debug_vm_pgtable.c 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// SPDX-License-Identifier: GPL-2.0-only
/*
 * This kernel test validates architecture page table helpers and
 * accessors and helps in verifying their continued compliance with
 * expected generic MM semantics.
 *
 * Copyright (C) 2019 ARM Ltd.
 *
 * Author: Anshuman Khandual <anshuman.khandual@arm.com>
 */
11
#define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__
12 13 14 15 16 17 18 19 20 21 22 23

#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kernel.h>
#include <linux/kconfig.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/mm_types.h>
#include <linux/module.h>
#include <linux/pfn_t.h>
#include <linux/printk.h>
24
#include <linux/pgtable.h>
25 26 27 28 29 30
#include <linux/random.h>
#include <linux/spinlock.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/start_kernel.h>
#include <linux/sched/mm.h>
31
#include <linux/io.h>
32 33

#include <asm/cacheflush.h>
34
#include <asm/pgalloc.h>
35
#include <asm/tlbflush.h>
36

37 38 39 40 41 42
/*
 * Please refer Documentation/vm/arch_pgtable_helpers.rst for the semantics
 * expectations that are being validated here. All future changes in here
 * or the documentation need to be in sync.
 */

43 44 45 46 47 48 49
#define VMFLAGS	(VM_READ|VM_WRITE|VM_EXEC)

/*
 * On s390 platform, the lower 4 bits are used to identify given page table
 * entry type. But these bits might affect the ability to clear entries with
 * pxx_clear() because of how dynamic page table folding works on s390. So
 * while loading up the entries do not change the lower 4 bits. It does not
50 51
 * have affect any other platform. Also avoid the 62nd bit on ppc64 that is
 * used to mark a pte entry.
52
 */
53 54 55 56 57 58 59 60
#define S390_SKIP_MASK		GENMASK(3, 0)
#if __BITS_PER_LONG == 64
#define PPC64_SKIP_MASK		GENMASK(62, 62)
#else
#define PPC64_SKIP_MASK		0x0
#endif
#define ARCH_SKIP_MASK (S390_SKIP_MASK | PPC64_SKIP_MASK)
#define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK)
61 62
#define RANDOM_NZVALUE	GENMASK(7, 0)

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
struct pgtable_debug_args {
	struct mm_struct	*mm;
	struct vm_area_struct	*vma;

	pgd_t			*pgdp;
	p4d_t			*p4dp;
	pud_t			*pudp;
	pmd_t			*pmdp;
	pte_t			*ptep;

	p4d_t			*start_p4dp;
	pud_t			*start_pudp;
	pmd_t			*start_pmdp;
	pgtable_t		start_ptep;

	unsigned long		vaddr;
	pgprot_t		page_prot;
	pgprot_t		page_prot_none;

	bool			is_contiguous_page;
	unsigned long		pud_pfn;
	unsigned long		pmd_pfn;
	unsigned long		pte_pfn;

	unsigned long		fixed_pgd_pfn;
	unsigned long		fixed_p4d_pfn;
	unsigned long		fixed_pud_pfn;
	unsigned long		fixed_pmd_pfn;
	unsigned long		fixed_pte_pfn;
};

94
static void __init pte_basic_tests(struct pgtable_debug_args *args, int idx)
95
{
96
	pgprot_t prot = protection_map[idx];
97
	pte_t pte = pfn_pte(args->fixed_pte_pfn, prot);
98
	unsigned long val = idx, *ptr = &val;
99

100
	pr_debug("Validating PTE basic (%pGv)\n", ptr);
101 102 103 104 105 106 107 108 109 110

	/*
	 * This test needs to be executed after the given page table entry
	 * is created with pfn_pte() to make sure that protection_map[idx]
	 * does not have the dirty bit enabled from the beginning. This is
	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
	 * dirty bit being set.
	 */
	WARN_ON(pte_dirty(pte_wrprotect(pte)));

111 112 113 114 115 116 117
	WARN_ON(!pte_same(pte, pte));
	WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte))));
	WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte))));
	WARN_ON(!pte_write(pte_mkwrite(pte_wrprotect(pte))));
	WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte))));
	WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte))));
	WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte))));
118 119
	WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte))));
	WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte))));
120 121
}

122
static void __init pte_advanced_tests(struct pgtable_debug_args *args)
123
{
124
	struct page *page;
125
	pte_t pte;
126

127 128 129 130
	/*
	 * Architectures optimize set_pte_at by avoiding TLB flush.
	 * This requires set_pte_at to be not used to update an
	 * existing pte entry. Clear pte before we do set_pte_at
131 132 133 134 135 136
	 *
	 * flush_dcache_page() is called after set_pte_at() to clear
	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
	 * when it's released and page allocation check will fail when
	 * the page is allocated again. For architectures other than ARM64,
	 * the unexpected overhead of cache flushing is acceptable.
137
	 */
138 139
	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
	if (!page)
140
		return;
141

142
	pr_debug("Validating PTE advanced\n");
143 144
	pte = pfn_pte(args->pte_pfn, args->page_prot);
	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
145
	flush_dcache_page(page);
146 147
	ptep_set_wrprotect(args->mm, args->vaddr, args->ptep);
	pte = ptep_get(args->ptep);
148
	WARN_ON(pte_write(pte));
149 150
	ptep_get_and_clear(args->mm, args->vaddr, args->ptep);
	pte = ptep_get(args->ptep);
151 152
	WARN_ON(!pte_none(pte));

153
	pte = pfn_pte(args->pte_pfn, args->page_prot);
154 155
	pte = pte_wrprotect(pte);
	pte = pte_mkclean(pte);
156
	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
157
	flush_dcache_page(page);
158 159
	pte = pte_mkwrite(pte);
	pte = pte_mkdirty(pte);
160 161
	ptep_set_access_flags(args->vma, args->vaddr, args->ptep, pte, 1);
	pte = ptep_get(args->ptep);
162
	WARN_ON(!(pte_write(pte) && pte_dirty(pte)));
163 164
	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
	pte = ptep_get(args->ptep);
165 166
	WARN_ON(!pte_none(pte));

167
	pte = pfn_pte(args->pte_pfn, args->page_prot);
168
	pte = pte_mkyoung(pte);
169
	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
170
	flush_dcache_page(page);
171 172
	ptep_test_and_clear_young(args->vma, args->vaddr, args->ptep);
	pte = ptep_get(args->ptep);
173 174 175
	WARN_ON(pte_young(pte));
}

176
static void __init pte_savedwrite_tests(struct pgtable_debug_args *args)
177
{
178
	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
179

180 181 182
	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
		return;

183
	pr_debug("Validating PTE saved write\n");
184 185 186
	WARN_ON(!pte_savedwrite(pte_mk_savedwrite(pte_clear_savedwrite(pte))));
	WARN_ON(pte_savedwrite(pte_clear_savedwrite(pte_mk_savedwrite(pte))));
}
187

188
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
189
static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx)
190
{
191 192
	pgprot_t prot = protection_map[idx];
	unsigned long val = idx, *ptr = &val;
193
	pmd_t pmd;
194

195 196 197
	if (!has_transparent_hugepage())
		return;

198
	pr_debug("Validating PMD basic (%pGv)\n", ptr);
199
	pmd = pfn_pmd(args->fixed_pmd_pfn, prot);
200 201 202 203 204 205 206 207 208 209 210

	/*
	 * This test needs to be executed after the given page table entry
	 * is created with pfn_pmd() to make sure that protection_map[idx]
	 * does not have the dirty bit enabled from the beginning. This is
	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
	 * dirty bit being set.
	 */
	WARN_ON(pmd_dirty(pmd_wrprotect(pmd)));


211 212 213 214 215 216 217
	WARN_ON(!pmd_same(pmd, pmd));
	WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd))));
	WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd))));
	WARN_ON(!pmd_write(pmd_mkwrite(pmd_wrprotect(pmd))));
	WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd))));
	WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd))));
	WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd))));
218 219
	WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd))));
	WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd))));
220 221 222 223 224 225 226
	/*
	 * A huge page does not point to next level page table
	 * entry. Hence this must qualify as pmd_bad().
	 */
	WARN_ON(!pmd_bad(pmd_mkhuge(pmd)));
}

227
static void __init pmd_advanced_tests(struct pgtable_debug_args *args)
228
{
229
	struct page *page;
230
	pmd_t pmd;
231
	unsigned long vaddr = args->vaddr;
232 233 234 235

	if (!has_transparent_hugepage())
		return;

236 237
	page = (args->pmd_pfn != ULONG_MAX) ? pfn_to_page(args->pmd_pfn) : NULL;
	if (!page)
238 239
		return;

240 241 242 243 244 245 246
	/*
	 * flush_dcache_page() is called after set_pmd_at() to clear
	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
	 * when it's released and page allocation check will fail when
	 * the page is allocated again. For architectures other than ARM64,
	 * the unexpected overhead of cache flushing is acceptable.
	 */
247
	pr_debug("Validating PMD advanced\n");
248
	/* Align the address wrt HPAGE_PMD_SIZE */
249
	vaddr &= HPAGE_PMD_MASK;
250

251
	pgtable_trans_huge_deposit(args->mm, args->pmdp, args->start_ptep);
252

253 254
	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
255
	flush_dcache_page(page);
256 257
	pmdp_set_wrprotect(args->mm, vaddr, args->pmdp);
	pmd = READ_ONCE(*args->pmdp);
258
	WARN_ON(pmd_write(pmd));
259 260
	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
	pmd = READ_ONCE(*args->pmdp);
261 262
	WARN_ON(!pmd_none(pmd));

263
	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
264 265
	pmd = pmd_wrprotect(pmd);
	pmd = pmd_mkclean(pmd);
266
	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
267
	flush_dcache_page(page);
268 269
	pmd = pmd_mkwrite(pmd);
	pmd = pmd_mkdirty(pmd);
270 271
	pmdp_set_access_flags(args->vma, vaddr, args->pmdp, pmd, 1);
	pmd = READ_ONCE(*args->pmdp);
272
	WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd)));
273 274
	pmdp_huge_get_and_clear_full(args->vma, vaddr, args->pmdp, 1);
	pmd = READ_ONCE(*args->pmdp);
275 276
	WARN_ON(!pmd_none(pmd));

277
	pmd = pmd_mkhuge(pfn_pmd(args->pmd_pfn, args->page_prot));
278
	pmd = pmd_mkyoung(pmd);
279
	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
280
	flush_dcache_page(page);
281 282
	pmdp_test_and_clear_young(args->vma, vaddr, args->pmdp);
	pmd = READ_ONCE(*args->pmdp);
283
	WARN_ON(pmd_young(pmd));
284

285
	/*  Clear the pte entries  */
286 287
	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
	pgtable_trans_huge_withdraw(args->mm, args->pmdp);
288 289
}

290
static void __init pmd_leaf_tests(struct pgtable_debug_args *args)
291
{
292 293 294 295
	pmd_t pmd;

	if (!has_transparent_hugepage())
		return;
296

297
	pr_debug("Validating PMD leaf\n");
298
	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
299

300 301 302 303 304 305 306
	/*
	 * PMD based THP is a leaf entry.
	 */
	pmd = pmd_mkhuge(pmd);
	WARN_ON(!pmd_leaf(pmd));
}

307
static void __init pmd_savedwrite_tests(struct pgtable_debug_args *args)
308
{
309
	pmd_t pmd;
310

311 312 313
	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
		return;

314 315 316
	if (!has_transparent_hugepage())
		return;

317
	pr_debug("Validating PMD saved write\n");
318
	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none);
319 320 321 322
	WARN_ON(!pmd_savedwrite(pmd_mk_savedwrite(pmd_clear_savedwrite(pmd))));
	WARN_ON(pmd_savedwrite(pmd_clear_savedwrite(pmd_mk_savedwrite(pmd))));
}

323
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
324
static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx)
325
{
326 327
	pgprot_t prot = protection_map[idx];
	unsigned long val = idx, *ptr = &val;
328
	pud_t pud;
329

330 331 332
	if (!has_transparent_hugepage())
		return;

333
	pr_debug("Validating PUD basic (%pGv)\n", ptr);
334
	pud = pfn_pud(args->fixed_pud_pfn, prot);
335 336 337 338 339 340 341 342 343 344

	/*
	 * This test needs to be executed after the given page table entry
	 * is created with pfn_pud() to make sure that protection_map[idx]
	 * does not have the dirty bit enabled from the beginning. This is
	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
	 * dirty bit being set.
	 */
	WARN_ON(pud_dirty(pud_wrprotect(pud)));

345 346
	WARN_ON(!pud_same(pud, pud));
	WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud))));
347 348
	WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud))));
	WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud))));
349 350 351
	WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud))));
	WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud))));
	WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud))));
352 353
	WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud))));
	WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud))));
354

355
	if (mm_pmd_folded(args->mm))
356 357 358 359 360 361 362 363
		return;

	/*
	 * A huge page does not point to next level page table
	 * entry. Hence this must qualify as pud_bad().
	 */
	WARN_ON(!pud_bad(pud_mkhuge(pud)));
}
364

365
static void __init pud_advanced_tests(struct pgtable_debug_args *args)
366
{
367
	struct page *page;
368
	unsigned long vaddr = args->vaddr;
369
	pud_t pud;
370 371 372 373

	if (!has_transparent_hugepage())
		return;

374 375
	page = (args->pud_pfn != ULONG_MAX) ? pfn_to_page(args->pud_pfn) : NULL;
	if (!page)
376 377
		return;

378 379 380 381 382 383 384
	/*
	 * flush_dcache_page() is called after set_pud_at() to clear
	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
	 * when it's released and page allocation check will fail when
	 * the page is allocated again. For architectures other than ARM64,
	 * the unexpected overhead of cache flushing is acceptable.
	 */
385
	pr_debug("Validating PUD advanced\n");
386
	/* Align the address wrt HPAGE_PUD_SIZE */
387
	vaddr &= HPAGE_PUD_MASK;
388

389 390
	pud = pfn_pud(args->pud_pfn, args->page_prot);
	set_pud_at(args->mm, vaddr, args->pudp, pud);
391
	flush_dcache_page(page);
392 393
	pudp_set_wrprotect(args->mm, vaddr, args->pudp);
	pud = READ_ONCE(*args->pudp);
394 395 396
	WARN_ON(pud_write(pud));

#ifndef __PAGETABLE_PMD_FOLDED
397 398
	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
	pud = READ_ONCE(*args->pudp);
399 400
	WARN_ON(!pud_none(pud));
#endif /* __PAGETABLE_PMD_FOLDED */
401
	pud = pfn_pud(args->pud_pfn, args->page_prot);
402 403
	pud = pud_wrprotect(pud);
	pud = pud_mkclean(pud);
404
	set_pud_at(args->mm, vaddr, args->pudp, pud);
405
	flush_dcache_page(page);
406 407
	pud = pud_mkwrite(pud);
	pud = pud_mkdirty(pud);
408 409
	pudp_set_access_flags(args->vma, vaddr, args->pudp, pud, 1);
	pud = READ_ONCE(*args->pudp);
410 411
	WARN_ON(!(pud_write(pud) && pud_dirty(pud)));

412
#ifndef __PAGETABLE_PMD_FOLDED
413 414
	pudp_huge_get_and_clear_full(args->mm, vaddr, args->pudp, 1);
	pud = READ_ONCE(*args->pudp);
415 416 417
	WARN_ON(!pud_none(pud));
#endif /* __PAGETABLE_PMD_FOLDED */

418
	pud = pfn_pud(args->pud_pfn, args->page_prot);
419
	pud = pud_mkyoung(pud);
420
	set_pud_at(args->mm, vaddr, args->pudp, pud);
421
	flush_dcache_page(page);
422 423
	pudp_test_and_clear_young(args->vma, vaddr, args->pudp);
	pud = READ_ONCE(*args->pudp);
424
	WARN_ON(pud_young(pud));
425

426
	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
427 428
}

429
static void __init pud_leaf_tests(struct pgtable_debug_args *args)
430
{
431 432 433 434
	pud_t pud;

	if (!has_transparent_hugepage())
		return;
435

436
	pr_debug("Validating PUD leaf\n");
437
	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
438 439 440 441 442 443
	/*
	 * PUD based THP is a leaf entry.
	 */
	pud = pud_mkhuge(pud);
	WARN_ON(!pud_leaf(pud));
}
444
#else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
445
static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
446
static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
447
static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
448 449
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
450 451
static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) { }
static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
452
static void __init pmd_advanced_tests(struct pgtable_debug_args *args) { }
453
static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
454 455 456
static void __init pmd_leaf_tests(struct pgtable_debug_args *args) { }
static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
static void __init pmd_savedwrite_tests(struct pgtable_debug_args *args) { }
457 458 459
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
460
static void __init pmd_huge_tests(struct pgtable_debug_args *args)
461
{
462 463
	pmd_t pmd;

464
	if (!arch_vmap_pmd_supported(args->page_prot))
465 466 467 468 469 470 471
		return;

	pr_debug("Validating PMD huge\n");
	/*
	 * X86 defined pmd_set_huge() verifies that the given
	 * PMD is not a populated non-leaf entry.
	 */
472 473 474 475
	WRITE_ONCE(*args->pmdp, __pmd(0));
	WARN_ON(!pmd_set_huge(args->pmdp, __pfn_to_phys(args->fixed_pmd_pfn), args->page_prot));
	WARN_ON(!pmd_clear_huge(args->pmdp));
	pmd = READ_ONCE(*args->pmdp);
476
	WARN_ON(!pmd_none(pmd));
477
}
478

479
static void __init pud_huge_tests(struct pgtable_debug_args *args)
480
{
481 482
	pud_t pud;

483
	if (!arch_vmap_pud_supported(args->page_prot))
484 485 486 487 488 489 490
		return;

	pr_debug("Validating PUD huge\n");
	/*
	 * X86 defined pud_set_huge() verifies that the given
	 * PUD is not a populated non-leaf entry.
	 */
491 492 493 494
	WRITE_ONCE(*args->pudp, __pud(0));
	WARN_ON(!pud_set_huge(args->pudp, __pfn_to_phys(args->fixed_pud_pfn), args->page_prot));
	WARN_ON(!pud_clear_huge(args->pudp));
	pud = READ_ONCE(*args->pudp);
495
	WARN_ON(!pud_none(pud));
496
}
497
#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
498
static void __init pmd_huge_tests(struct pgtable_debug_args *args) { }
499
static void __init pud_huge_tests(struct pgtable_debug_args *args) { }
500
#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
501

502
static void __init p4d_basic_tests(struct pgtable_debug_args *args)
503 504 505
{
	p4d_t p4d;

506
	pr_debug("Validating P4D basic\n");
507 508 509 510
	memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t));
	WARN_ON(!p4d_same(p4d, p4d));
}

511
static void __init pgd_basic_tests(struct pgtable_debug_args *args)
512 513 514
{
	pgd_t pgd;

515
	pr_debug("Validating PGD basic\n");
516 517 518 519 520
	memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t));
	WARN_ON(!pgd_same(pgd, pgd));
}

#ifndef __PAGETABLE_PUD_FOLDED
521
static void __init pud_clear_tests(struct pgtable_debug_args *args)
522
{
523
	pud_t pud = READ_ONCE(*args->pudp);
524

525
	if (mm_pmd_folded(args->mm))
526 527
		return;

528
	pr_debug("Validating PUD clear\n");
529
	pud = __pud(pud_val(pud) | RANDOM_ORVALUE);
530 531 532
	WRITE_ONCE(*args->pudp, pud);
	pud_clear(args->pudp);
	pud = READ_ONCE(*args->pudp);
533 534 535
	WARN_ON(!pud_none(pud));
}

536
static void __init pud_populate_tests(struct pgtable_debug_args *args)
537 538 539
{
	pud_t pud;

540
	if (mm_pmd_folded(args->mm))
541
		return;
542 543

	pr_debug("Validating PUD populate\n");
544 545 546 547
	/*
	 * This entry points to next level page table page.
	 * Hence this must not qualify as pud_bad().
	 */
548 549
	pud_populate(args->mm, args->pudp, args->start_pmdp);
	pud = READ_ONCE(*args->pudp);
550 551 552
	WARN_ON(pud_bad(pud));
}
#else  /* !__PAGETABLE_PUD_FOLDED */
553 554
static void __init pud_clear_tests(struct pgtable_debug_args *args) { }
static void __init pud_populate_tests(struct pgtable_debug_args *args) { }
555 556 557
#endif /* PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_P4D_FOLDED
558
static void __init p4d_clear_tests(struct pgtable_debug_args *args)
559
{
560
	p4d_t p4d = READ_ONCE(*args->p4dp);
561

562
	if (mm_pud_folded(args->mm))
563 564
		return;

565
	pr_debug("Validating P4D clear\n");
566
	p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE);
567 568 569
	WRITE_ONCE(*args->p4dp, p4d);
	p4d_clear(args->p4dp);
	p4d = READ_ONCE(*args->p4dp);
570 571 572
	WARN_ON(!p4d_none(p4d));
}

573
static void __init p4d_populate_tests(struct pgtable_debug_args *args)
574 575 576
{
	p4d_t p4d;

577
	if (mm_pud_folded(args->mm))
578 579
		return;

580
	pr_debug("Validating P4D populate\n");
581 582 583 584
	/*
	 * This entry points to next level page table page.
	 * Hence this must not qualify as p4d_bad().
	 */
585 586 587 588
	pud_clear(args->pudp);
	p4d_clear(args->p4dp);
	p4d_populate(args->mm, args->p4dp, args->start_pudp);
	p4d = READ_ONCE(*args->p4dp);
589 590 591
	WARN_ON(p4d_bad(p4d));
}

592
static void __init pgd_clear_tests(struct pgtable_debug_args *args)
593
{
594
	pgd_t pgd = READ_ONCE(*(args->pgdp));
595

596
	if (mm_p4d_folded(args->mm))
597 598
		return;

599
	pr_debug("Validating PGD clear\n");
600
	pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE);
601 602 603
	WRITE_ONCE(*args->pgdp, pgd);
	pgd_clear(args->pgdp);
	pgd = READ_ONCE(*args->pgdp);
604 605 606
	WARN_ON(!pgd_none(pgd));
}

607
static void __init pgd_populate_tests(struct pgtable_debug_args *args)
608 609 610
{
	pgd_t pgd;

611
	if (mm_p4d_folded(args->mm))
612 613
		return;

614
	pr_debug("Validating PGD populate\n");
615 616 617 618
	/*
	 * This entry points to next level page table page.
	 * Hence this must not qualify as pgd_bad().
	 */
619 620 621 622
	p4d_clear(args->p4dp);
	pgd_clear(args->pgdp);
	pgd_populate(args->mm, args->pgdp, args->start_p4dp);
	pgd = READ_ONCE(*args->pgdp);
623 624 625
	WARN_ON(pgd_bad(pgd));
}
#else  /* !__PAGETABLE_P4D_FOLDED */
626 627 628 629
static void __init p4d_clear_tests(struct pgtable_debug_args *args) { }
static void __init pgd_clear_tests(struct pgtable_debug_args *args) { }
static void __init p4d_populate_tests(struct pgtable_debug_args *args) { }
static void __init pgd_populate_tests(struct pgtable_debug_args *args) { }
630 631
#endif /* PAGETABLE_P4D_FOLDED */

632
static void __init pte_clear_tests(struct pgtable_debug_args *args)
633
{
634
	struct page *page;
635 636
	pte_t pte = pfn_pte(args->pte_pfn, args->page_prot);

637 638
	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
	if (!page)
639
		return;
640

641 642 643 644 645 646 647
	/*
	 * flush_dcache_page() is called after set_pte_at() to clear
	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
	 * when it's released and page allocation check will fail when
	 * the page is allocated again. For architectures other than ARM64,
	 * the unexpected overhead of cache flushing is acceptable.
	 */
648
	pr_debug("Validating PTE clear\n");
649
#ifndef CONFIG_RISCV
650
	pte = __pte(pte_val(pte) | RANDOM_ORVALUE);
651
#endif
652
	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
653
	flush_dcache_page(page);
654
	barrier();
655 656
	pte_clear(args->mm, args->vaddr, args->ptep);
	pte = ptep_get(args->ptep);
657 658 659
	WARN_ON(!pte_none(pte));
}

660
static void __init pmd_clear_tests(struct pgtable_debug_args *args)
661
{
662
	pmd_t pmd = READ_ONCE(*args->pmdp);
663

664
	pr_debug("Validating PMD clear\n");
665
	pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE);
666 667 668
	WRITE_ONCE(*args->pmdp, pmd);
	pmd_clear(args->pmdp);
	pmd = READ_ONCE(*args->pmdp);
669 670 671
	WARN_ON(!pmd_none(pmd));
}

672
static void __init pmd_populate_tests(struct pgtable_debug_args *args)
673 674 675
{
	pmd_t pmd;

676
	pr_debug("Validating PMD populate\n");
677 678 679 680
	/*
	 * This entry points to next level page table page.
	 * Hence this must not qualify as pmd_bad().
	 */
681 682
	pmd_populate(args->mm, args->pmdp, args->start_ptep);
	pmd = READ_ONCE(*args->pmdp);
683 684 685
	WARN_ON(pmd_bad(pmd));
}

686
static void __init pte_special_tests(struct pgtable_debug_args *args)
687
{
688
	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
689 690 691 692

	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL))
		return;

693
	pr_debug("Validating PTE special\n");
694 695 696
	WARN_ON(!pte_special(pte_mkspecial(pte)));
}

697
static void __init pte_protnone_tests(struct pgtable_debug_args *args)
698
{
699
	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
700 701 702 703

	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
		return;

704
	pr_debug("Validating PTE protnone\n");
705 706 707 708 709
	WARN_ON(!pte_protnone(pte));
	WARN_ON(!pte_present(pte));
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
710
static void __init pmd_protnone_tests(struct pgtable_debug_args *args)
711
{
712
	pmd_t pmd;
713 714 715 716

	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
		return;

717 718 719
	if (!has_transparent_hugepage())
		return;

720
	pr_debug("Validating PMD protnone\n");
721
	pmd = pmd_mkhuge(pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none));
722 723 724 725
	WARN_ON(!pmd_protnone(pmd));
	WARN_ON(!pmd_present(pmd));
}
#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
726
static void __init pmd_protnone_tests(struct pgtable_debug_args *args) { }
727 728 729
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
730
static void __init pte_devmap_tests(struct pgtable_debug_args *args)
731
{
732
	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
733

734
	pr_debug("Validating PTE devmap\n");
735 736 737 738
	WARN_ON(!pte_devmap(pte_mkdevmap(pte)));
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
739
static void __init pmd_devmap_tests(struct pgtable_debug_args *args)
740
{
741 742 743 744
	pmd_t pmd;

	if (!has_transparent_hugepage())
		return;
745

746
	pr_debug("Validating PMD devmap\n");
747
	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
748 749 750 751
	WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd)));
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
752
static void __init pud_devmap_tests(struct pgtable_debug_args *args)
753
{
754 755 756 757
	pud_t pud;

	if (!has_transparent_hugepage())
		return;
758

759
	pr_debug("Validating PUD devmap\n");
760
	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
761 762 763
	WARN_ON(!pud_devmap(pud_mkdevmap(pud)));
}
#else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
764
static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
765 766
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
#else  /* CONFIG_TRANSPARENT_HUGEPAGE */
767 768
static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
769 770
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#else
771 772 773
static void __init pte_devmap_tests(struct pgtable_debug_args *args) { }
static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
774 775
#endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */

776
static void __init pte_soft_dirty_tests(struct pgtable_debug_args *args)
777
{
778
	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
779 780 781 782

	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
		return;

783
	pr_debug("Validating PTE soft dirty\n");
784 785 786 787
	WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte)));
	WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte)));
}

788
static void __init pte_swap_soft_dirty_tests(struct pgtable_debug_args *args)
789
{
790
	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
791 792 793 794

	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
		return;

795
	pr_debug("Validating PTE swap soft dirty\n");
796 797 798 799 800
	WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte)));
	WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte)));
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
801
static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args)
802
{
803
	pmd_t pmd;
804 805 806 807

	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
		return;

808 809 810
	if (!has_transparent_hugepage())
		return;

811
	pr_debug("Validating PMD soft dirty\n");
812
	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
813 814 815 816
	WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd)));
	WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd)));
}

817
static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args)
818
{
819
	pmd_t pmd;
820 821 822 823 824

	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) ||
		!IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION))
		return;

825 826 827
	if (!has_transparent_hugepage())
		return;

828
	pr_debug("Validating PMD swap soft dirty\n");
829
	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
830 831 832
	WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd)));
	WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd)));
}
833
#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
834 835
static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) { }
static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) { }
836
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
837

838
static void __init pte_swap_tests(struct pgtable_debug_args *args)
839 840 841 842
{
	swp_entry_t swp;
	pte_t pte;

843
	pr_debug("Validating PTE swap\n");
844
	pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
845 846
	swp = __pte_to_swp_entry(pte);
	pte = __swp_entry_to_pte(swp);
847
	WARN_ON(args->fixed_pte_pfn != pte_pfn(pte));
848 849 850
}

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
851
static void __init pmd_swap_tests(struct pgtable_debug_args *args)
852 853 854 855
{
	swp_entry_t swp;
	pmd_t pmd;

856 857 858
	if (!has_transparent_hugepage())
		return;

859
	pr_debug("Validating PMD swap\n");
860
	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
861 862
	swp = __pmd_to_swp_entry(pmd);
	pmd = __swp_entry_to_pmd(swp);
863
	WARN_ON(args->fixed_pmd_pfn != pmd_pfn(pmd));
864 865
}
#else  /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */
866
static void __init pmd_swap_tests(struct pgtable_debug_args *args) { }
867 868
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */

869
static void __init swap_migration_tests(struct pgtable_debug_args *args)
870 871 872 873 874 875
{
	struct page *page;
	swp_entry_t swp;

	if (!IS_ENABLED(CONFIG_MIGRATION))
		return;
876

877 878 879 880
	/*
	 * swap_migration_tests() requires a dedicated page as it needs to
	 * be locked before creating a migration entry from it. Locking the
	 * page that actually maps kernel text ('start_kernel') can be real
881 882
	 * problematic. Lets use the allocated page explicitly for this
	 * purpose.
883
	 */
884 885
	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
	if (!page)
886
		return;
887 888

	pr_debug("Validating swap migration\n");
889 890

	/*
891 892
	 * make_[readable|writable]_migration_entry() expects given page to
	 * be locked, otherwise it stumbles upon a BUG_ON().
893 894
	 */
	__SetPageLocked(page);
895
	swp = make_writable_migration_entry(page_to_pfn(page));
896
	WARN_ON(!is_migration_entry(swp));
897
	WARN_ON(!is_writable_migration_entry(swp));
898

899
	swp = make_readable_migration_entry(swp_offset(swp));
900
	WARN_ON(!is_migration_entry(swp));
901
	WARN_ON(is_writable_migration_entry(swp));
902

903
	swp = make_readable_migration_entry(page_to_pfn(page));
904
	WARN_ON(!is_migration_entry(swp));
905
	WARN_ON(is_writable_migration_entry(swp));
906 907 908 909
	__ClearPageLocked(page);
}

#ifdef CONFIG_HUGETLB_PAGE
910
static void __init hugetlb_basic_tests(struct pgtable_debug_args *args)
911 912 913 914
{
	struct page *page;
	pte_t pte;

915
	pr_debug("Validating HugeTLB basic\n");
916 917 918 919
	/*
	 * Accessing the page associated with the pfn is safe here,
	 * as it was previously derived from a real kernel symbol.
	 */
920 921
	page = pfn_to_page(args->fixed_pmd_pfn);
	pte = mk_huge_pte(page, args->page_prot);
922 923 924 925 926 927

	WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte)));
	WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte))));
	WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte))));

#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
928
	pte = pfn_pte(args->fixed_pmd_pfn, args->page_prot);
929 930 931 932 933

	WARN_ON(!pte_huge(pte_mkhuge(pte)));
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
}
#else  /* !CONFIG_HUGETLB_PAGE */
934
static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) { }
935 936 937
#endif /* CONFIG_HUGETLB_PAGE */

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
938
static void __init pmd_thp_tests(struct pgtable_debug_args *args)
939 940 941 942 943 944
{
	pmd_t pmd;

	if (!has_transparent_hugepage())
		return;

945
	pr_debug("Validating PMD based THP\n");
946 947 948 949 950 951 952 953 954 955 956
	/*
	 * pmd_trans_huge() and pmd_present() must return positive after
	 * MMU invalidation with pmd_mkinvalid(). This behavior is an
	 * optimization for transparent huge page. pmd_trans_huge() must
	 * be true if pmd_page() returns a valid THP to avoid taking the
	 * pmd_lock when others walk over non transhuge pmds (i.e. there
	 * are no THP allocated). Especially when splitting a THP and
	 * removing the present bit from the pmd, pmd_trans_huge() still
	 * needs to return true. pmd_present() should be true whenever
	 * pmd_trans_huge() returns true.
	 */
957
	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
958 959 960 961 962 963 964 965 966
	WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd)));

#ifndef __HAVE_ARCH_PMDP_INVALIDATE
	WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd))));
	WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd))));
#endif /* __HAVE_ARCH_PMDP_INVALIDATE */
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
967
static void __init pud_thp_tests(struct pgtable_debug_args *args)
968 969 970 971 972 973
{
	pud_t pud;

	if (!has_transparent_hugepage())
		return;

974
	pr_debug("Validating PUD based THP\n");
975
	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
976 977 978 979 980 981 982 983 984 985 986
	WARN_ON(!pud_trans_huge(pud_mkhuge(pud)));

	/*
	 * pud_mkinvalid() has been dropped for now. Enable back
	 * these tests when it comes back with a modified pud_present().
	 *
	 * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud))));
	 * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud))));
	 */
}
#else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
987
static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
988 989
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
990 991
static void __init pmd_thp_tests(struct pgtable_debug_args *args) { }
static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
992 993
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static unsigned long __init get_random_vaddr(void)
{
	unsigned long random_vaddr, random_pages, total_user_pages;

	total_user_pages = (TASK_SIZE - FIRST_USER_ADDRESS) / PAGE_SIZE;

	random_pages = get_random_long() % total_user_pages;
	random_vaddr = FIRST_USER_ADDRESS + random_pages * PAGE_SIZE;

	return random_vaddr;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static void __init destroy_args(struct pgtable_debug_args *args)
{
	struct page *page = NULL;

	/* Free (huge) page */
	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
	    IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
	    has_transparent_hugepage() &&
	    args->pud_pfn != ULONG_MAX) {
		if (args->is_contiguous_page) {
			free_contig_range(args->pud_pfn,
					  (1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT)));
		} else {
			page = pfn_to_page(args->pud_pfn);
			__free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT);
		}

		args->pud_pfn = ULONG_MAX;
		args->pmd_pfn = ULONG_MAX;
		args->pte_pfn = ULONG_MAX;
	}

	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
	    has_transparent_hugepage() &&
	    args->pmd_pfn != ULONG_MAX) {
		if (args->is_contiguous_page) {
			free_contig_range(args->pmd_pfn, (1 << HPAGE_PMD_ORDER));
		} else {
			page = pfn_to_page(args->pmd_pfn);
			__free_pages(page, HPAGE_PMD_ORDER);
		}

		args->pmd_pfn = ULONG_MAX;
		args->pte_pfn = ULONG_MAX;
	}

	if (args->pte_pfn != ULONG_MAX) {
		page = pfn_to_page(args->pte_pfn);
		__free_pages(page, 0);

		args->pte_pfn = ULONG_MAX;
	}

	/* Free page table entries */
	if (args->start_ptep) {
		pte_free(args->mm, args->start_ptep);
		mm_dec_nr_ptes(args->mm);
	}

	if (args->start_pmdp) {
		pmd_free(args->mm, args->start_pmdp);
		mm_dec_nr_pmds(args->mm);
	}

	if (args->start_pudp) {
		pud_free(args->mm, args->start_pudp);
		mm_dec_nr_puds(args->mm);
	}

	if (args->start_p4dp)
		p4d_free(args->mm, args->start_p4dp);

	/* Free vma and mm struct */
	if (args->vma)
		vm_area_free(args->vma);

	if (args->mm)
		mmdrop(args->mm);
}

static struct page * __init
debug_vm_pgtable_alloc_huge_page(struct pgtable_debug_args *args, int order)
{
	struct page *page = NULL;

#ifdef CONFIG_CONTIG_ALLOC
	if (order >= MAX_ORDER) {
		page = alloc_contig_pages((1 << order), GFP_KERNEL,
					  first_online_node, NULL);
		if (page) {
			args->is_contiguous_page = true;
			return page;
		}
	}
#endif

	if (order < MAX_ORDER)
		page = alloc_pages(GFP_KERNEL, order);

	return page;
}

static int __init init_args(struct pgtable_debug_args *args)
{
	struct page *page = NULL;
	phys_addr_t phys;
	int ret = 0;

	/*
	 * Initialize the debugging data.
	 *
1107 1108 1109
	 * protection_map[0] (or even protection_map[8]) will help create
	 * page table entries with PROT_NONE permission as required for
	 * pxx_protnone_tests().
1110 1111 1112 1113
	 */
	memset(args, 0, sizeof(*args));
	args->vaddr              = get_random_vaddr();
	args->page_prot          = vm_get_page_prot(VMFLAGS);
1114
	args->page_prot_none     = protection_map[0];
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	args->is_contiguous_page = false;
	args->pud_pfn            = ULONG_MAX;
	args->pmd_pfn            = ULONG_MAX;
	args->pte_pfn            = ULONG_MAX;
	args->fixed_pgd_pfn      = ULONG_MAX;
	args->fixed_p4d_pfn      = ULONG_MAX;
	args->fixed_pud_pfn      = ULONG_MAX;
	args->fixed_pmd_pfn      = ULONG_MAX;
	args->fixed_pte_pfn      = ULONG_MAX;

	/* Allocate mm and vma */
	args->mm = mm_alloc();
	if (!args->mm) {
		pr_err("Failed to allocate mm struct\n");
		ret = -ENOMEM;
		goto error;
	}

	args->vma = vm_area_alloc(args->mm);
	if (!args->vma) {
		pr_err("Failed to allocate vma\n");
		ret = -ENOMEM;
		goto error;
	}

	/*
	 * Allocate page table entries. They will be modified in the tests.
	 * Lets save the page table entries so that they can be released
	 * when the tests are completed.
	 */
	args->pgdp = pgd_offset(args->mm, args->vaddr);
	args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
	if (!args->p4dp) {
		pr_err("Failed to allocate p4d entries\n");
		ret = -ENOMEM;
		goto error;
	}
	args->start_p4dp = p4d_offset(args->pgdp, 0UL);
	WARN_ON(!args->start_p4dp);

	args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr);
	if (!args->pudp) {
		pr_err("Failed to allocate pud entries\n");
		ret = -ENOMEM;
		goto error;
	}
	args->start_pudp = pud_offset(args->p4dp, 0UL);
	WARN_ON(!args->start_pudp);

	args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr);
	if (!args->pmdp) {
		pr_err("Failed to allocate pmd entries\n");
		ret = -ENOMEM;
		goto error;
	}
	args->start_pmdp = pmd_offset(args->pudp, 0UL);
	WARN_ON(!args->start_pmdp);

	if (pte_alloc(args->mm, args->pmdp)) {
		pr_err("Failed to allocate pte entries\n");
		ret = -ENOMEM;
		goto error;
	}
	args->start_ptep = pmd_pgtable(READ_ONCE(*args->pmdp));
	WARN_ON(!args->start_ptep);

	/*
	 * PFN for mapping at PTE level is determined from a standard kernel
	 * text symbol. But pfns for higher page table levels are derived by
	 * masking lower bits of this real pfn. These derived pfns might not
	 * exist on the platform but that does not really matter as pfn_pxx()
	 * helpers will still create appropriate entries for the test. This
	 * helps avoid large memory block allocations to be used for mapping
	 * at higher page table levels in some of the tests.
	 */
	phys = __pa_symbol(&start_kernel);
	args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK);
	args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK);
	args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK);
	args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK);
	args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK);
	WARN_ON(!pfn_valid(args->fixed_pte_pfn));

	/*
	 * Allocate (huge) pages because some of the tests need to access
	 * the data in the pages. The corresponding tests will be skipped
	 * if we fail to allocate (huge) pages.
	 */
	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
	    IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
	    has_transparent_hugepage()) {
		page = debug_vm_pgtable_alloc_huge_page(args,
				HPAGE_PUD_SHIFT - PAGE_SHIFT);
		if (page) {
			args->pud_pfn = page_to_pfn(page);
			args->pmd_pfn = args->pud_pfn;
			args->pte_pfn = args->pud_pfn;
			return 0;
		}
	}

	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
	    has_transparent_hugepage()) {
		page = debug_vm_pgtable_alloc_huge_page(args, HPAGE_PMD_ORDER);
		if (page) {
			args->pmd_pfn = page_to_pfn(page);
			args->pte_pfn = args->pmd_pfn;
			return 0;
		}
	}

	page = alloc_pages(GFP_KERNEL, 0);
	if (page)
		args->pte_pfn = page_to_pfn(page);

	return 0;

error:
	destroy_args(args);
	return ret;
}

1237 1238
static int __init debug_vm_pgtable(void)
{
1239
	struct pgtable_debug_args args;
1240
	spinlock_t *ptl = NULL;
1241
	int idx, ret;
1242 1243

	pr_info("Validating architecture page table helpers\n");
1244 1245 1246 1247
	ret = init_args(&args);
	if (ret)
		return ret;

1248 1249 1250 1251 1252 1253 1254
	/*
	 * Iterate over the protection_map[] to make sure that all
	 * the basic page table transformation validations just hold
	 * true irrespective of the starting protection value for a
	 * given page table entry.
	 */
	for (idx = 0; idx < ARRAY_SIZE(protection_map); idx++) {
1255 1256 1257
		pte_basic_tests(&args, idx);
		pmd_basic_tests(&args, idx);
		pud_basic_tests(&args, idx);
1258 1259 1260 1261 1262 1263 1264 1265 1266
	}

	/*
	 * Both P4D and PGD level tests are very basic which do not
	 * involve creating page table entries from the protection
	 * value and the given pfn. Hence just keep them out from
	 * the above iteration for now to save some test execution
	 * time.
	 */
1267 1268
	p4d_basic_tests(&args);
	pgd_basic_tests(&args);
1269

1270 1271
	pmd_leaf_tests(&args);
	pud_leaf_tests(&args);
1272

1273 1274
	pte_savedwrite_tests(&args);
	pmd_savedwrite_tests(&args);
1275

1276 1277 1278
	pte_special_tests(&args);
	pte_protnone_tests(&args);
	pmd_protnone_tests(&args);
1279

1280 1281 1282
	pte_devmap_tests(&args);
	pmd_devmap_tests(&args);
	pud_devmap_tests(&args);
1283

1284 1285 1286 1287
	pte_soft_dirty_tests(&args);
	pmd_soft_dirty_tests(&args);
	pte_swap_soft_dirty_tests(&args);
	pmd_swap_soft_dirty_tests(&args);
1288

1289 1290
	pte_swap_tests(&args);
	pmd_swap_tests(&args);
1291

1292
	swap_migration_tests(&args);
1293

1294 1295
	pmd_thp_tests(&args);
	pud_thp_tests(&args);
1296

1297
	hugetlb_basic_tests(&args);
1298

1299 1300 1301 1302
	/*
	 * Page table modifying tests. They need to hold
	 * proper page table lock.
	 */
1303

1304 1305 1306 1307
	args.ptep = pte_offset_map_lock(args.mm, args.pmdp, args.vaddr, &ptl);
	pte_clear_tests(&args);
	pte_advanced_tests(&args);
	pte_unmap_unlock(args.ptep, ptl);
1308

1309 1310 1311 1312 1313
	ptl = pmd_lock(args.mm, args.pmdp);
	pmd_clear_tests(&args);
	pmd_advanced_tests(&args);
	pmd_huge_tests(&args);
	pmd_populate_tests(&args);
1314 1315
	spin_unlock(ptl);

1316 1317 1318 1319 1320
	ptl = pud_lock(args.mm, args.pudp);
	pud_clear_tests(&args);
	pud_advanced_tests(&args);
	pud_huge_tests(&args);
	pud_populate_tests(&args);
1321
	spin_unlock(ptl);
1322

1323 1324 1325 1326 1327 1328
	spin_lock(&(args.mm->page_table_lock));
	p4d_clear_tests(&args);
	pgd_clear_tests(&args);
	p4d_populate_tests(&args);
	pgd_populate_tests(&args);
	spin_unlock(&(args.mm->page_table_lock));
1329

1330
	destroy_args(&args);
1331 1332 1333
	return 0;
}
late_initcall(debug_vm_pgtable);