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
854
				     false, &ctx->duplicates);
855 856
	if (ret) {
		pr_err("Failed to reserve buffers in ttm.\n");
857 858
		kfree(ctx->vm_pd);
		ctx->vm_pd = NULL;
859
		return ret;
860 861
	}

862 863
	ctx->reserved = true;
	return 0;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
}

/**
 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
 * @mem: KFD BO structure.
 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO
 * is used. Otherwise, a single VM associated with the BO.
 * @map_type: the mapping status that will be used to filter the VMs.
 * @ctx: the struct that will be used in unreserve_bo_and_vms().
 *
 * Returns 0 for success, negative for failure.
 */
static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
				struct amdgpu_vm *vm, enum bo_vm_match map_type,
				struct bo_vm_reservation_context *ctx)
{
	struct amdgpu_bo *bo = mem->bo;
881
	struct kfd_mem_attachment *entry;
882 883 884 885 886 887 888 889 890 891 892
	unsigned int i;
	int ret;

	ctx->reserved = false;
	ctx->n_vms = 0;
	ctx->vm_pd = NULL;
	ctx->sync = &mem->sync;

	INIT_LIST_HEAD(&ctx->list);
	INIT_LIST_HEAD(&ctx->duplicates);

893
	list_for_each_entry(entry, &mem->attachments, list) {
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		if ((vm && vm != entry->bo_va->base.vm) ||
			(entry->is_mapped != map_type
			&& map_type != BO_VM_ALL))
			continue;

		ctx->n_vms++;
	}

	if (ctx->n_vms != 0) {
		ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd),
				     GFP_KERNEL);
		if (!ctx->vm_pd)
			return -ENOMEM;
	}

	ctx->kfd_bo.priority = 0;
	ctx->kfd_bo.tv.bo = &bo->tbo;
911
	ctx->kfd_bo.tv.num_shared = 1;
912 913 914
	list_add(&ctx->kfd_bo.tv.head, &ctx->list);

	i = 0;
915
	list_for_each_entry(entry, &mem->attachments, list) {
916 917 918 919 920 921 922 923 924 925 926
		if ((vm && vm != entry->bo_va->base.vm) ||
			(entry->is_mapped != map_type
			&& map_type != BO_VM_ALL))
			continue;

		amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list,
				&ctx->vm_pd[i]);
		i++;
	}

	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
927
				     false, &ctx->duplicates);
928
	if (ret) {
929
		pr_err("Failed to reserve buffers in ttm.\n");
930 931
		kfree(ctx->vm_pd);
		ctx->vm_pd = NULL;
932
		return ret;
933 934
	}

935 936
	ctx->reserved = true;
	return 0;
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
}

/**
 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
 * @ctx: Reservation context to unreserve
 * @wait: Optionally wait for a sync object representing pending VM updates
 * @intr: Whether the wait is interruptible
 *
 * Also frees any resources allocated in
 * reserve_bo_and_(cond_)vm(s). Returns the status from
 * amdgpu_sync_wait.
 */
static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
				 bool wait, bool intr)
{
	int ret = 0;

	if (wait)
		ret = amdgpu_sync_wait(ctx->sync, intr);

	if (ctx->reserved)
		ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list);
	kfree(ctx->vm_pd);

	ctx->sync = NULL;

	ctx->reserved = false;
	ctx->vm_pd = NULL;

	return ret;
}

static int unmap_bo_from_gpuvm(struct amdgpu_device *adev,
970
				struct kfd_mem_attachment *entry,
971 972 973 974 975 976 977 978 979
				struct amdgpu_sync *sync)
{
	struct amdgpu_bo_va *bo_va = entry->bo_va;
	struct amdgpu_vm *vm = bo_va->base.vm;

	amdgpu_vm_bo_unmap(adev, bo_va, entry->va);

	amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);

980
	amdgpu_sync_fence(sync, bo_va->last_pt_update);
981 982 983 984 985

	return 0;
}

static int update_gpuvm_pte(struct amdgpu_device *adev,
986
		struct kfd_mem_attachment *entry,
987 988 989
		struct amdgpu_sync *sync)
{
	int ret;
990
	struct amdgpu_bo_va *bo_va = entry->bo_va;
991 992 993 994 995 996 997 998

	/* Update the page tables  */
	ret = amdgpu_vm_bo_update(adev, bo_va, false);
	if (ret) {
		pr_err("amdgpu_vm_bo_update failed\n");
		return ret;
	}

999
	return amdgpu_sync_fence(sync, bo_va->last_pt_update);
1000 1001 1002
}

static int map_bo_to_gpuvm(struct amdgpu_device *adev,
1003
		struct kfd_mem_attachment *entry, struct amdgpu_sync *sync,
1004
		bool no_update_pte)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
{
	int ret;

	/* Set virtual address for the allocation */
	ret = amdgpu_vm_bo_map(adev, entry->bo_va, entry->va, 0,
			       amdgpu_bo_size(entry->bo_va->base.bo),
			       entry->pte_flags);
	if (ret) {
		pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
				entry->va, ret);
		return ret;
	}

1018 1019 1020
	if (no_update_pte)
		return 0;

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	ret = update_gpuvm_pte(adev, entry, sync);
	if (ret) {
		pr_err("update_gpuvm_pte() failed\n");
		goto update_gpuvm_pte_failed;
	}

	return 0;

update_gpuvm_pte_failed:
	unmap_bo_from_gpuvm(adev, entry, sync);
	return ret;
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static struct sg_table *create_doorbell_sg(uint64_t addr, uint32_t size)
{
	struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);

	if (!sg)
		return NULL;
	if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
		kfree(sg);
		return NULL;
	}
	sg->sgl->dma_address = addr;
	sg->sgl->length = size;
#ifdef CONFIG_NEED_SG_DMA_LENGTH
	sg->sgl->dma_length = size;
#endif
	return sg;
}

1052 1053
static int process_validate_vms(struct amdkfd_process_info *process_info)
{
1054
	struct amdgpu_vm *peer_vm;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	int ret;

	list_for_each_entry(peer_vm, &process_info->vm_list_head,
			    vm_list_node) {
		ret = vm_validate_pt_pd_bos(peer_vm);
		if (ret)
			return ret;
	}

	return 0;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
				 struct amdgpu_sync *sync)
{
	struct amdgpu_vm *peer_vm;
	int ret;

	list_for_each_entry(peer_vm, &process_info->vm_list_head,
			    vm_list_node) {
		struct amdgpu_bo *pd = peer_vm->root.base.bo;

1077 1078 1079
		ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
				       AMDGPU_SYNC_NE_OWNER,
				       AMDGPU_FENCE_OWNER_KFD);
1080 1081 1082 1083 1084 1085 1086
		if (ret)
			return ret;
	}

	return 0;
}

1087 1088 1089
static int process_update_pds(struct amdkfd_process_info *process_info,
			      struct amdgpu_sync *sync)
{
1090
	struct amdgpu_vm *peer_vm;
1091 1092 1093 1094
	int ret;

	list_for_each_entry(peer_vm, &process_info->vm_list_head,
			    vm_list_node) {
1095
		ret = vm_update_pds(peer_vm, sync);
1096 1097 1098 1099 1100 1101 1102
		if (ret)
			return ret;
	}

	return 0;
}

1103 1104
static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
		       struct dma_fence **ef)
1105
{
1106
	struct amdkfd_process_info *info = NULL;
1107
	int ret;
1108 1109 1110

	if (!*process_info) {
		info = kzalloc(sizeof(*info), GFP_KERNEL);
1111 1112
		if (!info)
			return -ENOMEM;
1113 1114 1115 1116

		mutex_init(&info->lock);
		INIT_LIST_HEAD(&info->vm_list_head);
		INIT_LIST_HEAD(&info->kfd_bo_list);
1117 1118
		INIT_LIST_HEAD(&info->userptr_valid_list);
		INIT_LIST_HEAD(&info->userptr_inval_list);
1119 1120 1121

		info->eviction_fence =
			amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1122 1123
						   current->mm,
						   NULL);
1124 1125
		if (!info->eviction_fence) {
			pr_err("Failed to create eviction fence\n");
1126
			ret = -ENOMEM;
1127 1128 1129
			goto create_evict_fence_fail;
		}

1130 1131 1132 1133 1134
		info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
		atomic_set(&info->evicted_bos, 0);
		INIT_DELAYED_WORK(&info->restore_userptr_work,
				  amdgpu_amdkfd_restore_userptr_worker);

1135 1136 1137 1138
		*process_info = info;
		*ef = dma_fence_get(&info->eviction_fence->base);
	}

1139
	vm->process_info = *process_info;
1140

1141
	/* Validate page directory and attach eviction fence */
1142
	ret = amdgpu_bo_reserve(vm->root.base.bo, true);
1143 1144
	if (ret)
		goto reserve_pd_fail;
1145
	ret = vm_validate_pt_pd_bos(vm);
1146 1147 1148 1149
	if (ret) {
		pr_err("validate_pt_pd_bos() failed\n");
		goto validate_pd_fail;
	}
1150 1151
	ret = amdgpu_bo_sync_wait(vm->root.base.bo,
				  AMDGPU_FENCE_OWNER_KFD, false);
1152 1153
	if (ret)
		goto wait_pd_fail;
1154
	ret = dma_resv_reserve_shared(vm->root.base.bo->tbo.base.resv, 1);
1155 1156
	if (ret)
		goto reserve_shared_fail;
1157 1158 1159
	amdgpu_bo_fence(vm->root.base.bo,
			&vm->process_info->eviction_fence->base, true);
	amdgpu_bo_unreserve(vm->root.base.bo);
1160 1161

	/* Update process info */
1162 1163 1164 1165 1166
	mutex_lock(&vm->process_info->lock);
	list_add_tail(&vm->vm_list_node,
			&(vm->process_info->vm_list_head));
	vm->process_info->n_vms++;
	mutex_unlock(&vm->process_info->lock);
1167

1168
	return 0;
1169

1170
reserve_shared_fail:
1171 1172
wait_pd_fail:
validate_pd_fail:
1173
	amdgpu_bo_unreserve(vm->root.base.bo);
1174
reserve_pd_fail:
1175 1176 1177 1178 1179 1180 1181
	vm->process_info = NULL;
	if (info) {
		/* Two fence references: one in info and one in *ef */
		dma_fence_put(&info->eviction_fence->base);
		dma_fence_put(*ef);
		*ef = NULL;
		*process_info = NULL;
1182
		put_pid(info->pid);
1183
create_evict_fence_fail:
1184 1185 1186 1187 1188 1189 1190
		mutex_destroy(&info->lock);
		kfree(info);
	}
	return ret;
}

int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct kgd_dev *kgd,
1191
					   struct file *filp, u32 pasid,
1192
					   void **process_info,
1193
					   struct dma_fence **ef)
1194 1195
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
1196 1197
	struct amdgpu_fpriv *drv_priv;
	struct amdgpu_vm *avm;
1198
	int ret;
1199

1200 1201 1202 1203 1204
	ret = amdgpu_file_to_fpriv(filp, &drv_priv);
	if (ret)
		return ret;
	avm = &drv_priv->vm;

1205 1206 1207 1208 1209
	/* Already a compute VM? */
	if (avm->process_info)
		return -EINVAL;

	/* Convert VM into a compute VM */
1210
	ret = amdgpu_vm_make_compute(adev, avm, pasid);
1211 1212 1213 1214 1215 1216 1217 1218
	if (ret)
		return ret;

	/* Initialize KFD part of the VM and process info */
	ret = init_kfd_vm(avm, process_info, ef);
	if (ret)
		return ret;

1219
	amdgpu_vm_set_task_info(avm);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	return 0;
}

void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
				    struct amdgpu_vm *vm)
{
	struct amdkfd_process_info *process_info = vm->process_info;
	struct amdgpu_bo *pd = vm->root.base.bo;

	if (!process_info)
1231 1232 1233 1234 1235 1236 1237
		return;

	/* Release eviction fence from PD */
	amdgpu_bo_reserve(pd, false);
	amdgpu_bo_fence(pd, NULL, false);
	amdgpu_bo_unreserve(pd);

1238
	/* Update process info */
1239 1240
	mutex_lock(&process_info->lock);
	process_info->n_vms--;
1241
	list_del(&vm->vm_list_node);
1242 1243
	mutex_unlock(&process_info->lock);

1244 1245
	vm->process_info = NULL;

1246
	/* Release per-process resources when last compute VM is destroyed */
1247 1248
	if (!process_info->n_vms) {
		WARN_ON(!list_empty(&process_info->kfd_bo_list));
1249 1250
		WARN_ON(!list_empty(&process_info->userptr_valid_list));
		WARN_ON(!list_empty(&process_info->userptr_inval_list));
1251 1252

		dma_fence_put(&process_info->eviction_fence->base);
1253 1254
		cancel_delayed_work_sync(&process_info->restore_userptr_work);
		put_pid(process_info->pid);
1255 1256 1257
		mutex_destroy(&process_info->lock);
		kfree(process_info);
	}
1258 1259
}

1260
void amdgpu_amdkfd_gpuvm_release_process_vm(struct kgd_dev *kgd, void *drm_priv)
1261 1262
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
1263
	struct amdgpu_vm *avm;
1264

1265
	if (WARN_ON(!kgd || !drm_priv))
1266
		return;
1267

1268 1269 1270
	avm = drm_priv_to_vm(drm_priv);

	pr_debug("Releasing process vm %p\n", avm);
1271

1272 1273 1274 1275 1276 1277
	/* The original pasid of amdgpu vm has already been
	 * released during making a amdgpu vm to a compute vm
	 * The current pasid is managed by kfd and will be
	 * released on kfd process destroy. Set amdgpu pasid
	 * to 0 to avoid duplicate release.
	 */
1278 1279 1280
	amdgpu_vm_release_compute(adev, avm);
}

1281
uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1282
{
1283
	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1284 1285
	struct amdgpu_bo *pd = avm->root.base.bo;
	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1286

1287 1288 1289
	if (adev->asic_type < CHIP_VEGA10)
		return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
	return avm->pd_phys_addr;
1290 1291 1292 1293
}

int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
		struct kgd_dev *kgd, uint64_t va, uint64_t size,
1294
		void *drm_priv, struct kgd_mem **mem,
1295 1296 1297
		uint64_t *offset, uint32_t flags)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
1298
	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1299 1300
	enum ttm_bo_type bo_type = ttm_bo_type_device;
	struct sg_table *sg = NULL;
1301
	uint64_t user_addr = 0;
1302
	struct amdgpu_bo *bo;
1303
	struct drm_gem_object *gobj;
1304
	u32 domain, alloc_domain;
1305 1306 1307 1308 1309 1310
	u64 alloc_flags;
	int ret;

	/*
	 * Check on which domain to allocate BO
	 */
1311
	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1312
		domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1313
		alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1314
		alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1315 1316
			AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED :
			AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
1317
	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1318 1319
		domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
		alloc_flags = 0;
1320
	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1321 1322
		domain = AMDGPU_GEM_DOMAIN_GTT;
		alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1323
		alloc_flags = 0;
1324 1325
		if (!offset || !*offset)
			return -EINVAL;
1326
		user_addr = untagged_addr(*offset);
1327 1328
	} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
			KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1329 1330 1331 1332 1333 1334 1335 1336 1337
		domain = AMDGPU_GEM_DOMAIN_GTT;
		alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
		bo_type = ttm_bo_type_sg;
		alloc_flags = 0;
		if (size > UINT_MAX)
			return -EINVAL;
		sg = create_doorbell_sg(*offset, size);
		if (!sg)
			return -ENOMEM;
1338 1339 1340 1341 1342
	} else {
		return -EINVAL;
	}

	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1343 1344 1345 1346
	if (!*mem) {
		ret = -ENOMEM;
		goto err;
	}
1347
	INIT_LIST_HEAD(&(*mem)->attachments);
1348
	mutex_init(&(*mem)->lock);
1349
	(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1350 1351 1352 1353 1354 1355 1356 1357

	/* Workaround for AQL queue wraparound bug. Map the same
	 * memory twice. That means we only actually allocate half
	 * the memory.
	 */
	if ((*mem)->aql_queue)
		size = size >> 1;

1358
	(*mem)->alloc_flags = flags;
1359 1360 1361

	amdgpu_sync_create(&(*mem)->sync);

1362
	ret = amdgpu_amdkfd_reserve_mem_limit(adev, size, alloc_domain, !!sg);
1363
	if (ret) {
1364
		pr_debug("Insufficient memory\n");
1365
		goto err_reserve_limit;
1366 1367 1368 1369 1370
	}

	pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n",
			va, size, domain_string(alloc_domain));

1371 1372
	ret = amdgpu_gem_object_create(adev, size, 1, alloc_domain, alloc_flags,
				       bo_type, NULL, &gobj);
1373 1374
	if (ret) {
		pr_debug("Failed to create BO on domain %s. ret %d\n",
1375
			 domain_string(alloc_domain), ret);
1376 1377
		goto err_bo_create;
	}
1378 1379 1380 1381 1382
	ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
	if (ret) {
		pr_debug("Failed to allow vma node access. ret %d\n", ret);
		goto err_node_allow;
	}
1383
	bo = gem_to_amdgpu_bo(gobj);
1384 1385 1386 1387
	if (bo_type == ttm_bo_type_sg) {
		bo->tbo.sg = sg;
		bo->tbo.ttm->sg = sg;
	}
1388 1389
	bo->kfd_bo = *mem;
	(*mem)->bo = bo;
1390
	if (user_addr)
1391
		bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1392 1393

	(*mem)->va = va;
1394
	(*mem)->domain = domain;
1395
	(*mem)->mapped_to_gpu_memory = 0;
1396
	(*mem)->process_info = avm->process_info;
1397 1398 1399
	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);

	if (user_addr) {
1400
		ret = init_user_pages(*mem, user_addr);
1401
		if (ret)
1402 1403
			goto allocate_init_user_pages_failed;
	}
1404 1405 1406 1407 1408 1409

	if (offset)
		*offset = amdgpu_bo_mmap_offset(bo);

	return 0;

1410
allocate_init_user_pages_failed:
1411
	remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1412 1413
	drm_vma_node_revoke(&gobj->vma_node, drm_priv);
err_node_allow:
1414 1415
	amdgpu_bo_unref(&bo);
	/* Don't unreserve system mem limit twice */
1416
	goto err_reserve_limit;
1417
err_bo_create:
1418
	unreserve_mem_limit(adev, size, alloc_domain, !!sg);
1419
err_reserve_limit:
1420 1421
	mutex_destroy(&(*mem)->lock);
	kfree(*mem);
1422 1423 1424 1425 1426
err:
	if (sg) {
		sg_free_table(sg);
		kfree(sg);
	}
1427 1428 1429 1430
	return ret;
}

int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1431 1432
		struct kgd_dev *kgd, struct kgd_mem *mem, void *drm_priv,
		uint64_t *size)
1433 1434
{
	struct amdkfd_process_info *process_info = mem->process_info;
1435
	unsigned long bo_size = mem->bo->tbo.base.size;
1436
	struct kfd_mem_attachment *entry, *tmp;
1437 1438
	struct bo_vm_reservation_context ctx;
	struct ttm_validate_buffer *bo_list_entry;
1439
	unsigned int mapped_to_gpu_memory;
1440
	int ret;
1441
	bool is_imported = false;
1442 1443

	mutex_lock(&mem->lock);
1444
	mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1445
	is_imported = mem->is_imported;
1446 1447 1448 1449
	mutex_unlock(&mem->lock);
	/* lock is not needed after this, since mem is unused and will
	 * be freed anyway
	 */
1450

1451
	if (mapped_to_gpu_memory > 0) {
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
		pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
				mem->va, bo_size);
		return -EBUSY;
	}

	/* Make sure restore workers don't access the BO any more */
	bo_list_entry = &mem->validate_list;
	mutex_lock(&process_info->lock);
	list_del(&bo_list_entry->head);
	mutex_unlock(&process_info->lock);

1463 1464 1465
	/* No more MMU notifiers */
	amdgpu_mn_unregister(mem->bo);

1466 1467 1468 1469 1470 1471 1472 1473 1474
	ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
	if (unlikely(ret))
		return ret;

	/* The eviction fence should be removed by the last unmap.
	 * TODO: Log an error condition if the bo still has the eviction fence
	 * attached
	 */
	amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1475
					process_info->eviction_fence);
1476 1477 1478 1479
	pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
		mem->va + bo_size * (1 + mem->aql_queue));

	/* Remove from VM internal data structures */
1480 1481
	list_for_each_entry_safe(entry, tmp, &mem->attachments, list)
		kfd_mem_detach(entry);
1482 1483 1484 1485 1486 1487

	ret = unreserve_bo_and_vms(&ctx, false, false);

	/* Free the sync object */
	amdgpu_sync_free(&mem->sync);

1488 1489
	/* If the SG is not NULL, it's one we created for a doorbell or mmio
	 * remap BO. We need to free it.
1490 1491 1492 1493 1494 1495
	 */
	if (mem->bo->tbo.sg) {
		sg_free_table(mem->bo->tbo.sg);
		kfree(mem->bo->tbo.sg);
	}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	/* Update the size of the BO being freed if it was allocated from
	 * VRAM and is not imported.
	 */
	if (size) {
		if ((mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM) &&
		    (!is_imported))
			*size = bo_size;
		else
			*size = 0;
	}

1507
	/* Free the BO*/
1508
	drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1509
	drm_gem_object_put(&mem->bo->tbo.base);
1510 1511 1512 1513 1514 1515 1516
	mutex_destroy(&mem->lock);
	kfree(mem);

	return ret;
}

int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1517
		struct kgd_dev *kgd, struct kgd_mem *mem, void *drm_priv)
1518 1519
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
1520
	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1521 1522 1523
	int ret;
	struct amdgpu_bo *bo;
	uint32_t domain;
1524
	struct kfd_mem_attachment *entry;
1525 1526
	struct bo_vm_reservation_context ctx;
	unsigned long bo_size;
1527
	bool is_invalid_userptr = false;
1528 1529 1530 1531

	bo = mem->bo;
	if (!bo) {
		pr_err("Invalid BO when mapping memory to GPU\n");
1532
		return -EINVAL;
1533 1534
	}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	/* Make sure restore is not running concurrently. Since we
	 * don't map invalid userptr BOs, we rely on the next restore
	 * worker to do the mapping
	 */
	mutex_lock(&mem->process_info->lock);

	/* Lock mmap-sem. If we find an invalid userptr BO, we can be
	 * sure that the MMU notifier is no longer running
	 * concurrently and the queues are actually stopped
	 */
	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1546
		mmap_write_lock(current->mm);
1547
		is_invalid_userptr = atomic_read(&mem->invalid);
1548
		mmap_write_unlock(current->mm);
1549 1550 1551 1552
	}

	mutex_lock(&mem->lock);

1553
	domain = mem->domain;
1554
	bo_size = bo->tbo.base.size;
1555 1556 1557 1558

	pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
			mem->va,
			mem->va + bo_size * (1 + mem->aql_queue),
1559
			avm, domain_string(domain));
1560

1561
	ret = reserve_bo_and_vm(mem, avm, &ctx);
1562 1563 1564
	if (unlikely(ret))
		goto out;

1565 1566 1567 1568 1569
	/* Userptr can be marked as "not invalid", but not actually be
	 * validated yet (still in the system domain). In that case
	 * the queues are still stopped and we can leave mapping for
	 * the next restore worker
	 */
1570 1571
	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
	    bo->tbo.mem.mem_type == TTM_PL_SYSTEM)
1572 1573
		is_invalid_userptr = true;

1574
	if (!kfd_mem_is_attached(avm, mem)) {
1575
		ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
1576
		if (ret)
1577
			goto attach_failed;
1578
	} else {
1579
		ret = vm_validate_pt_pd_bos(avm);
1580
		if (unlikely(ret))
1581
			goto attach_failed;
1582 1583
	}

1584 1585
	if (mem->mapped_to_gpu_memory == 0 &&
	    !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		/* Validate BO only once. The eviction fence gets added to BO
		 * the first time it is mapped. Validate will wait for all
		 * background evictions to complete.
		 */
		ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
		if (ret) {
			pr_debug("Validate failed\n");
			goto map_bo_to_gpuvm_failed;
		}
	}

1597 1598 1599
	list_for_each_entry(entry, &mem->attachments, list) {
		if (entry->bo_va->base.vm != avm || entry->is_mapped)
			continue;
1600

1601 1602
		pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
			 entry->va, entry->va + bo_size, entry);
1603

1604 1605 1606 1607 1608 1609
		ret = map_bo_to_gpuvm(adev, entry, ctx.sync,
				      is_invalid_userptr);
		if (ret) {
			pr_err("Failed to map bo to gpuvm\n");
			goto map_bo_to_gpuvm_failed;
		}
1610

1611 1612 1613 1614
		ret = vm_update_pds(avm, ctx.sync);
		if (ret) {
			pr_err("Failed to update page directories\n");
			goto map_bo_to_gpuvm_failed;
1615
		}
1616 1617 1618 1619 1620

		entry->is_mapped = true;
		mem->mapped_to_gpu_memory++;
		pr_debug("\t INC mapping count %d\n",
			 mem->mapped_to_gpu_memory);
1621 1622
	}

1623
	if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count)
1624
		amdgpu_bo_fence(bo,
1625
				&avm->process_info->eviction_fence->base,
1626 1627 1628 1629 1630 1631
				true);
	ret = unreserve_bo_and_vms(&ctx, false, false);

	goto out;

map_bo_to_gpuvm_failed:
1632
attach_failed:
1633 1634 1635 1636 1637 1638 1639 1640
	unreserve_bo_and_vms(&ctx, false, false);
out:
	mutex_unlock(&mem->process_info->lock);
	mutex_unlock(&mem->lock);
	return ret;
}

int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1641
		struct kgd_dev *kgd, struct kgd_mem *mem, void *drm_priv)
1642 1643
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
1644 1645
	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
	struct amdkfd_process_info *process_info = avm->process_info;
1646
	unsigned long bo_size = mem->bo->tbo.base.size;
1647
	struct kfd_mem_attachment *entry;
1648 1649 1650 1651 1652
	struct bo_vm_reservation_context ctx;
	int ret;

	mutex_lock(&mem->lock);

1653
	ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
1654 1655 1656 1657 1658 1659 1660 1661
	if (unlikely(ret))
		goto out;
	/* If no VMs were reserved, it means the BO wasn't actually mapped */
	if (ctx.n_vms == 0) {
		ret = -EINVAL;
		goto unreserve_out;
	}

1662
	ret = vm_validate_pt_pd_bos(avm);
1663 1664 1665 1666 1667 1668
	if (unlikely(ret))
		goto unreserve_out;

	pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
		mem->va,
		mem->va + bo_size * (1 + mem->aql_queue),
1669
		avm);
1670

1671 1672 1673
	list_for_each_entry(entry, &mem->attachments, list) {
		if (entry->bo_va->base.vm != avm || !entry->is_mapped)
			continue;
1674

1675 1676
		pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
			 entry->va, entry->va + bo_size, entry);
1677

1678 1679 1680 1681 1682 1683
		ret = unmap_bo_from_gpuvm(adev, entry, ctx.sync);
		if (ret == 0) {
			entry->is_mapped = false;
		} else {
			pr_err("failed to unmap VA 0x%llx\n", mem->va);
			goto unreserve_out;
1684
		}
1685 1686 1687 1688

		mem->mapped_to_gpu_memory--;
		pr_debug("\t DEC mapping count %d\n",
			 mem->mapped_to_gpu_memory);
1689 1690 1691 1692 1693 1694
	}

	/* If BO is unmapped from all VMs, unfence it. It can be evicted if
	 * required.
	 */
	if (mem->mapped_to_gpu_memory == 0 &&
1695 1696
	    !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) &&
	    !mem->bo->tbo.pin_count)
1697
		amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1698
						process_info->eviction_fence);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

unreserve_out:
	unreserve_bo_and_vms(&ctx, false, false);
out:
	mutex_unlock(&mem->lock);
	return ret;
}

int amdgpu_amdkfd_gpuvm_sync_memory(
		struct kgd_dev *kgd, struct kgd_mem *mem, bool intr)
{
	struct amdgpu_sync sync;
	int ret;

	amdgpu_sync_create(&sync);

	mutex_lock(&mem->lock);
	amdgpu_sync_clone(&mem->sync, &sync);
	mutex_unlock(&mem->lock);

	ret = amdgpu_sync_wait(&sync, intr);
	amdgpu_sync_free(&sync);
	return ret;
}

int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_dev *kgd,
		struct kgd_mem *mem, void **kptr, uint64_t *size)
{
	int ret;
	struct amdgpu_bo *bo = mem->bo;

	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
		pr_err("userptr can't be mapped to kernel\n");
		return -EINVAL;
	}

	/* delete kgd_mem from kfd_bo_list to avoid re-validating
	 * this BO in BO's restoring after eviction.
	 */
	mutex_lock(&mem->process_info->lock);

	ret = amdgpu_bo_reserve(bo, true);
	if (ret) {
		pr_err("Failed to reserve bo. ret %d\n", ret);
		goto bo_reserve_failed;
	}

1746
	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	if (ret) {
		pr_err("Failed to pin bo. ret %d\n", ret);
		goto pin_failed;
	}

	ret = amdgpu_bo_kmap(bo, kptr);
	if (ret) {
		pr_err("Failed to map bo to kernel. ret %d\n", ret);
		goto kmap_failed;
	}

	amdgpu_amdkfd_remove_eviction_fence(
1759
		bo, mem->process_info->eviction_fence);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	list_del_init(&mem->validate_list.head);

	if (size)
		*size = amdgpu_bo_size(bo);

	amdgpu_bo_unreserve(bo);

	mutex_unlock(&mem->process_info->lock);
	return 0;

kmap_failed:
	amdgpu_bo_unpin(bo);
pin_failed:
	amdgpu_bo_unreserve(bo);
bo_reserve_failed:
	mutex_unlock(&mem->process_info->lock);

	return ret;
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct kgd_dev *kgd,
					      struct kfd_vm_fault_info *mem)
{
	struct amdgpu_device *adev;

	adev = (struct amdgpu_device *)kgd;
	if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
		*mem = *adev->gmc.vm_fault_info;
		mb();
		atomic_set(&adev->gmc.vm_fault_info_updated, 0);
	}
	return 0;
}

1794 1795
int amdgpu_amdkfd_gpuvm_import_dmabuf(struct kgd_dev *kgd,
				      struct dma_buf *dma_buf,
1796
				      uint64_t va, void *drm_priv,
1797 1798 1799 1800
				      struct kgd_mem **mem, uint64_t *size,
				      uint64_t *mmap_offset)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
1801
	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1802 1803
	struct drm_gem_object *obj;
	struct amdgpu_bo *bo;
1804
	int ret;
1805 1806 1807 1808 1809 1810

	if (dma_buf->ops != &amdgpu_dmabuf_ops)
		/* Can't handle non-graphics buffers */
		return -EINVAL;

	obj = dma_buf->priv;
1811
	if (drm_to_adev(obj->dev) != adev)
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		/* Can't handle buffers from other devices */
		return -EINVAL;

	bo = gem_to_amdgpu_bo(obj);
	if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
				    AMDGPU_GEM_DOMAIN_GTT)))
		/* Only VRAM and GTT BOs are supported */
		return -EINVAL;

	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
	if (!*mem)
		return -ENOMEM;

1825 1826 1827 1828 1829 1830
	ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
	if (ret) {
		kfree(mem);
		return ret;
	}

1831 1832 1833 1834 1835 1836
	if (size)
		*size = amdgpu_bo_size(bo);

	if (mmap_offset)
		*mmap_offset = amdgpu_bo_mmap_offset(bo);

1837
	INIT_LIST_HEAD(&(*mem)->attachments);
1838
	mutex_init(&(*mem)->lock);
1839

1840 1841
	(*mem)->alloc_flags =
		((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
1842 1843 1844
		KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
		| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
		| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1845

1846 1847
	drm_gem_object_get(&bo->tbo.base);
	(*mem)->bo = bo;
1848 1849 1850 1851 1852 1853 1854
	(*mem)->va = va;
	(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
		AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
	(*mem)->mapped_to_gpu_memory = 0;
	(*mem)->process_info = avm->process_info;
	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
	amdgpu_sync_create(&(*mem)->sync);
1855
	(*mem)->is_imported = true;
1856 1857 1858 1859

	return 0;
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
/* Evict a userptr BO by stopping the queues if necessary
 *
 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it
 * cannot do any memory allocations, and cannot take any locks that
 * are held elsewhere while allocating memory. Therefore this is as
 * simple as possible, using atomic counters.
 *
 * It doesn't do anything to the BO itself. The real work happens in
 * restore, where we get updated page addresses. This function only
 * ensures that GPU access to the BO is stopped.
 */
1871 1872 1873
int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem,
				struct mm_struct *mm)
{
1874
	struct amdkfd_process_info *process_info = mem->process_info;
1875
	int evicted_bos;
1876 1877
	int r = 0;

1878
	atomic_inc(&mem->invalid);
1879 1880 1881
	evicted_bos = atomic_inc_return(&process_info->evicted_bos);
	if (evicted_bos == 1) {
		/* First eviction, stop the queues */
1882
		r = kgd2kfd_quiesce_mm(mm);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		if (r)
			pr_err("Failed to quiesce KFD\n");
		schedule_delayed_work(&process_info->restore_userptr_work,
			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
	}

	return r;
}

/* Update invalid userptr BOs
 *
 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to
 * userptr_inval_list and updates user pages for all BOs that have
 * been invalidated since their last update.
 */
static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
				     struct mm_struct *mm)
{
	struct kgd_mem *mem, *tmp_mem;
	struct amdgpu_bo *bo;
	struct ttm_operation_ctx ctx = { false, false };
	int invalid, ret;

	/* Move all invalidated BOs to the userptr_inval_list and
	 * release their user pages by migration to the CPU domain
	 */
	list_for_each_entry_safe(mem, tmp_mem,
				 &process_info->userptr_valid_list,
				 validate_list.head) {
		if (!atomic_read(&mem->invalid))
			continue; /* BO is still valid */

		bo = mem->bo;

		if (amdgpu_bo_reserve(bo, true))
			return -EAGAIN;
1919
		amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
		amdgpu_bo_unreserve(bo);
		if (ret) {
			pr_err("%s: Failed to invalidate userptr BO\n",
			       __func__);
			return -EAGAIN;
		}

		list_move_tail(&mem->validate_list.head,
			       &process_info->userptr_inval_list);
	}

	if (list_empty(&process_info->userptr_inval_list))
		return 0; /* All evicted userptr BOs were freed */

	/* Go through userptr_inval_list and update any invalid user_pages */
	list_for_each_entry(mem, &process_info->userptr_inval_list,
			    validate_list.head) {
		invalid = atomic_read(&mem->invalid);
		if (!invalid)
			/* BO hasn't been invalidated since the last
			 * revalidation attempt. Keep its BO list.
			 */
			continue;

		bo = mem->bo;

		/* Get updated user pages */
1948
		ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
1949
		if (ret) {
1950
			pr_debug("%s: Failed to get user pages: %d\n",
1951
				__func__, ret);
1952

1953 1954 1955
			/* Return error -EBUSY or -ENOMEM, retry restore */
			return ret;
		}
1956

1957 1958 1959 1960
		/*
		 * FIXME: Cannot ignore the return code, must hold
		 * notifier_lock
		 */
1961
		amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
1962 1963 1964 1965 1966 1967

		/* Mark the BO as valid unless it was invalidated
		 * again concurrently.
		 */
		if (atomic_cmpxchg(&mem->invalid, invalid, 0) != invalid)
			return -EAGAIN;
1968
	}
1969 1970

	return 0;
1971 1972
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/* Validate invalid userptr BOs
 *
 * Validates BOs on the userptr_inval_list, and moves them back to the
 * userptr_valid_list. Also updates GPUVM page tables with new page
 * addresses and waits for the page table updates to complete.
 */
static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
{
	struct amdgpu_bo_list_entry *pd_bo_list_entries;
	struct list_head resv_list, duplicates;
	struct ww_acquire_ctx ticket;
	struct amdgpu_sync sync;

	struct amdgpu_vm *peer_vm;
	struct kgd_mem *mem, *tmp_mem;
	struct amdgpu_bo *bo;
	struct ttm_operation_ctx ctx = { false, false };
	int i, ret;

	pd_bo_list_entries = kcalloc(process_info->n_vms,
				     sizeof(struct amdgpu_bo_list_entry),
				     GFP_KERNEL);
	if (!pd_bo_list_entries) {
		pr_err("%s: Failed to allocate PD BO list entries\n", __func__);
1997 1998
		ret = -ENOMEM;
		goto out_no_mem;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	}

	INIT_LIST_HEAD(&resv_list);
	INIT_LIST_HEAD(&duplicates);

	/* Get all the page directory BOs that need to be reserved */
	i = 0;
	list_for_each_entry(peer_vm, &process_info->vm_list_head,
			    vm_list_node)
		amdgpu_vm_get_pd_bo(peer_vm, &resv_list,
				    &pd_bo_list_entries[i++]);
	/* Add the userptr_inval_list entries to resv_list */
	list_for_each_entry(mem, &process_info->userptr_inval_list,
			    validate_list.head) {
		list_add_tail(&mem->resv_list.head, &resv_list);
		mem->resv_list.bo = mem->validate_list.bo;
2015
		mem->resv_list.num_shared = mem->validate_list.num_shared;
2016 2017 2018
	}

	/* Reserve all BOs and page tables for validation */
2019
	ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates);
2020 2021
	WARN(!list_empty(&duplicates), "Duplicates should be empty");
	if (ret)
2022
		goto out_free;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

	amdgpu_sync_create(&sync);

	ret = process_validate_vms(process_info);
	if (ret)
		goto unreserve_out;

	/* Validate BOs and update GPUVM page tables */
	list_for_each_entry_safe(mem, tmp_mem,
				 &process_info->userptr_inval_list,
				 validate_list.head) {
2034
		struct kfd_mem_attachment *attachment;
2035 2036 2037

		bo = mem->bo;

2038 2039
		/* Validate the BO if we got user pages */
		if (bo->tbo.ttm->pages[0]) {
2040
			amdgpu_bo_placement_from_domain(bo, mem->domain);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
			ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
			if (ret) {
				pr_err("%s: failed to validate BO\n", __func__);
				goto unreserve_out;
			}
		}

		list_move_tail(&mem->validate_list.head,
			       &process_info->userptr_valid_list);

		/* Update mapping. If the BO was not validated
		 * (because we couldn't get user pages), this will
		 * clear the page table entries, which will result in
		 * VM faults if the GPU tries to access the invalid
		 * memory.
		 */
2057 2058
		list_for_each_entry(attachment, &mem->attachments, list) {
			if (!attachment->is_mapped)
2059 2060 2061
				continue;

			ret = update_gpuvm_pte((struct amdgpu_device *)
2062 2063
					       attachment->adev,
					       attachment, &sync);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
			if (ret) {
				pr_err("%s: update PTE failed\n", __func__);
				/* make sure this gets validated again */
				atomic_inc(&mem->invalid);
				goto unreserve_out;
			}
		}
	}

	/* Update page directories */
	ret = process_update_pds(process_info, &sync);

unreserve_out:
	ttm_eu_backoff_reservation(&ticket, &resv_list);
	amdgpu_sync_wait(&sync, false);
	amdgpu_sync_free(&sync);
2080
out_free:
2081
	kfree(pd_bo_list_entries);
2082
out_no_mem:
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

	return ret;
}

/* Worker callback to restore evicted userptr BOs
 *
 * Tries to update and validate all userptr BOs. If successful and no
 * concurrent evictions happened, the queues are restarted. Otherwise,
 * reschedule for another attempt later.
 */
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct amdkfd_process_info *process_info =
		container_of(dwork, struct amdkfd_process_info,
			     restore_userptr_work);
	struct task_struct *usertask;
	struct mm_struct *mm;
	int evicted_bos;

	evicted_bos = atomic_read(&process_info->evicted_bos);
	if (!evicted_bos)
		return;

	/* Reference task and mm in case of concurrent process termination */
	usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
	if (!usertask)
		return;
	mm = get_task_mm(usertask);
	if (!mm) {
		put_task_struct(usertask);
		return;
	}

	mutex_lock(&process_info->lock);

	if (update_invalid_user_pages(process_info, mm))
		goto unlock_out;
	/* userptr_inval_list can be empty if all evicted userptr BOs
	 * have been freed. In that case there is nothing to validate
	 * and we can just restart the queues.
	 */
	if (!list_empty(&process_info->userptr_inval_list)) {
		if (atomic_read(&process_info->evicted_bos) != evicted_bos)
			goto unlock_out; /* Concurrent eviction, try again */

		if (validate_invalid_user_pages(process_info))
			goto unlock_out;
	}
	/* Final check for concurrent evicton and atomic update. If
	 * another eviction happens after successful update, it will
	 * be a first eviction that calls quiesce_mm. The eviction
	 * reference counting inside KFD will handle this case.
	 */
	if (atomic_cmpxchg(&process_info->evicted_bos, evicted_bos, 0) !=
	    evicted_bos)
		goto unlock_out;
	evicted_bos = 0;
2141
	if (kgd2kfd_resume_mm(mm)) {
2142 2143 2144 2145 2146
		pr_err("%s: Failed to resume KFD\n", __func__);
		/* No recovery from this failure. Probably the CP is
		 * hanging. No point trying again.
		 */
	}
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
unlock_out:
	mutex_unlock(&process_info->lock);
	mmput(mm);
	put_task_struct(usertask);

	/* If validation failed, reschedule another attempt */
	if (evicted_bos)
		schedule_delayed_work(&process_info->restore_userptr_work,
			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
 *   KFD process identified by process_info
 *
 * @process_info: amdkfd_process_info of the KFD process
 *
 * After memory eviction, restore thread calls this function. The function
 * should be called when the Process is still valid. BO restore involves -
 *
 * 1.  Release old eviction fence and create new one
 * 2.  Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
 * 3   Use the second PD list and kfd_bo_list to create a list (ctx.list) of
 *     BOs that need to be reserved.
 * 4.  Reserve all the BOs
 * 5.  Validate of PD and PT BOs.
 * 6.  Validate all KFD BOs using kfd_bo_list and Map them and add new fence
 * 7.  Add fence to all PD and PT BOs.
 * 8.  Unreserve all BOs
 */
int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
{
	struct amdgpu_bo_list_entry *pd_bo_list;
	struct amdkfd_process_info *process_info = info;
2181
	struct amdgpu_vm *peer_vm;
2182 2183 2184 2185 2186 2187
	struct kgd_mem *mem;
	struct bo_vm_reservation_context ctx;
	struct amdgpu_amdkfd_fence *new_fence;
	int ret = 0, i;
	struct list_head duplicate_save;
	struct amdgpu_sync sync_obj;
2188 2189
	unsigned long failed_size = 0;
	unsigned long total_size = 0;
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

	INIT_LIST_HEAD(&duplicate_save);
	INIT_LIST_HEAD(&ctx.list);
	INIT_LIST_HEAD(&ctx.duplicates);

	pd_bo_list = kcalloc(process_info->n_vms,
			     sizeof(struct amdgpu_bo_list_entry),
			     GFP_KERNEL);
	if (!pd_bo_list)
		return -ENOMEM;

	i = 0;
	mutex_lock(&process_info->lock);
	list_for_each_entry(peer_vm, &process_info->vm_list_head,
			vm_list_node)
2205
		amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]);
2206 2207 2208 2209 2210 2211 2212 2213 2214

	/* Reserve all BOs and page tables/directory. Add all BOs from
	 * kfd_bo_list to ctx.list
	 */
	list_for_each_entry(mem, &process_info->kfd_bo_list,
			    validate_list.head) {

		list_add_tail(&mem->resv_list.head, &ctx.list);
		mem->resv_list.bo = mem->validate_list.bo;
2215
		mem->resv_list.num_shared = mem->validate_list.num_shared;
2216 2217 2218
	}

	ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list,
2219
				     false, &duplicate_save);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	if (ret) {
		pr_debug("Memory eviction: TTM Reserve Failed. Try again\n");
		goto ttm_reserve_fail;
	}

	amdgpu_sync_create(&sync_obj);

	/* Validate PDs and PTs */
	ret = process_validate_vms(process_info);
	if (ret)
		goto validate_map_fail;

2232 2233 2234 2235
	ret = process_sync_pds_resv(process_info, &sync_obj);
	if (ret) {
		pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
		goto validate_map_fail;
2236 2237 2238 2239 2240 2241 2242 2243
	}

	/* Validate BOs and map them to GPUVM (update VM page tables). */
	list_for_each_entry(mem, &process_info->kfd_bo_list,
			    validate_list.head) {

		struct amdgpu_bo *bo = mem->bo;
		uint32_t domain = mem->domain;
2244
		struct kfd_mem_attachment *attachment;
2245

2246 2247
		total_size += amdgpu_bo_size(bo);

2248 2249
		ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
		if (ret) {
2250 2251 2252 2253 2254 2255 2256 2257
			pr_debug("Memory eviction: Validate BOs failed\n");
			failed_size += amdgpu_bo_size(bo);
			ret = amdgpu_amdkfd_bo_validate(bo,
						AMDGPU_GEM_DOMAIN_GTT, false);
			if (ret) {
				pr_debug("Memory eviction: Try again\n");
				goto validate_map_fail;
			}
2258
		}
2259
		ret = amdgpu_sync_fence(&sync_obj, bo->tbo.moving);
2260 2261 2262 2263
		if (ret) {
			pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
			goto validate_map_fail;
		}
2264
		list_for_each_entry(attachment, &mem->attachments, list) {
2265
			ret = update_gpuvm_pte((struct amdgpu_device *)
2266
					      attachment->adev, attachment,
2267 2268 2269 2270 2271 2272 2273 2274
					      &sync_obj);
			if (ret) {
				pr_debug("Memory eviction: update PTE failed. Try again\n");
				goto validate_map_fail;
			}
		}
	}

2275 2276 2277
	if (failed_size)
		pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);

2278 2279 2280 2281 2282 2283 2284
	/* Update page directories */
	ret = process_update_pds(process_info, &sync_obj);
	if (ret) {
		pr_debug("Memory eviction: update PDs failed. Try again\n");
		goto validate_map_fail;
	}

2285
	/* Wait for validate and PT updates to finish */
2286 2287 2288 2289 2290 2291 2292 2293
	amdgpu_sync_wait(&sync_obj, false);

	/* Release old eviction fence and create new one, because fence only
	 * goes from unsignaled to signaled, fence cannot be reused.
	 * Use context and mm from the old fence.
	 */
	new_fence = amdgpu_amdkfd_fence_create(
				process_info->eviction_fence->base.context,
2294 2295
				process_info->eviction_fence->mm,
				NULL);
2296 2297 2298 2299 2300 2301 2302 2303 2304
	if (!new_fence) {
		pr_err("Failed to create eviction fence\n");
		ret = -ENOMEM;
		goto validate_map_fail;
	}
	dma_fence_put(&process_info->eviction_fence->base);
	process_info->eviction_fence = new_fence;
	*ef = dma_fence_get(&new_fence->base);

2305
	/* Attach new eviction fence to all BOs */
2306 2307 2308 2309 2310 2311 2312 2313
	list_for_each_entry(mem, &process_info->kfd_bo_list,
		validate_list.head)
		amdgpu_bo_fence(mem->bo,
			&process_info->eviction_fence->base, true);

	/* Attach eviction fence to PD / PT BOs */
	list_for_each_entry(peer_vm, &process_info->vm_list_head,
			    vm_list_node) {
2314
		struct amdgpu_bo *bo = peer_vm->root.base.bo;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

		amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true);
	}

validate_map_fail:
	ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list);
	amdgpu_sync_free(&sync_obj);
ttm_reserve_fail:
	mutex_unlock(&process_info->lock);
	kfree(pd_bo_list);
	return ret;
}
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
{
	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
	struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
	int ret;

	if (!info || !gws)
		return -EINVAL;

	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
	if (!*mem)
2339
		return -ENOMEM;
2340 2341

	mutex_init(&(*mem)->lock);
2342
	INIT_LIST_HEAD(&(*mem)->attachments);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	(*mem)->bo = amdgpu_bo_ref(gws_bo);
	(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
	(*mem)->process_info = process_info;
	add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
	amdgpu_sync_create(&(*mem)->sync);


	/* Validate gws bo the first time it is added to process */
	mutex_lock(&(*mem)->process_info->lock);
	ret = amdgpu_bo_reserve(gws_bo, false);
	if (unlikely(ret)) {
		pr_err("Reserve gws bo failed %d\n", ret);
		goto bo_reservation_failure;
	}

	ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
	if (ret) {
		pr_err("GWS BO validate failed %d\n", ret);
		goto bo_validation_failure;
	}
	/* GWS resource is shared b/t amdgpu and amdkfd
	 * Add process eviction fence to bo so they can
	 * evict each other.
	 */
2367
	ret = dma_resv_reserve_shared(gws_bo->tbo.base.resv, 1);
2368 2369
	if (ret)
		goto reserve_shared_fail;
2370 2371 2372 2373 2374 2375
	amdgpu_bo_fence(gws_bo, &process_info->eviction_fence->base, true);
	amdgpu_bo_unreserve(gws_bo);
	mutex_unlock(&(*mem)->process_info->lock);

	return ret;

2376
reserve_shared_fail:
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
bo_validation_failure:
	amdgpu_bo_unreserve(gws_bo);
bo_reservation_failure:
	mutex_unlock(&(*mem)->process_info->lock);
	amdgpu_sync_free(&(*mem)->sync);
	remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
	amdgpu_bo_unref(&gws_bo);
	mutex_destroy(&(*mem)->lock);
	kfree(*mem);
	*mem = NULL;
	return ret;
}

int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
{
	int ret;
	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
	struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
	struct amdgpu_bo *gws_bo = kgd_mem->bo;

	/* Remove BO from process's validate list so restore worker won't touch
	 * it anymore
	 */
	remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);

	ret = amdgpu_bo_reserve(gws_bo, false);
	if (unlikely(ret)) {
		pr_err("Reserve gws bo failed %d\n", ret);
		//TODO add BO back to validate_list?
		return ret;
	}
	amdgpu_amdkfd_remove_eviction_fence(gws_bo,
			process_info->eviction_fence);
	amdgpu_bo_unreserve(gws_bo);
	amdgpu_sync_free(&kgd_mem->sync);
	amdgpu_bo_unref(&gws_bo);
	mutex_destroy(&kgd_mem->lock);
	kfree(mem);
	return 0;
}
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

/* Returns GPU-specific tiling mode information */
int amdgpu_amdkfd_get_tile_config(struct kgd_dev *kgd,
				struct tile_config *config)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;

	config->gb_addr_config = adev->gfx.config.gb_addr_config;
	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
	config->num_tile_configs =
			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
	config->macro_tile_config_ptr =
			adev->gfx.config.macrotile_mode_array;
	config->num_macro_tile_configs =
			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);

	/* Those values are not set from GFX9 onwards */
	config->num_banks = adev->gfx.config.num_banks;
	config->num_ranks = adev->gfx.config.num_ranks;

	return 0;
}