crypto.c 65.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// SPDX-License-Identifier: GPL-2.0
/**
 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
 *
 * Copyright (c) 2019, Ericsson AB
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the names of the copyright holders nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * Alternatively, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") version 2 as published by the Free
 * Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <crypto/aead.h>
#include <crypto/aes.h>
39
#include <crypto/rng.h>
40
#include "crypto.h"
41 42
#include "msg.h"
#include "bcast.h"
43

44
#define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
45
#define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
46
#define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
47 48
#define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */

49 50 51
#define TIPC_MAX_TFMS_DEF	10
#define TIPC_MAX_TFMS_LIM	1000

52 53
#define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */

54 55 56 57
/**
 * TIPC Key ids
 */
enum {
58 59 60
	KEY_MASTER = 0,
	KEY_MIN = KEY_MASTER,
	KEY_1 = 1,
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	KEY_2,
	KEY_3,
	KEY_MAX = KEY_3,
};

/**
 * TIPC Crypto statistics
 */
enum {
	STAT_OK,
	STAT_NOK,
	STAT_ASYNC,
	STAT_ASYNC_OK,
	STAT_ASYNC_NOK,
	STAT_BADKEYS, /* tx only */
	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
	STAT_NOKEYS,
	STAT_SWITCHES,

	MAX_STATS,
};

/* TIPC crypto statistics' header */
static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
					"async_nok", "badmsgs", "nokeys",
					"switches"};

/* Max TFMs number per key */
int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 91
/* Key exchange switch, default: on */
int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

/**
 * struct tipc_key - TIPC keys' status indicator
 *
 *         7     6     5     4     3     2     1     0
 *      +-----+-----+-----+-----+-----+-----+-----+-----+
 * key: | (reserved)|passive idx| active idx|pending idx|
 *      +-----+-----+-----+-----+-----+-----+-----+-----+
 */
struct tipc_key {
#define KEY_BITS (2)
#define KEY_MASK ((1 << KEY_BITS) - 1)
	union {
		struct {
#if defined(__LITTLE_ENDIAN_BITFIELD)
			u8 pending:2,
			   active:2,
			   passive:2, /* rx only */
			   reserved:2;
#elif defined(__BIG_ENDIAN_BITFIELD)
			u8 reserved:2,
			   passive:2, /* rx only */
			   active:2,
			   pending:2;
#else
#error  "Please fix <asm/byteorder.h>"
#endif
		} __packed;
		u8 keys;
	};
};

/**
 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 */
struct tipc_tfm {
	struct crypto_aead *tfm;
	struct list_head list;
};

/**
 * struct tipc_aead - TIPC AEAD key structure
 * @tfm_entry: per-cpu pointer to one entry in TFM list
 * @crypto: TIPC crypto owns this key
 * @cloned: reference to the source key in case cloning
 * @users: the number of the key users (TX/RX)
 * @salt: the key's SALT value
 * @authsize: authentication tag size (max = 16)
 * @mode: crypto mode is applied to the key
 * @hint[]: a hint for user key
 * @rcu: struct rcu_head
143 144
 * @key: the aead key
 * @gen: the key's generation
145 146 147 148 149 150 151 152 153 154 155 156
 * @seqno: the key seqno (cluster scope)
 * @refcnt: the key reference counter
 */
struct tipc_aead {
#define TIPC_AEAD_HINT_LEN (5)
	struct tipc_tfm * __percpu *tfm_entry;
	struct tipc_crypto *crypto;
	struct tipc_aead *cloned;
	atomic_t users;
	u32 salt;
	u8 authsize;
	u8 mode;
157
	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
158
	struct rcu_head rcu;
159 160
	struct tipc_aead_key *key;
	u16 gen;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	atomic64_t seqno ____cacheline_aligned;
	refcount_t refcnt ____cacheline_aligned;

} ____cacheline_aligned;

/**
 * struct tipc_crypto_stats - TIPC Crypto statistics
 */
struct tipc_crypto_stats {
	unsigned int stat[MAX_STATS];
};

/**
 * struct tipc_crypto - TIPC TX/RX crypto structure
 * @net: struct net
 * @node: TIPC node (RX)
 * @aead: array of pointers to AEAD keys for encryption/decryption
 * @peer_rx_active: replicated peer RX active key index
180
 * @key_gen: TX/RX key generation
181
 * @key: the key states
182 183 184 185 186
 * @skey_mode: session key's mode
 * @skey: received session key
 * @wq: common workqueue on TX crypto
 * @work: delayed work sched for TX/RX
 * @key_distr: key distributing state
187
 * @rekeying_intv: rekeying interval (in minutes)
188
 * @stats: the crypto statistics
189
 * @name: the crypto name
190 191
 * @sndnxt: the per-peer sndnxt (TX)
 * @timer1: general timer 1 (jiffies)
192
 * @timer2: general timer 2 (jiffies)
193 194 195
 * @working: the crypto is working or not
 * @key_master: flag indicates if master key exists
 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
196
 * @nokey: no key indication
197 198 199 200 201
 * @lock: tipc_key lock
 */
struct tipc_crypto {
	struct net *net;
	struct tipc_node *node;
202
	struct tipc_aead __rcu *aead[KEY_MAX + 1];
203
	atomic_t peer_rx_active;
204
	u16 key_gen;
205
	struct tipc_key key;
206 207 208 209 210 211 212
	u8 skey_mode;
	struct tipc_aead_key *skey;
	struct workqueue_struct *wq;
	struct delayed_work work;
#define KEY_DISTR_SCHED		1
#define KEY_DISTR_COMPL		2
	atomic_t key_distr;
213
	u32 rekeying_intv;
214

215
	struct tipc_crypto_stats __percpu *stats;
216
	char name[48];
217 218 219 220

	atomic64_t sndnxt ____cacheline_aligned;
	unsigned long timer1;
	unsigned long timer2;
221 222 223 224 225
	union {
		struct {
			u8 working:1;
			u8 key_master:1;
			u8 legacy_user:1;
226
			u8 nokey: 1;
227 228 229
		};
		u8 flags;
	};
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	spinlock_t lock; /* crypto lock */

} ____cacheline_aligned;

/* struct tipc_crypto_tx_ctx - TX context for callbacks */
struct tipc_crypto_tx_ctx {
	struct tipc_aead *aead;
	struct tipc_bearer *bearer;
	struct tipc_media_addr dst;
};

/* struct tipc_crypto_rx_ctx - RX context for callbacks */
struct tipc_crypto_rx_ctx {
	struct tipc_aead *aead;
	struct tipc_bearer *bearer;
};

static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
static inline void tipc_aead_put(struct tipc_aead *aead);
static void tipc_aead_free(struct rcu_head *rp);
static int tipc_aead_users(struct tipc_aead __rcu *aead);
static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
			  u8 mode);
static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
				 unsigned int crypto_ctx_size,
				 u8 **iv, struct aead_request **req,
				 struct scatterlist **sg, int nsg);
static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
			     struct tipc_bearer *b,
			     struct tipc_media_addr *dst,
			     struct tipc_node *__dnode);
static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
			     struct sk_buff *skb, struct tipc_bearer *b);
static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
			   u8 tx_key, struct sk_buff *skb,
			   struct tipc_crypto *__rx);
static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
					     u8 new_passive,
					     u8 new_active,
					     u8 new_pending);
static int tipc_crypto_key_attach(struct tipc_crypto *c,
279 280
				  struct tipc_aead *aead, u8 pos,
				  bool master_key);
281 282 283
static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
						 struct tipc_crypto *rx,
284 285
						 struct sk_buff *skb,
						 u8 tx_key);
286
static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
287
static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
288 289 290 291
static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
					 struct tipc_bearer *b,
					 struct tipc_media_addr *dst,
					 struct tipc_node *__dnode, u8 type);
292 293 294 295 296 297 298
static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
				     struct tipc_bearer *b,
				     struct sk_buff **skb, int err);
static void tipc_crypto_do_cmd(struct net *net, int cmd);
static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
				  char *buf);
299 300 301
static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
				u16 gen, u8 mode, u32 dnode);
static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
302
static void tipc_crypto_work_tx(struct work_struct *work);
303
static void tipc_crypto_work_rx(struct work_struct *work);
304
static int tipc_aead_key_generate(struct tipc_aead_key *skey);
305

306 307
#define is_tx(crypto) (!(crypto)->node)
#define is_rx(crypto) (!is_tx(crypto))
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

#define key_next(cur) ((cur) % KEY_MAX + 1)

#define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))

#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
do {									\
	typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),	\
						lockdep_is_held(lock));	\
	rcu_assign_pointer((rcu_ptr), (ptr));				\
	tipc_aead_put(__tmp);						\
} while (0)

#define tipc_crypto_key_detach(rcu_ptr, lock)				\
	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)

/**
 * tipc_aead_key_validate - Validate a AEAD user key
 */
328
int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
329 330 331 332 333
{
	int keylen;

	/* Check if algorithm exists */
	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
334
		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
335 336 337 338
		return -ENODEV;
	}

	/* Currently, we only support the "gcm(aes)" cipher algorithm */
339 340
	if (strcmp(ukey->alg_name, "gcm(aes)")) {
		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
341
		return -ENOTSUPP;
342
	}
343 344 345 346 347

	/* Check if key size is correct */
	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
348 349 350 351
		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
		return -EKEYREJECTED;
	}
352 353 354 355

	return 0;
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * tipc_aead_key_generate - Generate new session key
 * @skey: input/output key with new content
 *
 * Return: 0 in case of success, otherwise < 0
 */
static int tipc_aead_key_generate(struct tipc_aead_key *skey)
{
	int rc = 0;

	/* Fill the key's content with a random value via RNG cipher */
	rc = crypto_get_default_rng();
	if (likely(!rc)) {
		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
					  skey->keylen);
		crypto_put_default_rng();
	}

	return rc;
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
{
	struct tipc_aead *tmp;

	rcu_read_lock();
	tmp = rcu_dereference(aead);
	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
		tmp = NULL;
	rcu_read_unlock();

	return tmp;
}

static inline void tipc_aead_put(struct tipc_aead *aead)
{
	if (aead && refcount_dec_and_test(&aead->refcnt))
		call_rcu(&aead->rcu, tipc_aead_free);
}

/**
 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 * @rp: rcu head pointer
 */
static void tipc_aead_free(struct rcu_head *rp)
{
	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
	struct tipc_tfm *tfm_entry, *head, *tmp;

	if (aead->cloned) {
		tipc_aead_put(aead->cloned);
	} else {
408 409
		head = *get_cpu_ptr(aead->tfm_entry);
		put_cpu_ptr(aead->tfm_entry);
410 411 412 413 414 415 416 417 418 419 420
		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
			crypto_free_aead(tfm_entry->tfm);
			list_del(&tfm_entry->list);
			kfree(tfm_entry);
		}
		/* Free the head */
		crypto_free_aead(head->tfm);
		list_del(&head->list);
		kfree(head);
	}
	free_percpu(aead->tfm_entry);
421
	kfree_sensitive(aead->key);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	kfree(aead);
}

static int tipc_aead_users(struct tipc_aead __rcu *aead)
{
	struct tipc_aead *tmp;
	int users = 0;

	rcu_read_lock();
	tmp = rcu_dereference(aead);
	if (tmp)
		users = atomic_read(&tmp->users);
	rcu_read_unlock();

	return users;
}

static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
{
	struct tipc_aead *tmp;

	rcu_read_lock();
	tmp = rcu_dereference(aead);
	if (tmp)
		atomic_add_unless(&tmp->users, 1, lim);
	rcu_read_unlock();
}

static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
{
	struct tipc_aead *tmp;

	rcu_read_lock();
	tmp = rcu_dereference(aead);
	if (tmp)
		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
	rcu_read_unlock();
}

static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
{
	struct tipc_aead *tmp;
	int cur;

	rcu_read_lock();
	tmp = rcu_dereference(aead);
	if (tmp) {
		do {
			cur = atomic_read(&tmp->users);
			if (cur == val)
				break;
		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
	}
	rcu_read_unlock();
}

/**
 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 */
static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
{
483 484
	struct tipc_tfm **tfm_entry;
	struct crypto_aead *tfm;
485

486
	tfm_entry = get_cpu_ptr(aead->tfm_entry);
487
	*tfm_entry = list_next_entry(*tfm_entry, list);
488 489 490 491
	tfm = (*tfm_entry)->tfm;
	put_cpu_ptr(tfm_entry);

	return tfm;
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

/**
 * tipc_aead_init - Initiate TIPC AEAD
 * @aead: returned new TIPC AEAD key handle pointer
 * @ukey: pointer to user key data
 * @mode: the key mode
 *
 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 * "net/tipc/max_tfms" first.
 * Also, all the other AEAD data are also initialized.
 *
 * Return: 0 if the initiation is successful, otherwise: < 0
 */
static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
			  u8 mode)
{
	struct tipc_tfm *tfm_entry, *head;
	struct crypto_aead *tfm;
	struct tipc_aead *tmp;
	int keylen, err, cpu;
	int tfm_cnt = 0;

	if (unlikely(*aead))
		return -EEXIST;

	/* Allocate a new AEAD */
	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
	if (unlikely(!tmp))
		return -ENOMEM;

	/* The key consists of two parts: [AES-KEY][SALT] */
	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;

	/* Allocate per-cpu TFM entry pointer */
	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
	if (!tmp->tfm_entry) {
530
		kfree_sensitive(tmp);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		return -ENOMEM;
	}

	/* Make a list of TFMs with the user key data */
	do {
		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
		if (IS_ERR(tfm)) {
			err = PTR_ERR(tfm);
			break;
		}

		if (unlikely(!tfm_cnt &&
			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
			crypto_free_aead(tfm);
			err = -ENOTSUPP;
			break;
		}

549
		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
		if (unlikely(err)) {
			crypto_free_aead(tfm);
			break;
		}

		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
		if (unlikely(!tfm_entry)) {
			crypto_free_aead(tfm);
			err = -ENOMEM;
			break;
		}
		INIT_LIST_HEAD(&tfm_entry->list);
		tfm_entry->tfm = tfm;

		/* First entry? */
		if (!tfm_cnt) {
			head = tfm_entry;
			for_each_possible_cpu(cpu) {
				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
			}
		} else {
			list_add_tail(&tfm_entry->list, &head->list);
		}

	} while (++tfm_cnt < sysctl_tipc_max_tfms);

	/* Not any TFM is allocated? */
	if (!tfm_cnt) {
		free_percpu(tmp->tfm_entry);
580
		kfree_sensitive(tmp);
581 582 583
		return err;
	}

584 585 586
	/* Form a hex string of some last bytes as the key's hint */
	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
		TIPC_AEAD_HINT_LEN);
587 588 589 590 591

	/* Initialize the other data */
	tmp->mode = mode;
	tmp->cloned = NULL;
	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
592
	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
	atomic_set(&tmp->users, 0);
	atomic64_set(&tmp->seqno, 0);
	refcount_set(&tmp->refcnt, 1);

	*aead = tmp;
	return 0;
}

/**
 * tipc_aead_clone - Clone a TIPC AEAD key
 * @dst: dest key for the cloning
 * @src: source key to clone from
 *
 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 * common for the keys.
 * A reference to the source is hold in the "cloned" pointer for the later
 * freeing purposes.
 *
 * Note: this must be done in cluster-key mode only!
 * Return: 0 in case of success, otherwise < 0
 */
static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
{
	struct tipc_aead *aead;
	int cpu;

	if (!src)
		return -ENOKEY;

	if (src->mode != CLUSTER_KEY)
		return -EINVAL;

	if (unlikely(*dst))
		return -EEXIST;

	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
	if (unlikely(!aead))
		return -ENOMEM;

	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
	if (unlikely(!aead->tfm_entry)) {
635
		kfree_sensitive(aead);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		return -ENOMEM;
	}

	for_each_possible_cpu(cpu) {
		*per_cpu_ptr(aead->tfm_entry, cpu) =
				*per_cpu_ptr(src->tfm_entry, cpu);
	}

	memcpy(aead->hint, src->hint, sizeof(src->hint));
	aead->mode = src->mode;
	aead->salt = src->salt;
	aead->authsize = src->authsize;
	atomic_set(&aead->users, 0);
	atomic64_set(&aead->seqno, 0);
	refcount_set(&aead->refcnt, 1);

	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
	aead->cloned = src;

	*dst = aead;
	return 0;
}

/**
 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 * @tfm: cipher handle to be registered with the request
 * @crypto_ctx_size: size of crypto context for callback
 * @iv: returned pointer to IV data
 * @req: returned pointer to AEAD request data
 * @sg: returned pointer to SG lists
 * @nsg: number of SG lists to be allocated
 *
 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 * lists, the memory layout is as follows:
 * crypto_ctx || iv || aead_req || sg[]
 *
 * Return: the pointer to the memory areas in case of success, otherwise NULL
 */
static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
				 unsigned int crypto_ctx_size,
				 u8 **iv, struct aead_request **req,
				 struct scatterlist **sg, int nsg)
{
	unsigned int iv_size, req_size;
	unsigned int len;
	u8 *mem;

	iv_size = crypto_aead_ivsize(tfm);
	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);

	len = crypto_ctx_size;
	len += iv_size;
	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
	len = ALIGN(len, crypto_tfm_ctx_alignment());
	len += req_size;
	len = ALIGN(len, __alignof__(struct scatterlist));
	len += nsg * sizeof(**sg);

	mem = kmalloc(len, GFP_ATOMIC);
	if (!mem)
		return NULL;

	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
			      crypto_aead_alignmask(tfm) + 1);
	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
						crypto_tfm_ctx_alignment());
	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
					      __alignof__(struct scatterlist));

	return (void *)mem;
}

/**
 * tipc_aead_encrypt - Encrypt a message
 * @aead: TIPC AEAD key for the message encryption
 * @skb: the input/output skb
 * @b: TIPC bearer where the message will be delivered after the encryption
 * @dst: the destination media address
 * @__dnode: TIPC dest node if "known"
 *
 * Return:
 * 0                   : if the encryption has completed
 * -EINPROGRESS/-EBUSY : if a callback will be performed
 * < 0                 : the encryption has failed
 */
static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
			     struct tipc_bearer *b,
			     struct tipc_media_addr *dst,
			     struct tipc_node *__dnode)
{
	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
	struct tipc_crypto_tx_ctx *tx_ctx;
	struct aead_request *req;
	struct sk_buff *trailer;
	struct scatterlist *sg;
	struct tipc_ehdr *ehdr;
	int ehsz, len, tailen, nsg, rc;
	void *ctx;
	u32 salt;
	u8 *iv;

	/* Make sure message len at least 4-byte aligned */
	len = ALIGN(skb->len, 4);
	tailen = len - skb->len + aead->authsize;

	/* Expand skb tail for authentication tag:
	 * As for simplicity, we'd have made sure skb having enough tailroom
	 * for authentication tag @skb allocation. Even when skb is nonlinear
	 * but there is no frag_list, it should be still fine!
	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
	 */
	SKB_LINEAR_ASSERT(skb);
	if (tailen > skb_tailroom(skb)) {
749 750
		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
			 skb_tailroom(skb), tailen);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	}

	if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
		nsg = 1;
		trailer = skb;
	} else {
		/* TODO: We could avoid skb_cow_data() if skb has no frag_list
		 * e.g. by skb_fill_page_desc() to add another page to the skb
		 * with the wanted tailen... However, page skbs look not often,
		 * so take it easy now!
		 * Cloned skbs e.g. from link_xmit() seems no choice though :(
		 */
		nsg = skb_cow_data(skb, tailen, &trailer);
		if (unlikely(nsg < 0)) {
			pr_err("TX: skb_cow_data() returned %d\n", nsg);
			return nsg;
		}
	}

	pskb_put(skb, trailer, tailen);

	/* Allocate memory for the AEAD operation */
	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
	if (unlikely(!ctx))
		return -ENOMEM;
	TIPC_SKB_CB(skb)->crypto_ctx = ctx;

	/* Map skb to the sg lists */
	sg_init_table(sg, nsg);
	rc = skb_to_sgvec(skb, sg, 0, skb->len);
	if (unlikely(rc < 0)) {
		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
		goto exit;
	}

	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
	 * the source address (or w0 of id), otherwise with the dest address
	 * if dest is known.
	 */
	ehdr = (struct tipc_ehdr *)skb->data;
	salt = aead->salt;
	if (aead->mode == CLUSTER_KEY)
		salt ^= ehdr->addr; /* __be32 */
	else if (__dnode)
		salt ^= tipc_node_get_addr(__dnode);
	memcpy(iv, &salt, 4);
	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);

	/* Prepare request */
	ehsz = tipc_ehdr_size(ehdr);
	aead_request_set_tfm(req, tfm);
	aead_request_set_ad(req, ehsz);
	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);

	/* Set callback function & data */
	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				  tipc_aead_encrypt_done, skb);
	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
	tx_ctx->aead = aead;
	tx_ctx->bearer = b;
	memcpy(&tx_ctx->dst, dst, sizeof(*dst));

	/* Hold bearer */
	if (unlikely(!tipc_bearer_hold(b))) {
		rc = -ENODEV;
		goto exit;
	}

	/* Now, do encrypt */
	rc = crypto_aead_encrypt(req);
	if (rc == -EINPROGRESS || rc == -EBUSY)
		return rc;

	tipc_bearer_put(b);

exit:
	kfree(ctx);
	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
	return rc;
}

static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
{
	struct sk_buff *skb = base->data;
	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
	struct tipc_bearer *b = tx_ctx->bearer;
	struct tipc_aead *aead = tx_ctx->aead;
	struct tipc_crypto *tx = aead->crypto;
	struct net *net = tx->net;

	switch (err) {
	case 0:
		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
845
		rcu_read_lock();
846 847 848 849
		if (likely(test_bit(0, &b->up)))
			b->media->send_msg(net, skb, b, &tx_ctx->dst);
		else
			kfree_skb(skb);
850
		rcu_read_unlock();
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		break;
	case -EINPROGRESS:
		return;
	default:
		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
		kfree_skb(skb);
		break;
	}

	kfree(tx_ctx);
	tipc_bearer_put(b);
	tipc_aead_put(aead);
}

/**
 * tipc_aead_decrypt - Decrypt an encrypted message
 * @net: struct net
 * @aead: TIPC AEAD for the message decryption
 * @skb: the input/output skb
 * @b: TIPC bearer where the message has been received
 *
 * Return:
 * 0                   : if the decryption has completed
 * -EINPROGRESS/-EBUSY : if a callback will be performed
 * < 0                 : the decryption has failed
 */
static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
			     struct sk_buff *skb, struct tipc_bearer *b)
{
	struct tipc_crypto_rx_ctx *rx_ctx;
	struct aead_request *req;
	struct crypto_aead *tfm;
	struct sk_buff *unused;
	struct scatterlist *sg;
	struct tipc_ehdr *ehdr;
	int ehsz, nsg, rc;
	void *ctx;
	u32 salt;
	u8 *iv;

	if (unlikely(!aead))
		return -ENOKEY;

	/* Cow skb data if needed */
	if (likely(!skb_cloned(skb) &&
		   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
		nsg = 1 + skb_shinfo(skb)->nr_frags;
	} else {
		nsg = skb_cow_data(skb, 0, &unused);
		if (unlikely(nsg < 0)) {
			pr_err("RX: skb_cow_data() returned %d\n", nsg);
			return nsg;
		}
	}

	/* Allocate memory for the AEAD operation */
	tfm = tipc_aead_tfm_next(aead);
	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
	if (unlikely(!ctx))
		return -ENOMEM;
	TIPC_SKB_CB(skb)->crypto_ctx = ctx;

	/* Map skb to the sg lists */
	sg_init_table(sg, nsg);
	rc = skb_to_sgvec(skb, sg, 0, skb->len);
	if (unlikely(rc < 0)) {
		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
		goto exit;
	}

	/* Reconstruct IV: */
	ehdr = (struct tipc_ehdr *)skb->data;
	salt = aead->salt;
	if (aead->mode == CLUSTER_KEY)
		salt ^= ehdr->addr; /* __be32 */
	else if (ehdr->destined)
		salt ^= tipc_own_addr(net);
	memcpy(iv, &salt, 4);
	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);

	/* Prepare request */
	ehsz = tipc_ehdr_size(ehdr);
	aead_request_set_tfm(req, tfm);
	aead_request_set_ad(req, ehsz);
	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);

	/* Set callback function & data */
	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				  tipc_aead_decrypt_done, skb);
	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
	rx_ctx->aead = aead;
	rx_ctx->bearer = b;

	/* Hold bearer */
	if (unlikely(!tipc_bearer_hold(b))) {
		rc = -ENODEV;
		goto exit;
	}

	/* Now, do decrypt */
	rc = crypto_aead_decrypt(req);
	if (rc == -EINPROGRESS || rc == -EBUSY)
		return rc;

	tipc_bearer_put(b);

exit:
	kfree(ctx);
	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
	return rc;
}

static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
{
	struct sk_buff *skb = base->data;
	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
	struct tipc_bearer *b = rx_ctx->bearer;
	struct tipc_aead *aead = rx_ctx->aead;
	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
	struct net *net = aead->crypto->net;

	switch (err) {
	case 0:
		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
		break;
	case -EINPROGRESS:
		return;
	default:
		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
		break;
	}

	kfree(rx_ctx);
	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
	if (likely(skb)) {
		if (likely(test_bit(0, &b->up)))
			tipc_rcv(net, skb, b);
		else
			kfree_skb(skb);
	}

	tipc_bearer_put(b);
}

static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
{
	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
}

/**
 * tipc_ehdr_validate - Validate an encryption message
 * @skb: the message buffer
 *
 * Returns "true" if this is a valid encryption message, otherwise "false"
 */
bool tipc_ehdr_validate(struct sk_buff *skb)
{
	struct tipc_ehdr *ehdr;
	int ehsz;

	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
		return false;

	ehdr = (struct tipc_ehdr *)skb->data;
	if (unlikely(ehdr->version != TIPC_EVERSION))
		return false;
	ehsz = tipc_ehdr_size(ehdr);
	if (unlikely(!pskb_may_pull(skb, ehsz)))
		return false;
	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
		return false;

	return true;
}

/**
 * tipc_ehdr_build - Build TIPC encryption message header
 * @net: struct net
 * @aead: TX AEAD key to be used for the message encryption
 * @tx_key: key id used for the message encryption
 * @skb: input/output message skb
 * @__rx: RX crypto handle if dest is "known"
 *
 * Return: the header size if the building is successful, otherwise < 0
 */
static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
			   u8 tx_key, struct sk_buff *skb,
			   struct tipc_crypto *__rx)
{
	struct tipc_msg *hdr = buf_msg(skb);
	struct tipc_ehdr *ehdr;
	u32 user = msg_user(hdr);
	u64 seqno;
	int ehsz;

	/* Make room for encryption header */
	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
	WARN_ON(skb_headroom(skb) < ehsz);
	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);

	/* Obtain a seqno first:
	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
	 * cluster key mode, otherwise it's better for a per-peer seqno!
	 */
	if (!__rx || aead->mode == CLUSTER_KEY)
		seqno = atomic64_inc_return(&aead->seqno);
	else
		seqno = atomic64_inc_return(&__rx->sndnxt);

	/* Revoke the key if seqno is wrapped around */
	if (unlikely(!seqno))
		return tipc_crypto_key_revoke(net, tx_key);

	/* Word 1-2 */
	ehdr->seqno = cpu_to_be64(seqno);

	/* Words 0, 3- */
	ehdr->version = TIPC_EVERSION;
	ehdr->user = 0;
	ehdr->keepalive = 0;
	ehdr->tx_key = tx_key;
	ehdr->destined = (__rx) ? 1 : 0;
	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1074
	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1075
	ehdr->master_key = aead->crypto->key_master;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	ehdr->reserved_1 = 0;
	ehdr->reserved_2 = 0;

	switch (user) {
	case LINK_CONFIG:
		ehdr->user = LINK_CONFIG;
		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
		break;
	default:
		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
			ehdr->user = LINK_PROTOCOL;
			ehdr->keepalive = msg_is_keepalive(hdr);
		}
		ehdr->addr = hdr->hdr[3];
		break;
	}

	return ehsz;
}

static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
					     u8 new_passive,
					     u8 new_active,
					     u8 new_pending)
{
	struct tipc_key old = c->key;
	char buf[32];

	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
		      ((new_pending & KEY_MASK));

1108 1109 1110
	pr_debug("%s: key changing %s ::%pS\n", c->name,
		 tipc_key_change_dump(old, c->key, buf),
		 __builtin_return_address(0));
1111 1112 1113 1114 1115 1116 1117
}

/**
 * tipc_crypto_key_init - Initiate a new user / AEAD key
 * @c: TIPC crypto to which new key is attached
 * @ukey: the user key
 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1118
 * @master_key: specify this is a cluster master key
1119 1120 1121 1122 1123 1124 1125
 *
 * A new TIPC AEAD key will be allocated and initiated with the specified user
 * key, then attached to the TIPC crypto.
 *
 * Return: new key id in case of success, otherwise: < 0
 */
int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1126
			 u8 mode, bool master_key)
1127 1128 1129 1130 1131 1132 1133 1134 1135
{
	struct tipc_aead *aead = NULL;
	int rc = 0;

	/* Initiate with the new user key */
	rc = tipc_aead_init(&aead, ukey, mode);

	/* Attach it to the crypto */
	if (likely(!rc)) {
1136
		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		if (rc < 0)
			tipc_aead_free(&aead->rcu);
	}

	return rc;
}

/**
 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
 * @c: TIPC crypto to which the new AEAD key is attached
 * @aead: the new AEAD key pointer
 * @pos: desired slot in the crypto key array, = 0 if any!
1149
 * @master_key: specify this is a cluster master key
1150 1151 1152 1153
 *
 * Return: new key id in case of success, otherwise: -EBUSY
 */
static int tipc_crypto_key_attach(struct tipc_crypto *c,
1154 1155
				  struct tipc_aead *aead, u8 pos,
				  bool master_key)
1156 1157 1158
{
	struct tipc_key key;
	int rc = -EBUSY;
1159
	u8 new_key;
1160 1161 1162

	spin_lock_bh(&c->lock);
	key = c->key;
1163 1164 1165 1166
	if (master_key) {
		new_key = KEY_MASTER;
		goto attach;
	}
1167 1168 1169 1170 1171
	if (key.active && key.passive)
		goto exit;
	if (key.pending) {
		if (tipc_aead_users(c->aead[key.pending]) > 0)
			goto exit;
1172
		/* if (pos): ok with replacing, will be aligned when needed */
1173
		/* Replace it */
1174
		new_key = key.pending;
1175 1176 1177
	} else {
		if (pos) {
			if (key.active && pos != key_next(key.active)) {
1178 1179
				key.passive = pos;
				new_key = pos;
1180 1181
				goto attach;
			} else if (!key.active && !key.passive) {
1182 1183
				key.pending = pos;
				new_key = pos;
1184 1185 1186
				goto attach;
			}
		}
1187 1188
		key.pending = key_next(key.active ?: key.passive);
		new_key = key.pending;
1189 1190 1191 1192
	}

attach:
	aead->crypto = c;
1193
	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1194
	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1195 1196 1197
	if (likely(c->key.keys != key.keys))
		tipc_crypto_key_set_state(c, key.passive, key.active,
					  key.pending);
1198
	c->working = 1;
1199
	c->nokey = 0;
1200
	c->key_master |= master_key;
1201 1202 1203 1204 1205 1206 1207 1208 1209
	rc = new_key;

exit:
	spin_unlock_bh(&c->lock);
	return rc;
}

void tipc_crypto_key_flush(struct tipc_crypto *c)
{
1210
	struct tipc_crypto *tx, *rx;
1211 1212 1213
	int k;

	spin_lock_bh(&c->lock);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (is_rx(c)) {
		/* Try to cancel pending work */
		rx = c;
		tx = tipc_net(rx->net)->crypto_tx;
		if (cancel_delayed_work(&rx->work)) {
			kfree(rx->skey);
			rx->skey = NULL;
			atomic_xchg(&rx->key_distr, 0);
			tipc_node_put(rx->node);
		}
		/* RX stopping => decrease TX key users if any */
		k = atomic_xchg(&rx->peer_rx_active, 0);
		if (k) {
			tipc_aead_users_dec(tx->aead[k], 0);
			/* Mark the point TX key users changed */
			tx->timer1 = jiffies;
		}
	}

1233
	c->flags = 0;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	tipc_crypto_key_set_state(c, 0, 0, 0);
	for (k = KEY_MIN; k <= KEY_MAX; k++)
		tipc_crypto_key_detach(c->aead[k], &c->lock);
	atomic64_set(&c->sndnxt, 0);
	spin_unlock_bh(&c->lock);
}

/**
 * tipc_crypto_key_try_align - Align RX keys if possible
 * @rx: RX crypto handle
 * @new_pending: new pending slot if aligned (= TX key from peer)
 *
 * Peer has used an unknown key slot, this only happens when peer has left and
 * rejoned, or we are newcomer.
 * That means, there must be no active key but a pending key at unaligned slot.
 * If so, we try to move the pending key to the new slot.
 * Note: A potential passive key can exist, it will be shifted correspondingly!
 *
 * Return: "true" if key is successfully aligned, otherwise "false"
 */
static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
{
	struct tipc_aead *tmp1, *tmp2 = NULL;
	struct tipc_key key;
	bool aligned = false;
	u8 new_passive = 0;
	int x;

	spin_lock(&rx->lock);
	key = rx->key;
	if (key.pending == new_pending) {
		aligned = true;
		goto exit;
	}
	if (key.active)
		goto exit;
	if (!key.pending)
		goto exit;
	if (tipc_aead_users(rx->aead[key.pending]) > 0)
		goto exit;

	/* Try to "isolate" this pending key first */
	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
	if (!refcount_dec_if_one(&tmp1->refcnt))
		goto exit;
	rcu_assign_pointer(rx->aead[key.pending], NULL);

	/* Move passive key if any */
	if (key.passive) {
1283
		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		x = (key.passive - key.pending + new_pending) % KEY_MAX;
		new_passive = (x <= 0) ? x + KEY_MAX : x;
	}

	/* Re-allocate the key(s) */
	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
	rcu_assign_pointer(rx->aead[new_pending], tmp1);
	if (new_passive)
		rcu_assign_pointer(rx->aead[new_passive], tmp2);
	refcount_set(&tmp1->refcnt, 1);
	aligned = true;
1295 1296
	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
			    new_pending);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

exit:
	spin_unlock(&rx->lock);
	return aligned;
}

/**
 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
 * @tx: TX crypto handle
 * @rx: RX crypto handle (can be NULL)
 * @skb: the message skb which will be decrypted later
1308
 * @tx_key: peer TX key id
1309 1310 1311 1312 1313 1314 1315 1316 1317
 *
 * This function looks up the existing TX keys and pick one which is suitable
 * for the message decryption, that must be a cluster key and not used before
 * on the same message (i.e. recursive).
 *
 * Return: the TX AEAD key handle in case of success, otherwise NULL
 */
static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
						 struct tipc_crypto *rx,
1318 1319
						 struct sk_buff *skb,
						 u8 tx_key)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
{
	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
	struct tipc_aead *aead = NULL;
	struct tipc_key key = tx->key;
	u8 k, i = 0;

	/* Initialize data if not yet */
	if (!skb_cb->tx_clone_deferred) {
		skb_cb->tx_clone_deferred = 1;
		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
	}

	skb_cb->tx_clone_ctx.rx = rx;
	if (++skb_cb->tx_clone_ctx.recurs > 2)
		return NULL;

	/* Pick one TX key */
	spin_lock(&tx->lock);
1338 1339 1340 1341
	if (tx_key == KEY_MASTER) {
		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
		goto done;
	}
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	do {
		k = (i == 0) ? key.pending :
			((i == 1) ? key.active : key.passive);
		if (!k)
			continue;
		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
		if (!aead)
			continue;
		if (aead->mode != CLUSTER_KEY ||
		    aead == skb_cb->tx_clone_ctx.last) {
			aead = NULL;
			continue;
		}
		/* Ok, found one cluster key */
		skb_cb->tx_clone_ctx.last = aead;
		WARN_ON(skb->next);
		skb->next = skb_clone(skb, GFP_ATOMIC);
		if (unlikely(!skb->next))
			pr_warn("Failed to clone skb for next round if any\n");
		break;
	} while (++i < 3);
1363 1364 1365 1366

done:
	if (likely(aead))
		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1367 1368 1369 1370 1371 1372 1373 1374
	spin_unlock(&tx->lock);

	return aead;
}

/**
 * tipc_crypto_key_synch: Synch own key data according to peer key status
 * @rx: RX crypto handle
1375
 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1376 1377 1378 1379 1380
 *
 * This function updates the peer node related data as the peer RX active key
 * has changed, so the number of TX keys' users on this node are increased and
 * decreased correspondingly.
 *
1381
 * It also considers if peer has no key, then we need to make own master key
1382 1383
 * (if any) taking over i.e. starting grace period and also trigger key
 * distributing process.
1384
 *
1385 1386
 * The "per-peer" sndnxt is also reset when the peer key has switched.
 */
1387
static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1388
{
1389 1390 1391 1392 1393
	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
	struct tipc_msg *hdr = buf_msg(skb);
	u32 self = tipc_own_addr(rx->net);
	u8 cur, new;
1394
	unsigned long delay;
1395

1396 1397 1398 1399 1400 1401 1402 1403
	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
	 * a peer has no master key.
	 */
	rx->key_master = ehdr->master_key;
	if (!rx->key_master)
		tx->legacy_user = 1;

	/* For later cases, apply only if message is destined to this node */
1404
	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1405 1406
		return;

1407
	/* Case 1: Peer has no keys, let's make master key take over */
1408
	if (ehdr->rx_nokey) {
1409 1410
		/* Set or extend grace period */
		tx->timer2 = jiffies;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		/* Schedule key distributing for the peer if not yet */
		if (tx->key.keys &&
		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
			get_random_bytes(&delay, 2);
			delay %= 5;
			delay = msecs_to_jiffies(500 * ++delay);
			if (queue_delayed_work(tx->wq, &rx->work, delay))
				tipc_node_get(rx->node);
		}
	} else {
		/* Cancel a pending key distributing if any */
		atomic_xchg(&rx->key_distr, 0);
	}
1424 1425

	/* Case 2: Peer RX active key has changed, let's update own TX users */
1426 1427 1428 1429 1430 1431 1432 1433 1434
	cur = atomic_read(&rx->peer_rx_active);
	new = ehdr->rx_key_active;
	if (tx->key.keys &&
	    cur != new &&
	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
		if (new)
			tipc_aead_users_inc(tx->aead[new], INT_MAX);
		if (cur)
			tipc_aead_users_dec(tx->aead[cur], 0);
1435 1436 1437 1438 1439

		atomic64_set(&rx->sndnxt, 0);
		/* Mark the point TX key users changed */
		tx->timer1 = jiffies;

1440 1441
		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
			 tx->name, cur, new, rx->name);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	}
}

static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
{
	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
	struct tipc_key key;

	spin_lock(&tx->lock);
	key = tx->key;
	WARN_ON(!key.active || tx_key != key.active);

	/* Free the active key */
	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
	spin_unlock(&tx->lock);

1459
	pr_warn("%s: key is revoked\n", tx->name);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	return -EKEYREVOKED;
}

int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
		      struct tipc_node *node)
{
	struct tipc_crypto *c;

	if (*crypto)
		return -EEXIST;

	/* Allocate crypto */
	c = kzalloc(sizeof(*c), GFP_ATOMIC);
	if (!c)
		return -ENOMEM;

1476 1477 1478 1479 1480 1481 1482 1483 1484
	/* Allocate workqueue on TX */
	if (!node) {
		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
		if (!c->wq) {
			kfree(c);
			return -ENOMEM;
		}
	}

1485 1486 1487
	/* Allocate statistic structure */
	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
	if (!c->stats) {
1488
		kfree_sensitive(c);
1489 1490 1491
		return -ENOMEM;
	}

1492
	c->flags = 0;
1493 1494
	c->net = net;
	c->node = node;
1495
	get_random_bytes(&c->key_gen, 2);
1496
	tipc_crypto_key_set_state(c, 0, 0, 0);
1497
	atomic_set(&c->key_distr, 0);
1498 1499 1500 1501
	atomic_set(&c->peer_rx_active, 0);
	atomic64_set(&c->sndnxt, 0);
	c->timer1 = jiffies;
	c->timer2 = jiffies;
1502
	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1503
	spin_lock_init(&c->lock);
1504 1505 1506
	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
			       tipc_own_id_string(c->net));
1507

1508 1509
	if (is_rx(c))
		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1510 1511
	else
		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1512

1513
	*crypto = c;
1514 1515 1516 1517 1518
	return 0;
}

void tipc_crypto_stop(struct tipc_crypto **crypto)
{
1519
	struct tipc_crypto *c = *crypto;
1520 1521
	u8 k;

1522
	if (!c)
1523 1524
		return;

1525
	/* Flush any queued works & destroy wq */
1526 1527 1528
	if (is_tx(c)) {
		c->rekeying_intv = 0;
		cancel_delayed_work_sync(&c->work);
1529
		destroy_workqueue(c->wq);
1530
	}
1531 1532

	/* Release AEAD keys */
1533
	rcu_read_lock();
1534 1535 1536
	for (k = KEY_MIN; k <= KEY_MAX; k++)
		tipc_aead_put(rcu_dereference(c->aead[k]));
	rcu_read_unlock();
1537
	pr_debug("%s: has been stopped\n", c->name);
1538 1539 1540 1541 1542

	/* Free this crypto statistics */
	free_percpu(c->stats);

	*crypto = NULL;
1543
	kfree_sensitive(c);
1544 1545 1546 1547 1548 1549 1550 1551 1552
}

void tipc_crypto_timeout(struct tipc_crypto *rx)
{
	struct tipc_net *tn = tipc_net(rx->net);
	struct tipc_crypto *tx = tn->crypto_tx;
	struct tipc_key key;
	int cmd;

1553
	/* TX pending: taking all users & stable -> active */
1554 1555 1556 1557 1558 1559
	spin_lock(&tx->lock);
	key = tx->key;
	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
		goto s1;
	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
		goto s1;
1560
	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1561 1562 1563 1564 1565 1566
		goto s1;

	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
	if (key.active)
		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1567
	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1568 1569 1570 1571

s1:
	spin_unlock(&tx->lock);

1572
	/* RX pending: having user -> active */
1573 1574 1575 1576 1577
	spin_lock(&rx->lock);
	key = rx->key;
	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
		goto s2;

1578 1579 1580 1581 1582
	if (key.active)
		key.passive = key.active;
	key.active = key.pending;
	rx->timer2 = jiffies;
	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1583
	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1584
	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1585 1586 1587
	goto s5;

s2:
1588 1589
	/* RX pending: not working -> remove */
	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1590 1591
		goto s3;

1592 1593 1594
	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1595 1596 1597
	goto s5;

s3:
1598
	/* RX active: timed out or no user -> pending */
1599 1600
	if (!key.active)
		goto s4;
1601 1602
	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
	    tipc_aead_users(rx->aead[key.active]) > 0)
1603 1604
		goto s4;

1605 1606 1607 1608 1609 1610 1611 1612
	if (key.pending)
		key.passive = key.active;
	else
		key.pending = key.active;
	rx->timer2 = jiffies;
	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
	tipc_aead_users_set(rx->aead[key.pending], 0);
	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1613 1614 1615
	goto s5;

s4:
1616 1617
	/* RX passive: outdated or not working -> free */
	if (!key.passive)
1618
		goto s5;
1619 1620
	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
	    tipc_aead_users(rx->aead[key.passive]) > -10)
1621 1622 1623 1624
		goto s5;

	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1625
	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1626 1627 1628 1629

s5:
	spin_unlock(&rx->lock);

1630 1631 1632 1633 1634 1635
	/* Relax it here, the flag will be set again if it really is, but only
	 * when we are not in grace period for safety!
	 */
	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
		tx->legacy_user = 0;

1636 1637 1638 1639 1640 1641 1642 1643 1644
	/* Limit max_tfms & do debug commands if needed */
	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
		return;

	cmd = sysctl_tipc_max_tfms;
	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
	tipc_crypto_do_cmd(rx->net, cmd);
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
					 struct tipc_bearer *b,
					 struct tipc_media_addr *dst,
					 struct tipc_node *__dnode, u8 type)
{
	struct sk_buff *skb;

	skb = skb_clone(_skb, GFP_ATOMIC);
	if (skb) {
		TIPC_SKB_CB(skb)->xmit_type = type;
		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
		if (skb)
			b->media->send_msg(net, skb, b, dst);
	}
}

1661 1662 1663 1664 1665 1666 1667 1668 1669
/**
 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
 * @net: struct net
 * @skb: input/output message skb pointer
 * @b: bearer used for xmit later
 * @dst: destination media address
 * @__dnode: destination node for reference if any
 *
 * First, build an encryption message header on the top of the message, then
1670 1671
 * encrypt the original TIPC message by using the pending, master or active
 * key with this preference order.
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
 * If the encryption is successful, the encrypted skb is returned directly or
 * via the callback.
 * Otherwise, the skb is freed!
 *
 * Return:
 * 0                   : the encryption has succeeded (or no encryption)
 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
 * -ENOKEK             : the encryption has failed due to no key
 * -EKEYREVOKED        : the encryption has failed due to key revoked
 * -ENOMEM             : the encryption has failed due to no memory
 * < 0                 : the encryption has failed due to other reasons
 */
int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
		     struct tipc_bearer *b, struct tipc_media_addr *dst,
		     struct tipc_node *__dnode)
{
	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
	struct tipc_crypto_stats __percpu *stats = tx->stats;
1691
	struct tipc_msg *hdr = buf_msg(*skb);
1692 1693
	struct tipc_key key = tx->key;
	struct tipc_aead *aead = NULL;
1694
	u32 user = msg_user(hdr);
1695 1696 1697
	u32 type = msg_type(hdr);
	int rc = -ENOKEY;
	u8 tx_key = 0;
1698 1699 1700 1701 1702

	/* No encryption? */
	if (!tx->working)
		return 0;

1703
	/* Pending key if peer has active on it or probing time */
1704 1705
	if (unlikely(key.pending)) {
		tx_key = key.pending;
1706
		if (!tx->key_master && !key.active)
1707 1708 1709
			goto encrypt;
		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
			goto encrypt;
1710
		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1711 1712
			pr_debug("%s: probing for key[%d]\n", tx->name,
				 key.pending);
1713
			goto encrypt;
1714
		}
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
					      SKB_PROBING);
	}

	/* Master key if this is a *vital* message or in grace period */
	if (tx->key_master) {
		tx_key = KEY_MASTER;
		if (!key.active)
			goto encrypt;
		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
				 user, type);
			goto encrypt;
		}
		if (user == LINK_CONFIG ||
		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1732
		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1733 1734 1735 1736 1737 1738 1739 1740 1741
		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
			if (__rx && __rx->key_master &&
			    !atomic_read(&__rx->peer_rx_active))
				goto encrypt;
			if (!__rx) {
				if (likely(!tx->legacy_user))
					goto encrypt;
				tipc_crypto_clone_msg(net, *skb, b, dst,
						      __dnode, SKB_GRACING);
1742 1743 1744
			}
		}
	}
1745

1746 1747 1748 1749 1750
	/* Else, use the active key if any */
	if (likely(key.active)) {
		tx_key = key.active;
		goto encrypt;
	}
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	goto exit;

encrypt:
	aead = tipc_aead_get(tx->aead[tx_key]);
	if (unlikely(!aead))
		goto exit;
	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
	if (likely(rc > 0))
		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);

exit:
	switch (rc) {
	case 0:
		this_cpu_inc(stats->stat[STAT_OK]);
		break;
	case -EINPROGRESS:
	case -EBUSY:
		this_cpu_inc(stats->stat[STAT_ASYNC]);
		*skb = NULL;
		return rc;
	default:
		this_cpu_inc(stats->stat[STAT_NOK]);
		if (rc == -ENOKEY)
			this_cpu_inc(stats->stat[STAT_NOKEYS]);
		else if (rc == -EKEYREVOKED)
			this_cpu_inc(stats->stat[STAT_BADKEYS]);
		kfree_skb(*skb);
		*skb = NULL;
		break;
	}

	tipc_aead_put(aead);
	return rc;
}

/**
 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
 * @net: struct net
 * @rx: RX crypto handle
 * @skb: input/output message skb pointer
 * @b: bearer where the message has been received
 *
 * If the decryption is successful, the decrypted skb is returned directly or
 * as the callback, the encryption header and auth tag will be trimed out
 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
 * Otherwise, the skb will be freed!
 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
 * cluster key(s) can be taken for decryption (- recursive).
 *
 * Return:
 * 0                   : the decryption has successfully completed
 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
 * -ENOKEY             : the decryption has failed due to no key
 * -EBADMSG            : the decryption has failed due to bad message
 * -ENOMEM             : the decryption has failed due to no memory
 * < 0                 : the decryption has failed due to other reasons
 */
int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
		    struct sk_buff **skb, struct tipc_bearer *b)
{
	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
	struct tipc_crypto_stats __percpu *stats;
	struct tipc_aead *aead = NULL;
	struct tipc_key key;
	int rc = -ENOKEY;
1817
	u8 tx_key, n;
1818 1819

	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1820 1821 1822 1823

	/* New peer?
	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
	 */
1824
	if (unlikely(!rx || tx_key == KEY_MASTER))
1825 1826
		goto pick_tx;

1827
	/* Pick RX key according to TX key if any */
1828
	key = rx->key;
1829 1830
	if (tx_key == key.active || tx_key == key.pending ||
	    tx_key == key.passive)
1831 1832 1833 1834 1835 1836 1837 1838
		goto decrypt;

	/* Unknown key, let's try to align RX key(s) */
	if (tipc_crypto_key_try_align(rx, tx_key))
		goto decrypt;

pick_tx:
	/* No key suitable? Try to pick one from TX... */
1839
	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	if (aead)
		goto decrypt;
	goto exit;

decrypt:
	rcu_read_lock();
	if (!aead)
		aead = tipc_aead_get(rx->aead[tx_key]);
	rc = tipc_aead_decrypt(net, aead, *skb, b);
	rcu_read_unlock();

exit:
	stats = ((rx) ?: tx)->stats;
	switch (rc) {
	case 0:
		this_cpu_inc(stats->stat[STAT_OK]);
		break;
	case -EINPROGRESS:
	case -EBUSY:
		this_cpu_inc(stats->stat[STAT_ASYNC]);
		*skb = NULL;
		return rc;
	default:
		this_cpu_inc(stats->stat[STAT_NOK]);
		if (rc == -ENOKEY) {
			kfree_skb(*skb);
			*skb = NULL;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
			if (rx) {
				/* Mark rx->nokey only if we dont have a
				 * pending received session key, nor a newer
				 * one i.e. in the next slot.
				 */
				n = key_next(tx_key);
				rx->nokey = !(rx->skey ||
					      rcu_access_pointer(rx->aead[n]));
				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
						     rx->name, rx->nokey,
						     tx_key, rx->key.keys);
1878
				tipc_node_put(rx->node);
1879
			}
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
			this_cpu_inc(stats->stat[STAT_NOKEYS]);
			return rc;
		} else if (rc == -EBADMSG) {
			this_cpu_inc(stats->stat[STAT_BADMSGS]);
		}
		break;
	}

	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
	return rc;
}

static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
				     struct tipc_bearer *b,
				     struct sk_buff **skb, int err)
{
	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
	struct tipc_crypto *rx = aead->crypto;
	struct tipc_aead *tmp = NULL;
	struct tipc_ehdr *ehdr;
	struct tipc_node *n;

	/* Is this completed by TX? */
1903
	if (unlikely(is_tx(aead->crypto))) {
1904
		rx = skb_cb->tx_clone_ctx.rx;
1905 1906 1907 1908 1909 1910 1911
		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
			 (*skb)->next, skb_cb->flags);
		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
			 aead->crypto->aead[1], aead->crypto->aead[2],
			 aead->crypto->aead[3]);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		if (unlikely(err)) {
			if (err == -EBADMSG && (*skb)->next)
				tipc_rcv(net, (*skb)->next, b);
			goto free_skb;
		}

		if (likely((*skb)->next)) {
			kfree_skb((*skb)->next);
			(*skb)->next = NULL;
		}
		ehdr = (struct tipc_ehdr *)(*skb)->data;
		if (!rx) {
			WARN_ON(ehdr->user != LINK_CONFIG);
			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
					     true);
			rx = tipc_node_crypto_rx(n);
			if (unlikely(!rx))
				goto free_skb;
		}

1932 1933 1934
		/* Ignore cloning if it was TX master key */
		if (ehdr->tx_key == KEY_MASTER)
			goto rcv;
1935 1936
		if (tipc_aead_clone(&tmp, aead) < 0)
			goto rcv;
1937
		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
			tipc_aead_free(&tmp->rcu);
			goto rcv;
		}
		tipc_aead_put(aead);
		aead = tipc_aead_get(tmp);
	}

	if (unlikely(err)) {
		tipc_aead_users_dec(aead, INT_MIN);
		goto free_skb;
	}

	/* Set the RX key's user */
	tipc_aead_users_set(aead, 1);

	/* Mark this point, RX works */
	rx->timer1 = jiffies;

1956
rcv:
1957 1958
	/* Remove ehdr & auth. tag prior to tipc_rcv() */
	ehdr = (struct tipc_ehdr *)(*skb)->data;
1959 1960 1961 1962 1963 1964

	/* Mark this point, RX passive still works */
	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
		rx->timer2 = jiffies;

	skb_reset_network_header(*skb);
1965 1966 1967 1968 1969 1970 1971 1972 1973
	skb_pull(*skb, tipc_ehdr_size(ehdr));
	pskb_trim(*skb, (*skb)->len - aead->authsize);

	/* Validate TIPCv2 message */
	if (unlikely(!tipc_msg_validate(skb))) {
		pr_err_ratelimited("Packet dropped after decryption!\n");
		goto free_skb;
	}

1974 1975
	/* Ok, everything's fine, try to synch own keys according to peers' */
	tipc_crypto_key_synch(rx, *skb);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

	/* Mark skb decrypted */
	skb_cb->decrypted = 1;

	/* Clear clone cxt if any */
	if (likely(!skb_cb->tx_clone_deferred))
		goto exit;
	skb_cb->tx_clone_deferred = 0;
	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
	goto exit;

free_skb:
	kfree_skb(*skb);
	*skb = NULL;

exit:
	tipc_aead_put(aead);
	if (rx)
		tipc_node_put(rx->node);
}

static void tipc_crypto_do_cmd(struct net *net, int cmd)
{
	struct tipc_net *tn = tipc_net(net);
	struct tipc_crypto *tx = tn->crypto_tx, *rx;
	struct list_head *p;
	unsigned int stat;
	int i, j, cpu;
	char buf[200];

	/* Currently only one command is supported */
	switch (cmd) {
	case 0xfff1:
		goto print_stats;
	default:
		return;
	}

print_stats:
	/* Print a header */
	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");

	/* Print key status */
	pr_info("Key status:\n");
	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
		tipc_crypto_key_dump(tx, buf));

	rcu_read_lock();
	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
		rx = tipc_node_crypto_rx_by_list(p);
		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
			tipc_crypto_key_dump(rx, buf));
	}
	rcu_read_unlock();

	/* Print crypto statistics */
	for (i = 0, j = 0; i < MAX_STATS; i++)
		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2034
	pr_info("Counter     %s", buf);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

	memset(buf, '-', 115);
	buf[115] = '\0';
	pr_info("%s\n", buf);

	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
	for_each_possible_cpu(cpu) {
		for (i = 0; i < MAX_STATS; i++) {
			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
		}
		pr_info("%s", buf);
		j = scnprintf(buf, 200, "%12s", " ");
	}

	rcu_read_lock();
	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
		rx = tipc_node_crypto_rx_by_list(p);
		j = scnprintf(buf, 200, "RX(%7.7s) ",
			      tipc_node_get_id_str(rx->node));
		for_each_possible_cpu(cpu) {
			for (i = 0; i < MAX_STATS; i++) {
				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
				j += scnprintf(buf + j, 200 - j, "|%11d ",
					       stat);
			}
			pr_info("%s", buf);
			j = scnprintf(buf, 200, "%12s", " ");
		}
	}
	rcu_read_unlock();

	pr_info("\n======================== Done ========================\n");
}

static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
{
	struct tipc_key key = c->key;
	struct tipc_aead *aead;
	int k, i = 0;
	char *s;

	for (k = KEY_MIN; k <= KEY_MAX; k++) {
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		if (k == KEY_MASTER) {
			if (is_rx(c))
				continue;
			if (time_before(jiffies,
					c->timer2 + TIPC_TX_GRACE_PERIOD))
				s = "ACT";
			else
				s = "PAS";
		} else {
			if (k == key.passive)
				s = "PAS";
			else if (k == key.active)
				s = "ACT";
			else if (k == key.pending)
				s = "PEN";
			else
				s = "-";
		}
2096 2097 2098 2099 2100 2101
		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);

		rcu_read_lock();
		aead = rcu_dereference(c->aead[k]);
		if (aead)
			i += scnprintf(buf + i, 200 - i,
2102
				       "{\"0x...%s\", \"%s\"}/%d:%d",
2103 2104 2105 2106 2107 2108 2109 2110
				       aead->hint,
				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
				       atomic_read(&aead->users),
				       refcount_read(&aead->refcnt));
		rcu_read_unlock();
		i += scnprintf(buf + i, 200 - i, "\n");
	}

2111
	if (is_rx(c))
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
			       atomic_read(&c->peer_rx_active));

	return buf;
}

static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
				  char *buf)
{
	struct tipc_key *key = &old;
	int k, i = 0;
	char *s;

	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
again:
	i += scnprintf(buf + i, 32 - i, "[");
2128
	for (k = KEY_1; k <= KEY_3; k++) {
2129 2130 2131 2132 2133 2134 2135 2136 2137
		if (k == key->passive)
			s = "pas";
		else if (k == key->active)
			s = "act";
		else if (k == key->pending)
			s = "pen";
		else
			s = "-";
		i += scnprintf(buf + i, 32 - i,
2138
			       (k != KEY_3) ? "%s " : "%s", s);
2139 2140 2141 2142 2143 2144 2145 2146 2147
	}
	if (key != &new) {
		i += scnprintf(buf + i, 32 - i, "] -> ");
		key = &new;
		goto again;
	}
	i += scnprintf(buf + i, 32 - i, "]");
	return buf;
}
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387

/**
 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
 * @net: the struct net
 * @skb: the receiving message buffer
 */
void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
{
	struct tipc_crypto *rx;
	struct tipc_msg *hdr;

	if (unlikely(skb_linearize(skb)))
		goto exit;

	hdr = buf_msg(skb);
	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
	if (unlikely(!rx))
		goto exit;

	switch (msg_type(hdr)) {
	case KEY_DISTR_MSG:
		if (tipc_crypto_key_rcv(rx, hdr))
			goto exit;
		break;
	default:
		break;
	}

	tipc_node_put(rx->node);

exit:
	kfree_skb(skb);
}

/**
 * tipc_crypto_key_distr - Distribute a TX key
 * @tx: the TX crypto
 * @key: the key's index
 * @dest: the destination tipc node, = NULL if distributing to all nodes
 *
 * Return: 0 in case of success, otherwise < 0
 */
int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
			  struct tipc_node *dest)
{
	struct tipc_aead *aead;
	u32 dnode = tipc_node_get_addr(dest);
	int rc = -ENOKEY;

	if (!sysctl_tipc_key_exchange_enabled)
		return 0;

	if (key) {
		rcu_read_lock();
		aead = tipc_aead_get(tx->aead[key]);
		if (likely(aead)) {
			rc = tipc_crypto_key_xmit(tx->net, aead->key,
						  aead->gen, aead->mode,
						  dnode);
			tipc_aead_put(aead);
		}
		rcu_read_unlock();
	}

	return rc;
}

/**
 * tipc_crypto_key_xmit - Send a session key
 * @net: the struct net
 * @skey: the session key to be sent
 * @gen: the key's generation
 * @mode: the key's mode
 * @dnode: the destination node address, = 0 if broadcasting to all nodes
 *
 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
 * as its data section, then xmit-ed through the uc/bc link.
 *
 * Return: 0 in case of success, otherwise < 0
 */
static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
				u16 gen, u8 mode, u32 dnode)
{
	struct sk_buff_head pkts;
	struct tipc_msg *hdr;
	struct sk_buff *skb;
	u16 size, cong_link_cnt;
	u8 *data;
	int rc;

	size = tipc_aead_key_size(skey);
	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
	if (!skb)
		return -ENOMEM;

	hdr = buf_msg(skb);
	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
		      INT_H_SIZE, dnode);
	msg_set_size(hdr, INT_H_SIZE + size);
	msg_set_key_gen(hdr, gen);
	msg_set_key_mode(hdr, mode);

	data = msg_data(hdr);
	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
	       skey->keylen);

	__skb_queue_head_init(&pkts);
	__skb_queue_tail(&pkts, skb);
	if (dnode)
		rc = tipc_node_xmit(net, &pkts, dnode, 0);
	else
		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);

	return rc;
}

/**
 * tipc_crypto_key_rcv - Receive a session key
 * @rx: the RX crypto
 * @hdr: the TIPC v2 message incl. the receiving session key in its data
 *
 * This function retrieves the session key in the message from peer, then
 * schedules a RX work to attach the key to the corresponding RX crypto.
 *
 * Return: "true" if the key has been scheduled for attaching, otherwise
 * "false".
 */
static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
{
	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
	struct tipc_aead_key *skey = NULL;
	u16 key_gen = msg_key_gen(hdr);
	u16 size = msg_data_sz(hdr);
	u8 *data = msg_data(hdr);

	spin_lock(&rx->lock);
	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
		       rx->skey, key_gen, rx->key_gen);
		goto exit;
	}

	/* Allocate memory for the key */
	skey = kmalloc(size, GFP_ATOMIC);
	if (unlikely(!skey)) {
		pr_err("%s: unable to allocate memory for skey\n", rx->name);
		goto exit;
	}

	/* Copy key from msg data */
	skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
	       skey->keylen);

	/* Sanity check */
	if (unlikely(size != tipc_aead_key_size(skey))) {
		kfree(skey);
		skey = NULL;
		goto exit;
	}

	rx->key_gen = key_gen;
	rx->skey_mode = msg_key_mode(hdr);
	rx->skey = skey;
	rx->nokey = 0;
	mb(); /* for nokey flag */

exit:
	spin_unlock(&rx->lock);

	/* Schedule the key attaching on this crypto */
	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
		return true;

	return false;
}

/**
 * tipc_crypto_work_rx - Scheduled RX works handler
 * @work: the struct RX work
 *
 * The function processes the previous scheduled works i.e. distributing TX key
 * or attaching a received session key on RX crypto.
 */
static void tipc_crypto_work_rx(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
	unsigned long delay = msecs_to_jiffies(5000);
	bool resched = false;
	u8 key;
	int rc;

	/* Case 1: Distribute TX key to peer if scheduled */
	if (atomic_cmpxchg(&rx->key_distr,
			   KEY_DISTR_SCHED,
			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
		/* Always pick the newest one for distributing */
		key = tx->key.pending ?: tx->key.active;
		rc = tipc_crypto_key_distr(tx, key, rx->node);
		if (unlikely(rc))
			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
				tx->name, key, tipc_node_get_id_str(rx->node),
				rc);

		/* Sched for key_distr releasing */
		resched = true;
	} else {
		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
	}

	/* Case 2: Attach a pending received session key from peer if any */
	if (rx->skey) {
		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
		if (unlikely(rc < 0))
			pr_warn("%s: unable to attach received skey, err %d\n",
				rx->name, rc);
		switch (rc) {
		case -EBUSY:
		case -ENOMEM:
			/* Resched the key attaching */
			resched = true;
			break;
		default:
			synchronize_rcu();
			kfree(rx->skey);
			rx->skey = NULL;
			break;
		}
	}

	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
		return;

	tipc_node_put(rx->node);
}
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

/**
 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
 * @tx: TX crypto
 * @changed: if the rekeying needs to be rescheduled with new interval
 * @new_intv: new rekeying interval (when "changed" = true)
 */
void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
				u32 new_intv)
{
	unsigned long delay;
	bool now = false;

	if (changed) {
		if (new_intv == TIPC_REKEYING_NOW)
			now = true;
		else
			tx->rekeying_intv = new_intv;
		cancel_delayed_work_sync(&tx->work);
	}

	if (tx->rekeying_intv || now) {
		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
	}
}

/**
 * tipc_crypto_work_tx - Scheduled TX works handler
 * @work: the struct TX work
 *
 * The function processes the previous scheduled work, i.e. key rekeying, by
 * generating a new session key based on current one, then attaching it to the
 * TX crypto and finally distributing it to peers. It also re-schedules the
 * rekeying if needed.
 */
static void tipc_crypto_work_tx(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
	struct tipc_aead_key *skey = NULL;
	struct tipc_key key = tx->key;
	struct tipc_aead *aead;
	int rc = -ENOMEM;

	if (unlikely(key.pending))
		goto resched;

	/* Take current key as a template */
	rcu_read_lock();
	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
	if (unlikely(!aead)) {
		rcu_read_unlock();
		/* At least one key should exist for securing */
		return;
	}

	/* Lets duplicate it first */
	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
	rcu_read_unlock();

	/* Now, generate new key, initiate & distribute it */
	if (likely(skey)) {
		rc = tipc_aead_key_generate(skey) ?:
		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
		if (likely(rc > 0))
			rc = tipc_crypto_key_distr(tx, rc, NULL);
2455
		kfree_sensitive(skey);
2456 2457 2458 2459 2460 2461 2462 2463 2464
	}

	if (unlikely(rc))
		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);

resched:
	/* Re-schedule rekeying if any */
	tipc_crypto_rekeying_sched(tx, false, 0);
}