main.c 42.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * drivers/base/power/main.c - Where the driver meets power management.
 *
 * Copyright (c) 2003 Patrick Mochel
 * Copyright (c) 2003 Open Source Development Lab
 *
 * This file is released under the GPLv2
 *
 *
 * The driver model core calls device_pm_add() when a device is registered.
11
 * This will initialize the embedded device_pm_info object in the device
L
Linus Torvalds 已提交
12 13 14
 * and add it to the list of power-controlled devices. sysfs entries for
 * controlling device power management will also be added.
 *
15 16 17
 * A separate list is used for keeping track of power info, because the power
 * domain dependencies may differ from the ancestral dependencies that the
 * subsystem list maintains.
L
Linus Torvalds 已提交
18 19 20
 */

#include <linux/device.h>
21
#include <linux/kallsyms.h>
22
#include <linux/export.h>
23
#include <linux/mutex.h>
24
#include <linux/pm.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/resume-trace.h>
27
#include <linux/interrupt.h>
28
#include <linux/sched.h>
29
#include <linux/async.h>
30
#include <linux/suspend.h>
31
#include <trace/events/power.h>
32
#include <linux/cpufreq.h>
33
#include <linux/cpuidle.h>
34 35
#include <linux/timer.h>

36
#include "../base.h"
L
Linus Torvalds 已提交
37 38
#include "power.h"

39 40
typedef int (*pm_callback_t)(struct device *);

41
/*
42
 * The entries in the dpm_list list are in a depth first order, simply
43 44 45
 * because children are guaranteed to be discovered after parents, and
 * are inserted at the back of the list on discovery.
 *
46 47
 * Since device_pm_add() may be called with a device lock held,
 * we must never try to acquire a device lock while holding
48 49 50
 * dpm_list_mutex.
 */

51
LIST_HEAD(dpm_list);
52 53 54 55
static LIST_HEAD(dpm_prepared_list);
static LIST_HEAD(dpm_suspended_list);
static LIST_HEAD(dpm_late_early_list);
static LIST_HEAD(dpm_noirq_list);
L
Linus Torvalds 已提交
56

57
struct suspend_stats suspend_stats;
58
static DEFINE_MUTEX(dpm_list_mtx);
59
static pm_message_t pm_transition;
L
Linus Torvalds 已提交
60

61 62
static int async_error;

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static char *pm_verb(int event)
{
	switch (event) {
	case PM_EVENT_SUSPEND:
		return "suspend";
	case PM_EVENT_RESUME:
		return "resume";
	case PM_EVENT_FREEZE:
		return "freeze";
	case PM_EVENT_QUIESCE:
		return "quiesce";
	case PM_EVENT_HIBERNATE:
		return "hibernate";
	case PM_EVENT_THAW:
		return "thaw";
	case PM_EVENT_RESTORE:
		return "restore";
	case PM_EVENT_RECOVER:
		return "recover";
	default:
		return "(unknown PM event)";
	}
}

87
/**
88
 * device_pm_sleep_init - Initialize system suspend-related device fields.
89 90
 * @dev: Device object being initialized.
 */
91
void device_pm_sleep_init(struct device *dev)
92
{
93
	dev->power.is_prepared = false;
94
	dev->power.is_suspended = false;
95 96
	dev->power.is_noirq_suspended = false;
	dev->power.is_late_suspended = false;
97
	init_completion(&dev->power.completion);
98
	complete_all(&dev->power.completion);
99
	dev->power.wakeup = NULL;
100
	INIT_LIST_HEAD(&dev->power.entry);
101 102
}

103
/**
104
 * device_pm_lock - Lock the list of active devices used by the PM core.
105 106 107 108 109 110 111
 */
void device_pm_lock(void)
{
	mutex_lock(&dpm_list_mtx);
}

/**
112
 * device_pm_unlock - Unlock the list of active devices used by the PM core.
113 114 115 116 117
 */
void device_pm_unlock(void)
{
	mutex_unlock(&dpm_list_mtx);
}
118

119
/**
120 121
 * device_pm_add - Add a device to the PM core's list of active devices.
 * @dev: Device to add to the list.
122
 */
123
void device_pm_add(struct device *dev)
L
Linus Torvalds 已提交
124 125
{
	pr_debug("PM: Adding info for %s:%s\n",
126
		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127
	mutex_lock(&dpm_list_mtx);
128
	if (dev->parent && dev->parent->power.is_prepared)
129 130
		dev_warn(dev, "parent %s should not be sleeping\n",
			dev_name(dev->parent));
131
	list_add_tail(&dev->power.entry, &dpm_list);
132
	mutex_unlock(&dpm_list_mtx);
L
Linus Torvalds 已提交
133 134
}

135
/**
136 137
 * device_pm_remove - Remove a device from the PM core's list of active devices.
 * @dev: Device to be removed from the list.
138
 */
139
void device_pm_remove(struct device *dev)
L
Linus Torvalds 已提交
140 141
{
	pr_debug("PM: Removing info for %s:%s\n",
142
		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143
	complete_all(&dev->power.completion);
144
	mutex_lock(&dpm_list_mtx);
L
Linus Torvalds 已提交
145
	list_del_init(&dev->power.entry);
146
	mutex_unlock(&dpm_list_mtx);
147
	device_wakeup_disable(dev);
148
	pm_runtime_remove(dev);
149 150
}

151
/**
152 153 154
 * device_pm_move_before - Move device in the PM core's list of active devices.
 * @deva: Device to move in dpm_list.
 * @devb: Device @deva should come before.
155 156 157 158
 */
void device_pm_move_before(struct device *deva, struct device *devb)
{
	pr_debug("PM: Moving %s:%s before %s:%s\n",
159 160
		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 162 163 164 165
	/* Delete deva from dpm_list and reinsert before devb. */
	list_move_tail(&deva->power.entry, &devb->power.entry);
}

/**
166 167 168
 * device_pm_move_after - Move device in the PM core's list of active devices.
 * @deva: Device to move in dpm_list.
 * @devb: Device @deva should come after.
169 170 171 172
 */
void device_pm_move_after(struct device *deva, struct device *devb)
{
	pr_debug("PM: Moving %s:%s after %s:%s\n",
173 174
		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 176 177 178 179
	/* Delete deva from dpm_list and reinsert after devb. */
	list_move(&deva->power.entry, &devb->power.entry);
}

/**
180 181
 * device_pm_move_last - Move device to end of the PM core's list of devices.
 * @dev: Device to move in dpm_list.
182 183 184 185
 */
void device_pm_move_last(struct device *dev)
{
	pr_debug("PM: Moving %s:%s to end of list\n",
186
		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 188 189
	list_move_tail(&dev->power.entry, &dpm_list);
}

190 191 192 193
static ktime_t initcall_debug_start(struct device *dev)
{
	ktime_t calltime = ktime_set(0, 0);

194
	if (pm_print_times_enabled) {
195 196 197
		pr_info("calling  %s+ @ %i, parent: %s\n",
			dev_name(dev), task_pid_nr(current),
			dev->parent ? dev_name(dev->parent) : "none");
198 199 200 201 202 203 204
		calltime = ktime_get();
	}

	return calltime;
}

static void initcall_debug_report(struct device *dev, ktime_t calltime,
205
				  int error, pm_message_t state, char *info)
206
{
207 208 209 210 211
	ktime_t rettime;
	s64 nsecs;

	rettime = ktime_get();
	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212

213
	if (pm_print_times_enabled) {
214
		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215
			error, (unsigned long long)nsecs >> 10);
216 217 218
	}
}

219 220 221 222 223 224 225 226 227 228
/**
 * dpm_wait - Wait for a PM operation to complete.
 * @dev: Device to wait for.
 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 */
static void dpm_wait(struct device *dev, bool async)
{
	if (!dev)
		return;

229
	if (async || (pm_async_enabled && dev->power.async_suspend))
230 231 232 233 234 235 236 237 238 239 240 241 242 243
		wait_for_completion(&dev->power.completion);
}

static int dpm_wait_fn(struct device *dev, void *async_ptr)
{
	dpm_wait(dev, *((bool *)async_ptr));
	return 0;
}

static void dpm_wait_for_children(struct device *dev, bool async)
{
       device_for_each_child(dev, &async, dpm_wait_fn);
}

244
/**
245
 * pm_op - Return the PM operation appropriate for given PM event.
246 247
 * @ops: PM operations to choose from.
 * @state: PM transition of the system being carried out.
248
 */
249
static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 251 252 253
{
	switch (state.event) {
#ifdef CONFIG_SUSPEND
	case PM_EVENT_SUSPEND:
254
		return ops->suspend;
255
	case PM_EVENT_RESUME:
256
		return ops->resume;
257
#endif /* CONFIG_SUSPEND */
258
#ifdef CONFIG_HIBERNATE_CALLBACKS
259 260
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
261
		return ops->freeze;
262
	case PM_EVENT_HIBERNATE:
263
		return ops->poweroff;
264 265
	case PM_EVENT_THAW:
	case PM_EVENT_RECOVER:
266
		return ops->thaw;
267 268
		break;
	case PM_EVENT_RESTORE:
269
		return ops->restore;
270
#endif /* CONFIG_HIBERNATE_CALLBACKS */
271
	}
272

273
	return NULL;
274 275
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/**
 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 * @ops: PM operations to choose from.
 * @state: PM transition of the system being carried out.
 *
 * Runtime PM is disabled for @dev while this function is being executed.
 */
static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
				      pm_message_t state)
{
	switch (state.event) {
#ifdef CONFIG_SUSPEND
	case PM_EVENT_SUSPEND:
		return ops->suspend_late;
	case PM_EVENT_RESUME:
		return ops->resume_early;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
		return ops->freeze_late;
	case PM_EVENT_HIBERNATE:
		return ops->poweroff_late;
	case PM_EVENT_THAW:
	case PM_EVENT_RECOVER:
		return ops->thaw_early;
	case PM_EVENT_RESTORE:
		return ops->restore_early;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
	}

	return NULL;
}

310
/**
311
 * pm_noirq_op - Return the PM operation appropriate for given PM event.
312 313
 * @ops: PM operations to choose from.
 * @state: PM transition of the system being carried out.
314
 *
315 316
 * The driver of @dev will not receive interrupts while this function is being
 * executed.
317
 */
318
static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 320 321 322
{
	switch (state.event) {
#ifdef CONFIG_SUSPEND
	case PM_EVENT_SUSPEND:
323
		return ops->suspend_noirq;
324
	case PM_EVENT_RESUME:
325
		return ops->resume_noirq;
326
#endif /* CONFIG_SUSPEND */
327
#ifdef CONFIG_HIBERNATE_CALLBACKS
328 329
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
330
		return ops->freeze_noirq;
331
	case PM_EVENT_HIBERNATE:
332
		return ops->poweroff_noirq;
333 334
	case PM_EVENT_THAW:
	case PM_EVENT_RECOVER:
335
		return ops->thaw_noirq;
336
	case PM_EVENT_RESTORE:
337
		return ops->restore_noirq;
338
#endif /* CONFIG_HIBERNATE_CALLBACKS */
339
	}
340

341
	return NULL;
342 343 344 345 346 347 348 349 350 351 352 353 354
}

static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
{
	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
		", may wakeup" : "");
}

static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
			int error)
{
	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355
		dev_name(dev), pm_verb(state.event), info, error);
356 357
}

358 359 360
static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
{
	ktime_t calltime;
361
	u64 usecs64;
362 363 364 365 366 367 368 369 370 371 372 373 374
	int usecs;

	calltime = ktime_get();
	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
	do_div(usecs64, NSEC_PER_USEC);
	usecs = usecs64;
	if (usecs == 0)
		usecs = 1;
	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
		info ?: "", info ? " " : "", pm_verb(state.event),
		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
}

375 376 377 378 379 380 381 382 383 384 385 386
static int dpm_run_callback(pm_callback_t cb, struct device *dev,
			    pm_message_t state, char *info)
{
	ktime_t calltime;
	int error;

	if (!cb)
		return 0;

	calltime = initcall_debug_start(dev);

	pm_dev_dbg(dev, state, info);
387
	trace_device_pm_callback_start(dev, info, state.event);
388
	error = cb(dev);
389
	trace_device_pm_callback_end(dev, error);
390 391
	suspend_report_result(cb, error);

392
	initcall_debug_report(dev, calltime, error, state, info);
393 394 395 396

	return error;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
#ifdef CONFIG_DPM_WATCHDOG
struct dpm_watchdog {
	struct device		*dev;
	struct task_struct	*tsk;
	struct timer_list	timer;
};

#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
	struct dpm_watchdog wd

/**
 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 * @data: Watchdog object address.
 *
 * Called when a driver has timed out suspending or resuming.
 * There's not much we can do here to recover so panic() to
 * capture a crash-dump in pstore.
 */
static void dpm_watchdog_handler(unsigned long data)
{
	struct dpm_watchdog *wd = (void *)data;

	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
	show_stack(wd->tsk, NULL);
	panic("%s %s: unrecoverable failure\n",
		dev_driver_string(wd->dev), dev_name(wd->dev));
}

/**
 * dpm_watchdog_set - Enable pm watchdog for given device.
 * @wd: Watchdog. Must be allocated on the stack.
 * @dev: Device to handle.
 */
static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
{
	struct timer_list *timer = &wd->timer;

	wd->dev = dev;
	wd->tsk = current;

	init_timer_on_stack(timer);
	/* use same timeout value for both suspend and resume */
	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
	timer->function = dpm_watchdog_handler;
	timer->data = (unsigned long)wd;
	add_timer(timer);
}

/**
 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 * @wd: Watchdog to disable.
 */
static void dpm_watchdog_clear(struct dpm_watchdog *wd)
{
	struct timer_list *timer = &wd->timer;

	del_timer_sync(timer);
	destroy_timer_on_stack(timer);
}
#else
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
#define dpm_watchdog_set(x, y)
#define dpm_watchdog_clear(x)
#endif

462 463 464
/*------------------------- Resume routines -------------------------*/

/**
465 466 467
 * device_resume_noirq - Execute an "early resume" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
468
 * @async: If true, the device is being resumed asynchronously.
469
 *
470 471
 * The driver of @dev will not receive interrupts while this function is being
 * executed.
472
 */
473
static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474
{
475 476
	pm_callback_t callback = NULL;
	char *info = NULL;
477 478 479 480 481
	int error = 0;

	TRACE_DEVICE(dev);
	TRACE_RESUME(0);

482
	if (dev->power.syscore || dev->power.direct_complete)
483 484
		goto Out;

485 486 487
	if (!dev->power.is_noirq_suspended)
		goto Out;

488 489
	dpm_wait(dev->parent, async);

490
	if (dev->pm_domain) {
491
		info = "noirq power domain ";
492
		callback = pm_noirq_op(&dev->pm_domain->ops, state);
493
	} else if (dev->type && dev->type->pm) {
494
		info = "noirq type ";
495
		callback = pm_noirq_op(dev->type->pm, state);
496
	} else if (dev->class && dev->class->pm) {
497
		info = "noirq class ";
498
		callback = pm_noirq_op(dev->class->pm, state);
499
	} else if (dev->bus && dev->bus->pm) {
500
		info = "noirq bus ";
501
		callback = pm_noirq_op(dev->bus->pm, state);
502 503
	}

504
	if (!callback && dev->driver && dev->driver->pm) {
505
		info = "noirq driver ";
506 507 508
		callback = pm_noirq_op(dev->driver->pm, state);
	}

509
	error = dpm_run_callback(callback, dev, state, info);
510
	dev->power.is_noirq_suspended = false;
511

512
 Out:
513
	complete_all(&dev->power.completion);
514 515 516 517
	TRACE_RESUME(error);
	return error;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static bool is_async(struct device *dev)
{
	return dev->power.async_suspend && pm_async_enabled
		&& !pm_trace_is_enabled();
}

static void async_resume_noirq(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = device_resume_noirq(dev, pm_transition, true);
	if (error)
		pm_dev_err(dev, pm_transition, " async", error);

	put_device(dev);
}

536
/**
537
 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538
 * @state: PM transition of the system being carried out.
539
 *
540
 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541
 * enable device drivers to receive interrupts.
542
 */
543
void dpm_resume_noirq(pm_message_t state)
544
{
545
	struct device *dev;
546
	ktime_t starttime = ktime_get();
547

548
	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
549
	mutex_lock(&dpm_list_mtx);
550
	pm_transition = state;
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	/*
	 * Advanced the async threads upfront,
	 * in case the starting of async threads is
	 * delayed by non-async resuming devices.
	 */
	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
		reinit_completion(&dev->power.completion);
		if (is_async(dev)) {
			get_device(dev);
			async_schedule(async_resume_noirq, dev);
		}
	}

	while (!list_empty(&dpm_noirq_list)) {
		dev = to_device(dpm_noirq_list.next);
567
		get_device(dev);
568
		list_move_tail(&dev->power.entry, &dpm_late_early_list);
569
		mutex_unlock(&dpm_list_mtx);
570

571 572 573 574 575 576 577 578 579 580
		if (!is_async(dev)) {
			int error;

			error = device_resume_noirq(dev, state, false);
			if (error) {
				suspend_stats.failed_resume_noirq++;
				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
				dpm_save_failed_dev(dev_name(dev));
				pm_dev_err(dev, state, " noirq", error);
			}
581 582 583 584 585 586
		}

		mutex_lock(&dpm_list_mtx);
		put_device(dev);
	}
	mutex_unlock(&dpm_list_mtx);
587
	async_synchronize_full();
588 589
	dpm_show_time(starttime, state, "noirq");
	resume_device_irqs();
590
	cpuidle_resume();
591
	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
592 593 594 595 596 597
}

/**
 * device_resume_early - Execute an "early resume" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
598
 * @async: If true, the device is being resumed asynchronously.
599 600 601
 *
 * Runtime PM is disabled for @dev while this function is being executed.
 */
602
static int device_resume_early(struct device *dev, pm_message_t state, bool async)
603 604 605 606 607 608 609 610
{
	pm_callback_t callback = NULL;
	char *info = NULL;
	int error = 0;

	TRACE_DEVICE(dev);
	TRACE_RESUME(0);

611
	if (dev->power.syscore || dev->power.direct_complete)
612 613
		goto Out;

614 615 616
	if (!dev->power.is_late_suspended)
		goto Out;

617 618
	dpm_wait(dev->parent, async);

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	if (dev->pm_domain) {
		info = "early power domain ";
		callback = pm_late_early_op(&dev->pm_domain->ops, state);
	} else if (dev->type && dev->type->pm) {
		info = "early type ";
		callback = pm_late_early_op(dev->type->pm, state);
	} else if (dev->class && dev->class->pm) {
		info = "early class ";
		callback = pm_late_early_op(dev->class->pm, state);
	} else if (dev->bus && dev->bus->pm) {
		info = "early bus ";
		callback = pm_late_early_op(dev->bus->pm, state);
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "early driver ";
		callback = pm_late_early_op(dev->driver->pm, state);
	}

	error = dpm_run_callback(callback, dev, state, info);
639
	dev->power.is_late_suspended = false;
640

641
 Out:
642
	TRACE_RESUME(error);
643 644

	pm_runtime_enable(dev);
645
	complete_all(&dev->power.completion);
646 647 648
	return error;
}

649 650 651 652 653 654 655 656 657 658 659 660
static void async_resume_early(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = device_resume_early(dev, pm_transition, true);
	if (error)
		pm_dev_err(dev, pm_transition, " async", error);

	put_device(dev);
}

661 662 663 664
/**
 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 * @state: PM transition of the system being carried out.
 */
665
void dpm_resume_early(pm_message_t state)
666
{
667
	struct device *dev;
668 669
	ktime_t starttime = ktime_get();

670
	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
671
	mutex_lock(&dpm_list_mtx);
672 673 674 675 676 677 678 679 680 681 682 683 684 685
	pm_transition = state;

	/*
	 * Advanced the async threads upfront,
	 * in case the starting of async threads is
	 * delayed by non-async resuming devices.
	 */
	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
		reinit_completion(&dev->power.completion);
		if (is_async(dev)) {
			get_device(dev);
			async_schedule(async_resume_early, dev);
		}
	}
686

687 688
	while (!list_empty(&dpm_late_early_list)) {
		dev = to_device(dpm_late_early_list.next);
689 690 691 692
		get_device(dev);
		list_move_tail(&dev->power.entry, &dpm_suspended_list);
		mutex_unlock(&dpm_list_mtx);

693 694
		if (!is_async(dev)) {
			int error;
695

696 697 698 699 700 701 702 703
			error = device_resume_early(dev, state, false);
			if (error) {
				suspend_stats.failed_resume_early++;
				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
				dpm_save_failed_dev(dev_name(dev));
				pm_dev_err(dev, state, " early", error);
			}
		}
704
		mutex_lock(&dpm_list_mtx);
705 706
		put_device(dev);
	}
707
	mutex_unlock(&dpm_list_mtx);
708
	async_synchronize_full();
709
	dpm_show_time(starttime, state, "early");
710
	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
711
}
712 713 714 715 716 717 718 719 720 721 722

/**
 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 * @state: PM transition of the system being carried out.
 */
void dpm_resume_start(pm_message_t state)
{
	dpm_resume_noirq(state);
	dpm_resume_early(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_start);
723 724

/**
725
 * device_resume - Execute "resume" callbacks for given device.
726 727
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
728
 * @async: If true, the device is being resumed asynchronously.
729
 */
730
static int device_resume(struct device *dev, pm_message_t state, bool async)
731
{
732 733
	pm_callback_t callback = NULL;
	char *info = NULL;
734
	int error = 0;
735
	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
736 737 738

	TRACE_DEVICE(dev);
	TRACE_RESUME(0);
739

740 741 742
	if (dev->power.syscore)
		goto Complete;

743 744 745 746 747 748
	if (dev->power.direct_complete) {
		/* Match the pm_runtime_disable() in __device_suspend(). */
		pm_runtime_enable(dev);
		goto Complete;
	}

749
	dpm_wait(dev->parent, async);
750
	dpm_watchdog_set(&wd, dev);
751
	device_lock(dev);
752

753 754 755 756 757
	/*
	 * This is a fib.  But we'll allow new children to be added below
	 * a resumed device, even if the device hasn't been completed yet.
	 */
	dev->power.is_prepared = false;
758

759 760 761
	if (!dev->power.is_suspended)
		goto Unlock;

762
	if (dev->pm_domain) {
763 764
		info = "power domain ";
		callback = pm_op(&dev->pm_domain->ops, state);
765
		goto Driver;
766 767
	}

768
	if (dev->type && dev->type->pm) {
769 770
		info = "type ";
		callback = pm_op(dev->type->pm, state);
771
		goto Driver;
772 773
	}

774 775
	if (dev->class) {
		if (dev->class->pm) {
776 777
			info = "class ";
			callback = pm_op(dev->class->pm, state);
778
			goto Driver;
779
		} else if (dev->class->resume) {
780 781
			info = "legacy class ";
			callback = dev->class->resume;
782
			goto End;
783
		}
784
	}
785 786 787

	if (dev->bus) {
		if (dev->bus->pm) {
788
			info = "bus ";
789
			callback = pm_op(dev->bus->pm, state);
790
		} else if (dev->bus->resume) {
791
			info = "legacy bus ";
792
			callback = dev->bus->resume;
793
			goto End;
794 795 796
		}
	}

797 798 799 800 801 802
 Driver:
	if (!callback && dev->driver && dev->driver->pm) {
		info = "driver ";
		callback = pm_op(dev->driver->pm, state);
	}

803
 End:
804
	error = dpm_run_callback(callback, dev, state, info);
805 806 807
	dev->power.is_suspended = false;

 Unlock:
808
	device_unlock(dev);
809
	dpm_watchdog_clear(&wd);
810 811

 Complete:
812
	complete_all(&dev->power.completion);
813

814
	TRACE_RESUME(error);
815

816 817 818
	return error;
}

819 820 821 822 823
static void async_resume(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

824
	error = device_resume(dev, pm_transition, true);
825 826 827 828 829
	if (error)
		pm_dev_err(dev, pm_transition, " async", error);
	put_device(dev);
}

830
/**
831 832
 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 * @state: PM transition of the system being carried out.
833
 *
834 835
 * Execute the appropriate "resume" callback for all devices whose status
 * indicates that they are suspended.
836
 */
837
void dpm_resume(pm_message_t state)
838
{
839
	struct device *dev;
840
	ktime_t starttime = ktime_get();
841

842
	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
843 844
	might_sleep();

845
	mutex_lock(&dpm_list_mtx);
846
	pm_transition = state;
847
	async_error = 0;
848

849
	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
850
		reinit_completion(&dev->power.completion);
851 852 853 854 855 856
		if (is_async(dev)) {
			get_device(dev);
			async_schedule(async_resume, dev);
		}
	}

857 858
	while (!list_empty(&dpm_suspended_list)) {
		dev = to_device(dpm_suspended_list.next);
859
		get_device(dev);
860
		if (!is_async(dev)) {
861 862 863 864
			int error;

			mutex_unlock(&dpm_list_mtx);

865
			error = device_resume(dev, state, false);
866 867 868 869
			if (error) {
				suspend_stats.failed_resume++;
				dpm_save_failed_step(SUSPEND_RESUME);
				dpm_save_failed_dev(dev_name(dev));
870
				pm_dev_err(dev, state, "", error);
871
			}
872 873

			mutex_lock(&dpm_list_mtx);
874 875
		}
		if (!list_empty(&dev->power.entry))
876
			list_move_tail(&dev->power.entry, &dpm_prepared_list);
877 878 879
		put_device(dev);
	}
	mutex_unlock(&dpm_list_mtx);
880
	async_synchronize_full();
881
	dpm_show_time(starttime, state, NULL);
882 883

	cpufreq_resume();
884
	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
885 886 887
}

/**
888 889 890
 * device_complete - Complete a PM transition for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
891
 */
892
static void device_complete(struct device *dev, pm_message_t state)
893
{
894 895 896
	void (*callback)(struct device *) = NULL;
	char *info = NULL;

897 898 899
	if (dev->power.syscore)
		return;

900
	device_lock(dev);
901

902
	if (dev->pm_domain) {
903 904
		info = "completing power domain ";
		callback = dev->pm_domain->ops.complete;
905
	} else if (dev->type && dev->type->pm) {
906 907
		info = "completing type ";
		callback = dev->type->pm->complete;
908
	} else if (dev->class && dev->class->pm) {
909 910
		info = "completing class ";
		callback = dev->class->pm->complete;
911
	} else if (dev->bus && dev->bus->pm) {
912 913 914 915 916 917 918 919 920 921 922
		info = "completing bus ";
		callback = dev->bus->pm->complete;
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "completing driver ";
		callback = dev->driver->pm->complete;
	}

	if (callback) {
		pm_dev_dbg(dev, state, info);
923
		trace_device_pm_callback_start(dev, info, state.event);
924
		callback(dev);
925
		trace_device_pm_callback_end(dev, 0);
926 927
	}

928
	device_unlock(dev);
929

930
	pm_runtime_put(dev);
931 932 933
}

/**
934 935
 * dpm_complete - Complete a PM transition for all non-sysdev devices.
 * @state: PM transition of the system being carried out.
936
 *
937 938
 * Execute the ->complete() callbacks for all devices whose PM status is not
 * DPM_ON (this allows new devices to be registered).
939
 */
940
void dpm_complete(pm_message_t state)
941
{
942 943
	struct list_head list;

944
	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
945 946
	might_sleep();

947
	INIT_LIST_HEAD(&list);
948
	mutex_lock(&dpm_list_mtx);
949 950
	while (!list_empty(&dpm_prepared_list)) {
		struct device *dev = to_device(dpm_prepared_list.prev);
951

952
		get_device(dev);
953
		dev->power.is_prepared = false;
954 955
		list_move(&dev->power.entry, &list);
		mutex_unlock(&dpm_list_mtx);
956

957
		device_complete(dev, state);
958

959
		mutex_lock(&dpm_list_mtx);
960
		put_device(dev);
961
	}
962
	list_splice(&list, &dpm_list);
963
	mutex_unlock(&dpm_list_mtx);
964
	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
965 966 967
}

/**
968 969
 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
 * @state: PM transition of the system being carried out.
970
 *
971 972
 * Execute "resume" callbacks for all devices and complete the PM transition of
 * the system.
973
 */
974
void dpm_resume_end(pm_message_t state)
975
{
976 977
	dpm_resume(state);
	dpm_complete(state);
978
}
979
EXPORT_SYMBOL_GPL(dpm_resume_end);
980 981 982 983


/*------------------------- Suspend routines -------------------------*/

984
/**
985 986 987 988 989
 * resume_event - Return a "resume" message for given "suspend" sleep state.
 * @sleep_state: PM message representing a sleep state.
 *
 * Return a PM message representing the resume event corresponding to given
 * sleep state.
990 991
 */
static pm_message_t resume_event(pm_message_t sleep_state)
992
{
993 994 995 996 997 998 999 1000
	switch (sleep_state.event) {
	case PM_EVENT_SUSPEND:
		return PMSG_RESUME;
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
		return PMSG_RECOVER;
	case PM_EVENT_HIBERNATE:
		return PMSG_RESTORE;
1001
	}
1002
	return PMSG_ON;
1003 1004 1005
}

/**
1006 1007 1008
 * device_suspend_noirq - Execute a "late suspend" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
1009
 * @async: If true, the device is being suspended asynchronously.
1010
 *
1011 1012
 * The driver of @dev will not receive interrupts while this function is being
 * executed.
1013
 */
1014
static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1015
{
1016 1017
	pm_callback_t callback = NULL;
	char *info = NULL;
1018 1019 1020 1021 1022 1023 1024 1025 1026
	int error = 0;

	if (async_error)
		goto Complete;

	if (pm_wakeup_pending()) {
		async_error = -EBUSY;
		goto Complete;
	}
1027

1028
	if (dev->power.syscore || dev->power.direct_complete)
1029 1030 1031
		goto Complete;

	dpm_wait_for_children(dev, async);
1032

1033
	if (dev->pm_domain) {
1034
		info = "noirq power domain ";
1035
		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1036
	} else if (dev->type && dev->type->pm) {
1037
		info = "noirq type ";
1038
		callback = pm_noirq_op(dev->type->pm, state);
1039
	} else if (dev->class && dev->class->pm) {
1040
		info = "noirq class ";
1041
		callback = pm_noirq_op(dev->class->pm, state);
1042
	} else if (dev->bus && dev->bus->pm) {
1043
		info = "noirq bus ";
1044
		callback = pm_noirq_op(dev->bus->pm, state);
1045 1046
	}

1047
	if (!callback && dev->driver && dev->driver->pm) {
1048
		info = "noirq driver ";
1049 1050 1051
		callback = pm_noirq_op(dev->driver->pm, state);
	}

1052 1053 1054
	error = dpm_run_callback(callback, dev, state, info);
	if (!error)
		dev->power.is_noirq_suspended = true;
1055 1056
	else
		async_error = error;
1057

1058 1059
Complete:
	complete_all(&dev->power.completion);
1060
	return error;
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static void async_suspend_noirq(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = __device_suspend_noirq(dev, pm_transition, true);
	if (error) {
		dpm_save_failed_dev(dev_name(dev));
		pm_dev_err(dev, pm_transition, " async", error);
	}

	put_device(dev);
}

static int device_suspend_noirq(struct device *dev)
{
	reinit_completion(&dev->power.completion);

	if (pm_async_enabled && dev->power.async_suspend) {
		get_device(dev);
		async_schedule(async_suspend_noirq, dev);
		return 0;
	}
	return __device_suspend_noirq(dev, pm_transition, false);
}

1089
/**
1090
 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1091
 * @state: PM transition of the system being carried out.
1092
 *
1093 1094
 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
 * handlers for all non-sysdev devices.
1095
 */
1096
int dpm_suspend_noirq(pm_message_t state)
1097
{
1098
	ktime_t starttime = ktime_get();
1099 1100
	int error = 0;

1101
	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1102
	cpuidle_pause();
1103
	suspend_device_irqs();
1104
	mutex_lock(&dpm_list_mtx);
1105 1106 1107
	pm_transition = state;
	async_error = 0;

1108 1109
	while (!list_empty(&dpm_late_early_list)) {
		struct device *dev = to_device(dpm_late_early_list.prev);
1110 1111 1112 1113

		get_device(dev);
		mutex_unlock(&dpm_list_mtx);

1114
		error = device_suspend_noirq(dev);
1115 1116

		mutex_lock(&dpm_list_mtx);
1117
		if (error) {
1118
			pm_dev_err(dev, state, " noirq", error);
1119
			dpm_save_failed_dev(dev_name(dev));
1120
			put_device(dev);
1121 1122
			break;
		}
1123
		if (!list_empty(&dev->power.entry))
1124
			list_move(&dev->power.entry, &dpm_noirq_list);
1125
		put_device(dev);
1126

1127
		if (async_error)
1128
			break;
1129
	}
1130
	mutex_unlock(&dpm_list_mtx);
1131 1132 1133 1134 1135 1136 1137
	async_synchronize_full();
	if (!error)
		error = async_error;

	if (error) {
		suspend_stats.failed_suspend_noirq++;
		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1138
		dpm_resume_noirq(resume_event(state));
1139
	} else {
1140
		dpm_show_time(starttime, state, "noirq");
1141
	}
1142
	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1143 1144 1145 1146 1147 1148 1149
	return error;
}

/**
 * device_suspend_late - Execute a "late suspend" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
1150
 * @async: If true, the device is being suspended asynchronously.
1151 1152 1153
 *
 * Runtime PM is disabled for @dev while this function is being executed.
 */
1154
static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1155 1156 1157
{
	pm_callback_t callback = NULL;
	char *info = NULL;
1158
	int error = 0;
1159

1160 1161
	__pm_runtime_disable(dev, false);

1162 1163 1164 1165 1166 1167 1168 1169
	if (async_error)
		goto Complete;

	if (pm_wakeup_pending()) {
		async_error = -EBUSY;
		goto Complete;
	}

1170
	if (dev->power.syscore || dev->power.direct_complete)
1171 1172 1173
		goto Complete;

	dpm_wait_for_children(dev, async);
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (dev->pm_domain) {
		info = "late power domain ";
		callback = pm_late_early_op(&dev->pm_domain->ops, state);
	} else if (dev->type && dev->type->pm) {
		info = "late type ";
		callback = pm_late_early_op(dev->type->pm, state);
	} else if (dev->class && dev->class->pm) {
		info = "late class ";
		callback = pm_late_early_op(dev->class->pm, state);
	} else if (dev->bus && dev->bus->pm) {
		info = "late bus ";
		callback = pm_late_early_op(dev->bus->pm, state);
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "late driver ";
		callback = pm_late_early_op(dev->driver->pm, state);
	}

1194 1195 1196
	error = dpm_run_callback(callback, dev, state, info);
	if (!error)
		dev->power.is_late_suspended = true;
1197 1198
	else
		async_error = error;
1199

1200 1201
Complete:
	complete_all(&dev->power.completion);
1202
	return error;
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void async_suspend_late(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = __device_suspend_late(dev, pm_transition, true);
	if (error) {
		dpm_save_failed_dev(dev_name(dev));
		pm_dev_err(dev, pm_transition, " async", error);
	}
	put_device(dev);
}

static int device_suspend_late(struct device *dev)
{
	reinit_completion(&dev->power.completion);

	if (pm_async_enabled && dev->power.async_suspend) {
		get_device(dev);
		async_schedule(async_suspend_late, dev);
		return 0;
	}

	return __device_suspend_late(dev, pm_transition, false);
}

1231 1232 1233 1234
/**
 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
 * @state: PM transition of the system being carried out.
 */
1235
int dpm_suspend_late(pm_message_t state)
1236 1237 1238 1239
{
	ktime_t starttime = ktime_get();
	int error = 0;

1240
	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1241
	mutex_lock(&dpm_list_mtx);
1242 1243 1244
	pm_transition = state;
	async_error = 0;

1245 1246 1247 1248 1249 1250
	while (!list_empty(&dpm_suspended_list)) {
		struct device *dev = to_device(dpm_suspended_list.prev);

		get_device(dev);
		mutex_unlock(&dpm_list_mtx);

1251
		error = device_suspend_late(dev);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

		mutex_lock(&dpm_list_mtx);
		if (error) {
			pm_dev_err(dev, state, " late", error);
			dpm_save_failed_dev(dev_name(dev));
			put_device(dev);
			break;
		}
		if (!list_empty(&dev->power.entry))
			list_move(&dev->power.entry, &dpm_late_early_list);
		put_device(dev);
1263

1264
		if (async_error)
1265
			break;
1266 1267
	}
	mutex_unlock(&dpm_list_mtx);
1268
	async_synchronize_full();
1269 1270
	if (!error)
		error = async_error;
1271 1272 1273
	if (error) {
		suspend_stats.failed_suspend_late++;
		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1274
		dpm_resume_early(resume_event(state));
1275
	} else {
1276
		dpm_show_time(starttime, state, "late");
1277
	}
1278
	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1279 1280
	return error;
}
1281 1282 1283 1284 1285 1286 1287 1288

/**
 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
 * @state: PM transition of the system being carried out.
 */
int dpm_suspend_end(pm_message_t state)
{
	int error = dpm_suspend_late(state);
1289 1290 1291 1292 1293
	if (error)
		return error;

	error = dpm_suspend_noirq(state);
	if (error) {
1294
		dpm_resume_early(resume_event(state));
1295 1296
		return error;
	}
1297

1298
	return 0;
1299 1300
}
EXPORT_SYMBOL_GPL(dpm_suspend_end);
1301

1302 1303
/**
 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
R
Randy Dunlap 已提交
1304 1305 1306
 * @dev: Device to suspend.
 * @state: PM transition of the system being carried out.
 * @cb: Suspend callback to execute.
1307
 * @info: string description of caller.
1308 1309
 */
static int legacy_suspend(struct device *dev, pm_message_t state,
1310 1311
			  int (*cb)(struct device *dev, pm_message_t state),
			  char *info)
1312 1313 1314 1315 1316 1317
{
	int error;
	ktime_t calltime;

	calltime = initcall_debug_start(dev);

1318
	trace_device_pm_callback_start(dev, info, state.event);
1319
	error = cb(dev, state);
1320
	trace_device_pm_callback_end(dev, error);
1321 1322
	suspend_report_result(cb, error);

1323
	initcall_debug_report(dev, calltime, error, state, info);
1324 1325 1326 1327

	return error;
}

1328
/**
1329 1330 1331
 * device_suspend - Execute "suspend" callbacks for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
1332
 * @async: If true, the device is being suspended asynchronously.
1333
 */
1334
static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1335
{
1336 1337
	pm_callback_t callback = NULL;
	char *info = NULL;
1338
	int error = 0;
1339
	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1340

1341
	dpm_wait_for_children(dev, async);
1342

1343
	if (async_error)
1344
		goto Complete;
1345

1346 1347 1348 1349 1350 1351
	/*
	 * If a device configured to wake up the system from sleep states
	 * has been suspended at run time and there's a resume request pending
	 * for it, this is equivalent to the device signaling wakeup, so the
	 * system suspend operation should be aborted.
	 */
1352 1353
	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
		pm_wakeup_event(dev, 0);
1354

1355 1356
	if (pm_wakeup_pending()) {
		async_error = -EBUSY;
1357
		goto Complete;
1358 1359
	}

1360 1361 1362
	if (dev->power.syscore)
		goto Complete;

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (dev->power.direct_complete) {
		if (pm_runtime_status_suspended(dev)) {
			pm_runtime_disable(dev);
			if (pm_runtime_suspended_if_enabled(dev))
				goto Complete;

			pm_runtime_enable(dev);
		}
		dev->power.direct_complete = false;
	}

1374
	dpm_watchdog_set(&wd, dev);
1375 1376
	device_lock(dev);

1377
	if (dev->pm_domain) {
1378 1379 1380
		info = "power domain ";
		callback = pm_op(&dev->pm_domain->ops, state);
		goto Run;
1381 1382
	}

1383
	if (dev->type && dev->type->pm) {
1384 1385 1386
		info = "type ";
		callback = pm_op(dev->type->pm, state);
		goto Run;
1387 1388
	}

1389 1390
	if (dev->class) {
		if (dev->class->pm) {
1391 1392 1393
			info = "class ";
			callback = pm_op(dev->class->pm, state);
			goto Run;
1394 1395
		} else if (dev->class->suspend) {
			pm_dev_dbg(dev, state, "legacy class ");
1396 1397
			error = legacy_suspend(dev, state, dev->class->suspend,
						"legacy class ");
1398
			goto End;
1399
		}
1400 1401
	}

1402 1403
	if (dev->bus) {
		if (dev->bus->pm) {
1404
			info = "bus ";
1405
			callback = pm_op(dev->bus->pm, state);
1406
		} else if (dev->bus->suspend) {
1407
			pm_dev_dbg(dev, state, "legacy bus ");
1408 1409
			error = legacy_suspend(dev, state, dev->bus->suspend,
						"legacy bus ");
1410
			goto End;
1411
		}
1412 1413
	}

1414
 Run:
1415 1416 1417 1418 1419
	if (!callback && dev->driver && dev->driver->pm) {
		info = "driver ";
		callback = pm_op(dev->driver->pm, state);
	}

1420 1421
	error = dpm_run_callback(callback, dev, state, info);

1422
 End:
1423
	if (!error) {
1424 1425
		struct device *parent = dev->parent;

1426
		dev->power.is_suspended = true;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		if (parent) {
			spin_lock_irq(&parent->power.lock);

			dev->parent->power.direct_complete = false;
			if (dev->power.wakeup_path
			    && !dev->parent->power.ignore_children)
				dev->parent->power.wakeup_path = true;

			spin_unlock_irq(&parent->power.lock);
		}
1437
	}
1438

1439
	device_unlock(dev);
1440
	dpm_watchdog_clear(&wd);
1441 1442

 Complete:
1443
	complete_all(&dev->power.completion);
1444
	if (error)
1445 1446
		async_error = error;

1447 1448 1449
	return error;
}

1450 1451 1452 1453 1454 1455
static void async_suspend(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = __device_suspend(dev, pm_transition, true);
1456 1457
	if (error) {
		dpm_save_failed_dev(dev_name(dev));
1458
		pm_dev_err(dev, pm_transition, " async", error);
1459
	}
1460 1461 1462 1463 1464 1465

	put_device(dev);
}

static int device_suspend(struct device *dev)
{
1466
	reinit_completion(&dev->power.completion);
1467

1468
	if (pm_async_enabled && dev->power.async_suspend) {
1469 1470 1471 1472 1473 1474 1475 1476
		get_device(dev);
		async_schedule(async_suspend, dev);
		return 0;
	}

	return __device_suspend(dev, pm_transition, false);
}

1477
/**
1478 1479
 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
 * @state: PM transition of the system being carried out.
1480
 */
1481
int dpm_suspend(pm_message_t state)
1482
{
1483
	ktime_t starttime = ktime_get();
1484 1485
	int error = 0;

1486
	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1487 1488
	might_sleep();

1489 1490
	cpufreq_suspend();

1491
	mutex_lock(&dpm_list_mtx);
1492 1493
	pm_transition = state;
	async_error = 0;
1494 1495
	while (!list_empty(&dpm_prepared_list)) {
		struct device *dev = to_device(dpm_prepared_list.prev);
1496

1497
		get_device(dev);
1498
		mutex_unlock(&dpm_list_mtx);
1499

1500
		error = device_suspend(dev);
1501

1502
		mutex_lock(&dpm_list_mtx);
1503
		if (error) {
1504
			pm_dev_err(dev, state, "", error);
1505
			dpm_save_failed_dev(dev_name(dev));
1506
			put_device(dev);
1507 1508
			break;
		}
1509
		if (!list_empty(&dev->power.entry))
1510
			list_move(&dev->power.entry, &dpm_suspended_list);
1511
		put_device(dev);
1512 1513
		if (async_error)
			break;
1514 1515
	}
	mutex_unlock(&dpm_list_mtx);
1516 1517 1518
	async_synchronize_full();
	if (!error)
		error = async_error;
1519 1520 1521 1522
	if (error) {
		suspend_stats.failed_suspend++;
		dpm_save_failed_step(SUSPEND_SUSPEND);
	} else
1523
		dpm_show_time(starttime, state, NULL);
1524
	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1525 1526 1527 1528
	return error;
}

/**
1529 1530 1531 1532 1533 1534
 * device_prepare - Prepare a device for system power transition.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
 *
 * Execute the ->prepare() callback(s) for given device.  No new children of the
 * device may be registered after this function has returned.
1535
 */
1536
static int device_prepare(struct device *dev, pm_message_t state)
1537
{
1538 1539
	int (*callback)(struct device *) = NULL;
	char *info = NULL;
1540
	int ret = 0;
1541

1542 1543 1544
	if (dev->power.syscore)
		return 0;

1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * If a device's parent goes into runtime suspend at the wrong time,
	 * it won't be possible to resume the device.  To prevent this we
	 * block runtime suspend here, during the prepare phase, and allow
	 * it again during the complete phase.
	 */
	pm_runtime_get_noresume(dev);

1553
	device_lock(dev);
1554

1555 1556
	dev->power.wakeup_path = device_may_wakeup(dev);

1557
	if (dev->pm_domain) {
1558 1559
		info = "preparing power domain ";
		callback = dev->pm_domain->ops.prepare;
1560
	} else if (dev->type && dev->type->pm) {
1561 1562
		info = "preparing type ";
		callback = dev->type->pm->prepare;
1563
	} else if (dev->class && dev->class->pm) {
1564 1565
		info = "preparing class ";
		callback = dev->class->pm->prepare;
1566
	} else if (dev->bus && dev->bus->pm) {
1567 1568 1569 1570 1571 1572 1573 1574 1575
		info = "preparing bus ";
		callback = dev->bus->pm->prepare;
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "preparing driver ";
		callback = dev->driver->pm->prepare;
	}

1576 1577
	if (callback) {
		trace_device_pm_callback_start(dev, info, state.event);
1578
		ret = callback(dev);
1579 1580
		trace_device_pm_callback_end(dev, ret);
	}
1581

1582
	device_unlock(dev);
1583

1584 1585
	if (ret < 0) {
		suspend_report_result(callback, ret);
1586
		pm_runtime_put(dev);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		return ret;
	}
	/*
	 * A positive return value from ->prepare() means "this device appears
	 * to be runtime-suspended and its state is fine, so if it really is
	 * runtime-suspended, you can leave it in that state provided that you
	 * will do the same thing with all of its descendants".  This only
	 * applies to suspend transitions, however.
	 */
	spin_lock_irq(&dev->power.lock);
	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
	spin_unlock_irq(&dev->power.lock);
	return 0;
1600
}
1601

1602
/**
1603 1604
 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
 * @state: PM transition of the system being carried out.
1605
 *
1606
 * Execute the ->prepare() callback(s) for all devices.
1607
 */
1608
int dpm_prepare(pm_message_t state)
1609 1610 1611
{
	int error = 0;

1612
	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1613 1614
	might_sleep();

1615 1616 1617 1618 1619 1620 1621
	mutex_lock(&dpm_list_mtx);
	while (!list_empty(&dpm_list)) {
		struct device *dev = to_device(dpm_list.next);

		get_device(dev);
		mutex_unlock(&dpm_list_mtx);

1622
		error = device_prepare(dev, state);
1623 1624 1625 1626 1627

		mutex_lock(&dpm_list_mtx);
		if (error) {
			if (error == -EAGAIN) {
				put_device(dev);
S
Sebastian Ott 已提交
1628
				error = 0;
1629 1630
				continue;
			}
1631 1632
			printk(KERN_INFO "PM: Device %s not prepared "
				"for power transition: code %d\n",
1633
				dev_name(dev), error);
1634 1635 1636
			put_device(dev);
			break;
		}
1637
		dev->power.is_prepared = true;
1638
		if (!list_empty(&dev->power.entry))
1639
			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1640 1641 1642
		put_device(dev);
	}
	mutex_unlock(&dpm_list_mtx);
1643
	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1644 1645 1646
	return error;
}

1647
/**
1648 1649
 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
 * @state: PM transition of the system being carried out.
1650
 *
1651 1652
 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
 * callbacks for them.
1653
 */
1654
int dpm_suspend_start(pm_message_t state)
1655 1656
{
	int error;
1657

1658
	error = dpm_prepare(state);
1659 1660 1661 1662
	if (error) {
		suspend_stats.failed_prepare++;
		dpm_save_failed_step(SUSPEND_PREPARE);
	} else
1663
		error = dpm_suspend(state);
1664 1665
	return error;
}
1666
EXPORT_SYMBOL_GPL(dpm_suspend_start);
1667 1668 1669

void __suspend_report_result(const char *function, void *fn, int ret)
{
1670 1671
	if (ret)
		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1672 1673
}
EXPORT_SYMBOL_GPL(__suspend_report_result);
1674 1675 1676 1677 1678 1679

/**
 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
 * @dev: Device to wait for.
 * @subordinate: Device that needs to wait for @dev.
 */
1680
int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1681 1682
{
	dpm_wait(dev, subordinate->power.async_suspend);
1683
	return async_error;
1684 1685
}
EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

/**
 * dpm_for_each_dev - device iterator.
 * @data: data for the callback.
 * @fn: function to be called for each device.
 *
 * Iterate over devices in dpm_list, and call @fn for each device,
 * passing it @data.
 */
void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
{
	struct device *dev;

	if (!fn)
		return;

	device_pm_lock();
	list_for_each_entry(dev, &dpm_list, power.entry)
		fn(dev, data);
	device_pm_unlock();
}
EXPORT_SYMBOL_GPL(dpm_for_each_dev);