mt7530.c 43.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Mediatek MT7530 DSA Switch driver
 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
 */
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
16
#include <linux/phylink.h>
17 18 19
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
20
#include <linux/gpio/consumer.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
#include <net/dsa.h>

#include "mt7530.h"

/* String, offset, and register size in bytes if different from 4 bytes */
static const struct mt7530_mib_desc mt7530_mib[] = {
	MIB_DESC(1, 0x00, "TxDrop"),
	MIB_DESC(1, 0x04, "TxCrcErr"),
	MIB_DESC(1, 0x08, "TxUnicast"),
	MIB_DESC(1, 0x0c, "TxMulticast"),
	MIB_DESC(1, 0x10, "TxBroadcast"),
	MIB_DESC(1, 0x14, "TxCollision"),
	MIB_DESC(1, 0x18, "TxSingleCollision"),
	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
	MIB_DESC(1, 0x20, "TxDeferred"),
	MIB_DESC(1, 0x24, "TxLateCollision"),
	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
	MIB_DESC(1, 0x2c, "TxPause"),
	MIB_DESC(1, 0x30, "TxPktSz64"),
	MIB_DESC(1, 0x34, "TxPktSz65To127"),
	MIB_DESC(1, 0x38, "TxPktSz128To255"),
	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
	MIB_DESC(1, 0x44, "Tx1024ToMax"),
	MIB_DESC(2, 0x48, "TxBytes"),
	MIB_DESC(1, 0x60, "RxDrop"),
	MIB_DESC(1, 0x64, "RxFiltering"),
	MIB_DESC(1, 0x6c, "RxMulticast"),
	MIB_DESC(1, 0x70, "RxBroadcast"),
	MIB_DESC(1, 0x74, "RxAlignErr"),
	MIB_DESC(1, 0x78, "RxCrcErr"),
	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
	MIB_DESC(1, 0x80, "RxFragErr"),
	MIB_DESC(1, 0x84, "RxOverSzErr"),
	MIB_DESC(1, 0x88, "RxJabberErr"),
	MIB_DESC(1, 0x8c, "RxPause"),
	MIB_DESC(1, 0x90, "RxPktSz64"),
	MIB_DESC(1, 0x94, "RxPktSz65To127"),
	MIB_DESC(1, 0x98, "RxPktSz128To255"),
	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
	MIB_DESC(2, 0xa8, "RxBytes"),
	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
	MIB_DESC(1, 0xb4, "RxIngressDrop"),
	MIB_DESC(1, 0xb8, "RxArlDrop"),
};

static int
mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
{
	int ret;

	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
	if (ret < 0)
		dev_err(priv->dev,
			"failed to priv write register\n");
	return ret;
}

static u32
mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
{
	int ret;
	u32 val;

	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
	if (ret < 0) {
		dev_err(priv->dev,
			"failed to priv read register\n");
		return ret;
	}

	return val;
}

static void
mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
		  u32 mask, u32 set)
{
	u32 val;

	val = mt7623_trgmii_read(priv, reg);
	val &= ~mask;
	val |= set;
	mt7623_trgmii_write(priv, reg, val);
}

static void
mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7623_trgmii_rmw(priv, reg, 0, val);
}

static void
mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7623_trgmii_rmw(priv, reg, val, 0);
}

static int
core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
{
	struct mii_bus *bus = priv->bus;
	int value, ret;

	/* Write the desired MMD Devad */
	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
	if (ret < 0)
		goto err;

	/* Write the desired MMD register address */
	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
	if (ret < 0)
		goto err;

	/* Select the Function : DATA with no post increment */
	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
	if (ret < 0)
		goto err;

	/* Read the content of the MMD's selected register */
	value = bus->read(bus, 0, MII_MMD_DATA);

	return value;
err:
	dev_err(&bus->dev,  "failed to read mmd register\n");

	return ret;
}

static int
core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
			int devad, u32 data)
{
	struct mii_bus *bus = priv->bus;
	int ret;

	/* Write the desired MMD Devad */
	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
	if (ret < 0)
		goto err;

	/* Write the desired MMD register address */
	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
	if (ret < 0)
		goto err;

	/* Select the Function : DATA with no post increment */
	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
	if (ret < 0)
		goto err;

	/* Write the data into MMD's selected register */
	ret = bus->write(bus, 0, MII_MMD_DATA, data);
err:
	if (ret < 0)
		dev_err(&bus->dev,
			"failed to write mmd register\n");
	return ret;
}

static void
core_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
{
	struct mii_bus *bus = priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
	val &= ~mask;
	val |= set;
	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
core_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
	core_rmw(priv, reg, 0, val);
}

static void
core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
	core_rmw(priv, reg, val, 0);
}

static int
mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;
	u16 page, r, lo, hi;
	int ret;

	page = (reg >> 6) & 0x3ff;
	r  = (reg >> 2) & 0xf;
	lo = val & 0xffff;
	hi = val >> 16;

	/* MT7530 uses 31 as the pseudo port */
	ret = bus->write(bus, 0x1f, 0x1f, page);
	if (ret < 0)
		goto err;

	ret = bus->write(bus, 0x1f, r,  lo);
	if (ret < 0)
		goto err;

	ret = bus->write(bus, 0x1f, 0x10, hi);
err:
	if (ret < 0)
		dev_err(&bus->dev,
			"failed to write mt7530 register\n");
	return ret;
}

static u32
mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
{
	struct mii_bus *bus = priv->bus;
	u16 page, r, lo, hi;
	int ret;

	page = (reg >> 6) & 0x3ff;
	r = (reg >> 2) & 0xf;

	/* MT7530 uses 31 as the pseudo port */
	ret = bus->write(bus, 0x1f, 0x1f, page);
	if (ret < 0) {
		dev_err(&bus->dev,
			"failed to read mt7530 register\n");
		return ret;
	}

	lo = bus->read(bus, 0x1f, r);
	hi = bus->read(bus, 0x1f, 0x10);

	return (hi << 16) | (lo & 0xffff);
}

static void
mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	mt7530_mii_write(priv, reg, val);

	mutex_unlock(&bus->mdio_lock);
}

static u32
_mt7530_read(struct mt7530_dummy_poll *p)
{
	struct mii_bus		*bus = p->priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(p->priv, p->reg);

	mutex_unlock(&bus->mdio_lock);

	return val;
}

static u32
mt7530_read(struct mt7530_priv *priv, u32 reg)
{
	struct mt7530_dummy_poll p;

	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
	return _mt7530_read(&p);
}

static void
mt7530_rmw(struct mt7530_priv *priv, u32 reg,
	   u32 mask, u32 set)
{
	struct mii_bus *bus = priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(priv, reg);
	val &= ~mask;
	val |= set;
	mt7530_mii_write(priv, reg, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7530_rmw(priv, reg, 0, val);
}

static void
mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7530_rmw(priv, reg, val, 0);
}

static int
mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
{
	u32 val;
	int ret;
	struct mt7530_dummy_poll p;

	/* Set the command operating upon the MAC address entries */
	val = ATC_BUSY | ATC_MAT(0) | cmd;
	mt7530_write(priv, MT7530_ATC, val);

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
	ret = readx_poll_timeout(_mt7530_read, &p, val,
				 !(val & ATC_BUSY), 20, 20000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	/* Additional sanity for read command if the specified
	 * entry is invalid
	 */
	val = mt7530_read(priv, MT7530_ATC);
	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
		return -EINVAL;

	if (rsp)
		*rsp = val;

	return 0;
}

static void
mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
{
	u32 reg[3];
	int i;

	/* Read from ARL table into an array */
	for (i = 0; i < 3; i++) {
		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));

		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
			__func__, __LINE__, i, reg[i]);
	}

	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
}

static void
mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
		 u8 port_mask, const u8 *mac,
		 u8 aging, u8 type)
{
	u32 reg[3] = { 0 };
	int i;

	reg[1] |= vid & CVID_MASK;
	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
	/* STATIC_ENT indicate that entry is static wouldn't
	 * be aged out and STATIC_EMP specified as erasing an
	 * entry
	 */
	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
	reg[1] |= mac[5] << MAC_BYTE_5;
	reg[1] |= mac[4] << MAC_BYTE_4;
	reg[0] |= mac[3] << MAC_BYTE_3;
	reg[0] |= mac[2] << MAC_BYTE_2;
	reg[0] |= mac[1] << MAC_BYTE_1;
	reg[0] |= mac[0] << MAC_BYTE_0;

	/* Write array into the ARL table */
	for (i = 0; i < 3; i++)
		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
}

static int
mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
{
	struct mt7530_priv *priv = ds->priv;
431 432 433 434 435 436 437 438 439 440
	u32 ncpo1, ssc_delta, trgint, i, xtal;

	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;

	if (xtal == HWTRAP_XTAL_20MHZ) {
		dev_err(priv->dev,
			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
			__func__);
		return -EINVAL;
	}
441 442 443 444

	switch (mode) {
	case PHY_INTERFACE_MODE_RGMII:
		trgint = 0;
445
		/* PLL frequency: 125MHz */
446 447 448 449
		ncpo1 = 0x0c80;
		break;
	case PHY_INTERFACE_MODE_TRGMII:
		trgint = 1;
450 451 452 453 454 455 456 457 458 459 460 461
		if (priv->id == ID_MT7621) {
			/* PLL frequency: 150MHz: 1.2GBit */
			if (xtal == HWTRAP_XTAL_40MHZ)
				ncpo1 = 0x0780;
			if (xtal == HWTRAP_XTAL_25MHZ)
				ncpo1 = 0x0a00;
		} else { /* PLL frequency: 250MHz: 2.0Gbit */
			if (xtal == HWTRAP_XTAL_40MHZ)
				ncpo1 = 0x0c80;
			if (xtal == HWTRAP_XTAL_25MHZ)
				ncpo1 = 0x1400;
		}
462 463 464 465 466 467
		break;
	default:
		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
		return -EINVAL;
	}

468 469 470 471 472
	if (xtal == HWTRAP_XTAL_25MHZ)
		ssc_delta = 0x57;
	else
		ssc_delta = 0x87;

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
		   P6_INTF_MODE(trgint));

	/* Lower Tx Driving for TRGMII path */
	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
			     TD_DM_DRVP(8) | TD_DM_DRVN(8));

	/* Setup core clock for MT7530 */
	if (!trgint) {
		/* Disable MT7530 core clock */
		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);

		/* Disable PLL, since phy_device has not yet been created
		 * provided for phy_[read,write]_mmd_indirect is called, we
		 * provide our own core_write_mmd_indirect to complete this
		 * function.
		 */
		core_write_mmd_indirect(priv,
					CORE_GSWPLL_GRP1,
					MDIO_MMD_VEND2,
					0);

		/* Set core clock into 500Mhz */
		core_write(priv, CORE_GSWPLL_GRP2,
			   RG_GSWPLL_POSDIV_500M(1) |
			   RG_GSWPLL_FBKDIV_500M(25));

		/* Enable PLL */
		core_write(priv, CORE_GSWPLL_GRP1,
			   RG_GSWPLL_EN_PRE |
			   RG_GSWPLL_POSDIV_200M(2) |
			   RG_GSWPLL_FBKDIV_200M(32));

		/* Enable MT7530 core clock */
		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
	}

	/* Setup the MT7530 TRGMII Tx Clock */
	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
	core_write(priv, CORE_PLL_GROUP4,
		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
		   RG_SYSPLL_BIAS_LPF_EN);
	core_write(priv, CORE_PLL_GROUP2,
		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
		   RG_SYSPLL_POSDIV(1));
	core_write(priv, CORE_PLL_GROUP7,
		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
		 REG_GSWCK_EN | REG_TRGMIICK_EN);

	if (!trgint)
		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
				   RD_TAP_MASK, RD_TAP(16));
	else
534 535 536
		if (priv->id != ID_MT7621)
			mt7623_trgmii_set(priv, GSW_INTF_MODE,
					  INTF_MODE_TRGMII);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

	return 0;
}

static int
mt7623_pad_clk_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;
	int i;

	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
				    TD_DM_DRVP(8) | TD_DM_DRVN(8));

	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);

	return 0;
}

static void
mt7530_mib_reset(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;

	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
}

static void
mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
{
569
	u32 mask = PMCR_TX_EN | PMCR_RX_EN | PMCR_FORCE_LNK;
570 571 572 573 574 575 576 577 578 579 580 581 582 583

	if (enable)
		mt7530_set(priv, MT7530_PMCR_P(port), mask);
	else
		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
}

static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mt7530_priv *priv = ds->priv;

	return mdiobus_read_nested(priv->bus, port, regnum);
}

584 585
static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
			    u16 val)
586 587 588 589 590 591 592
{
	struct mt7530_priv *priv = ds->priv;

	return mdiobus_write_nested(priv->bus, port, regnum, val);
}

static void
593 594
mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
		   uint8_t *data)
595 596 597
{
	int i;

598 599 600
	if (stringset != ETH_SS_STATS)
		return;

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
			ETH_GSTRING_LEN);
}

static void
mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
			 uint64_t *data)
{
	struct mt7530_priv *priv = ds->priv;
	const struct mt7530_mib_desc *mib;
	u32 reg, i;
	u64 hi;

	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
		mib = &mt7530_mib[i];
		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;

		data[i] = mt7530_read(priv, reg);
		if (mib->size == 2) {
			hi = mt7530_read(priv, reg + 4);
			data[i] |= hi << 32;
		}
	}
}

static int
628
mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
629
{
630 631 632
	if (sset != ETH_SS_STATS)
		return 0;

633 634 635
	return ARRAY_SIZE(mt7530_mib);
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;
	u8 tx_delay = 0;
	int val;

	mutex_lock(&priv->reg_mutex);

	val = mt7530_read(priv, MT7530_MHWTRAP);

	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;

	switch (priv->p5_intf_sel) {
	case P5_INTF_SEL_PHY_P0:
		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
		val |= MHWTRAP_PHY0_SEL;
		/* fall through */
	case P5_INTF_SEL_PHY_P4:
		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;

		/* Setup the MAC by default for the cpu port */
		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
		break;
	case P5_INTF_SEL_GMAC5:
		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
		val &= ~MHWTRAP_P5_DIS;
		break;
	case P5_DISABLED:
		interface = PHY_INTERFACE_MODE_NA;
		break;
	default:
		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
			priv->p5_intf_sel);
		goto unlock_exit;
	}

	/* Setup RGMII settings */
	if (phy_interface_mode_is_rgmii(interface)) {
		val |= MHWTRAP_P5_RGMII_MODE;

		/* P5 RGMII RX Clock Control: delay setting for 1000M */
		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);

		/* Don't set delay in DSA mode */
		if (!dsa_is_dsa_port(priv->ds, 5) &&
		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
		     interface == PHY_INTERFACE_MODE_RGMII_ID))
			tx_delay = 4; /* n * 0.5 ns */

		/* P5 RGMII TX Clock Control: delay x */
		mt7530_write(priv, MT7530_P5RGMIITXCR,
			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));

		/* reduce P5 RGMII Tx driving, 8mA */
		mt7530_write(priv, MT7530_IO_DRV_CR,
			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
	}

	mt7530_write(priv, MT7530_MHWTRAP, val);

	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));

	priv->p5_interface = interface;

unlock_exit:
	mutex_unlock(&priv->reg_mutex);
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int
mt7530_cpu_port_enable(struct mt7530_priv *priv,
		       int port)
{
	/* Enable Mediatek header mode on the cpu port */
	mt7530_write(priv, MT7530_PVC_P(port),
		     PORT_SPEC_TAG);

	/* Disable auto learning on the cpu port */
	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);

	/* Unknown unicast frame fordwarding to the cpu port */
	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));

721 722 723 724
	/* Set CPU port number */
	if (priv->id == ID_MT7621)
		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));

725 726 727 728
	/* CPU port gets connected to all user ports of
	 * the switch
	 */
	mt7530_write(priv, MT7530_PCR_P(port),
729
		     PCR_MATRIX(dsa_user_ports(priv->ds)));
730 731 732 733 734 735 736 737 738 739

	return 0;
}

static int
mt7530_port_enable(struct dsa_switch *ds, int port,
		   struct phy_device *phy)
{
	struct mt7530_priv *priv = ds->priv;

740 741 742
	if (!dsa_is_user_port(ds, port))
		return 0;

743 744 745 746 747 748 749 750 751 752
	mutex_lock(&priv->reg_mutex);

	/* Allow the user port gets connected to the cpu port and also
	 * restore the port matrix if the port is the member of a certain
	 * bridge.
	 */
	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
	priv->ports[port].enable = true;
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
		   priv->ports[port].pm);
753
	mt7530_port_set_status(priv, port, 0);
754 755 756 757 758 759 760

	mutex_unlock(&priv->reg_mutex);

	return 0;
}

static void
761
mt7530_port_disable(struct dsa_switch *ds, int port)
762 763 764
{
	struct mt7530_priv *priv = ds->priv;

765 766 767
	if (!dsa_is_user_port(ds, port))
		return;

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	mutex_lock(&priv->reg_mutex);

	/* Clear up all port matrix which could be restored in the next
	 * enablement for the port.
	 */
	priv->ports[port].enable = false;
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
		   PCR_MATRIX_CLR);
	mt7530_port_set_status(priv, port, 0);

	mutex_unlock(&priv->reg_mutex);
}

static void
mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
		stp_state = MT7530_STP_DISABLED;
		break;
	case BR_STATE_BLOCKING:
		stp_state = MT7530_STP_BLOCKING;
		break;
	case BR_STATE_LISTENING:
		stp_state = MT7530_STP_LISTENING;
		break;
	case BR_STATE_LEARNING:
		stp_state = MT7530_STP_LEARNING;
		break;
	case BR_STATE_FORWARDING:
	default:
		stp_state = MT7530_STP_FORWARDING;
		break;
	}

	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
}

static int
mt7530_port_bridge_join(struct dsa_switch *ds, int port,
			struct net_device *bridge)
{
	struct mt7530_priv *priv = ds->priv;
	u32 port_bitmap = BIT(MT7530_CPU_PORT);
	int i;

	mutex_lock(&priv->reg_mutex);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Add this port to the port matrix of the other ports in the
		 * same bridge. If the port is disabled, port matrix is kept
		 * and not being setup until the port becomes enabled.
		 */
824
		if (dsa_is_user_port(ds, i) && i != port) {
V
Vivien Didelot 已提交
825
			if (dsa_to_port(ds, i)->bridge_dev != bridge)
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
				continue;
			if (priv->ports[i].enable)
				mt7530_set(priv, MT7530_PCR_P(i),
					   PCR_MATRIX(BIT(port)));
			priv->ports[i].pm |= PCR_MATRIX(BIT(port));

			port_bitmap |= BIT(i);
		}
	}

	/* Add the all other ports to this port matrix. */
	if (priv->ports[port].enable)
		mt7530_rmw(priv, MT7530_PCR_P(port),
			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);

	mutex_unlock(&priv->reg_mutex);

	return 0;
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static void
mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;
	bool all_user_ports_removed = true;
	int i;

	/* When a port is removed from the bridge, the port would be set up
	 * back to the default as is at initial boot which is a VLAN-unaware
	 * port.
	 */
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
		   MT7530_PORT_MATRIX_MODE);
	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		if (dsa_is_user_port(ds, i) &&
865
		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
			all_user_ports_removed = false;
			break;
		}
	}

	/* CPU port also does the same thing until all user ports belonging to
	 * the CPU port get out of VLAN filtering mode.
	 */
	if (all_user_ports_removed) {
		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
			     PCR_MATRIX(dsa_user_ports(priv->ds)));
		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
			     PORT_SPEC_TAG);
	}
}

static void
mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;

	/* The real fabric path would be decided on the membership in the
	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
	 * means potential VLAN can be consisting of certain subset of all
	 * ports.
	 */
	mt7530_rmw(priv, MT7530_PCR_P(port),
		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));

	/* Trapped into security mode allows packet forwarding through VLAN
	 * table lookup.
	 */
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
		   MT7530_PORT_SECURITY_MODE);

	/* Set the port as a user port which is to be able to recognize VID
	 * from incoming packets before fetching entry within the VLAN table.
	 */
	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
		   VLAN_ATTR(MT7530_VLAN_USER));
}

908 909 910 911 912 913 914 915 916 917 918 919 920
static void
mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
			 struct net_device *bridge)
{
	struct mt7530_priv *priv = ds->priv;
	int i;

	mutex_lock(&priv->reg_mutex);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Remove this port from the port matrix of the other ports
		 * in the same bridge. If the port is disabled, port matrix
		 * is kept and not being setup until the port becomes enabled.
921 922
		 * And the other port's port matrix cannot be broken when the
		 * other port is still a VLAN-aware port.
923
		 */
924
		if (dsa_is_user_port(ds, i) && i != port &&
925
		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
V
Vivien Didelot 已提交
926
			if (dsa_to_port(ds, i)->bridge_dev != bridge)
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
				continue;
			if (priv->ports[i].enable)
				mt7530_clear(priv, MT7530_PCR_P(i),
					     PCR_MATRIX(BIT(port)));
			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
		}
	}

	/* Set the cpu port to be the only one in the port matrix of
	 * this port.
	 */
	if (priv->ports[port].enable)
		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));

	mutex_unlock(&priv->reg_mutex);
}

static int
mt7530_port_fdb_add(struct dsa_switch *ds, int port,
948
		    const unsigned char *addr, u16 vid)
949 950
{
	struct mt7530_priv *priv = ds->priv;
951
	int ret;
952 953 954
	u8 port_mask = BIT(port);

	mutex_lock(&priv->reg_mutex);
955
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
956
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
957
	mutex_unlock(&priv->reg_mutex);
958 959

	return ret;
960 961 962 963
}

static int
mt7530_port_fdb_del(struct dsa_switch *ds, int port,
964
		    const unsigned char *addr, u16 vid)
965 966 967 968 969 970
{
	struct mt7530_priv *priv = ds->priv;
	int ret;
	u8 port_mask = BIT(port);

	mutex_lock(&priv->reg_mutex);
971
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
972
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
973 974 975 976 977 978 979
	mutex_unlock(&priv->reg_mutex);

	return ret;
}

static int
mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
980
		     dsa_fdb_dump_cb_t *cb, void *data)
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
{
	struct mt7530_priv *priv = ds->priv;
	struct mt7530_fdb _fdb = { 0 };
	int cnt = MT7530_NUM_FDB_RECORDS;
	int ret = 0;
	u32 rsp = 0;

	mutex_lock(&priv->reg_mutex);

	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
	if (ret < 0)
		goto err;

	do {
		if (rsp & ATC_SRCH_HIT) {
			mt7530_fdb_read(priv, &_fdb);
			if (_fdb.port_mask & BIT(port)) {
998 999
				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
					 data);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
				if (ret < 0)
					break;
			}
		}
	} while (--cnt &&
		 !(rsp & ATC_SRCH_END) &&
		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
err:
	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static int
mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
{
	struct mt7530_dummy_poll p;
	u32 val;
	int ret;

	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
	mt7530_write(priv, MT7530_VTCR, val);

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
	ret = readx_poll_timeout(_mt7530_read, &p, val,
				 !(val & VTCR_BUSY), 20, 20000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		return ret;
	}

	val = mt7530_read(priv, MT7530_VTCR);
	if (val & VTCR_INVALID) {
		dev_err(priv->dev, "read VTCR invalid\n");
		return -EINVAL;
	}

	return 0;
}

static int
mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
			   bool vlan_filtering)
{
	if (vlan_filtering) {
		/* The port is being kept as VLAN-unaware port when bridge is
		 * set up with vlan_filtering not being set, Otherwise, the
		 * port and the corresponding CPU port is required the setup
		 * for becoming a VLAN-aware port.
		 */
		mt7530_port_set_vlan_aware(ds, port);
		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1052 1053
	} else {
		mt7530_port_set_vlan_unaware(ds, port);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	}

	return 0;
}

static int
mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
			 const struct switchdev_obj_port_vlan *vlan)
{
	/* nothing needed */

	return 0;
}

static void
mt7530_hw_vlan_add(struct mt7530_priv *priv,
		   struct mt7530_hw_vlan_entry *entry)
{
	u8 new_members;
	u32 val;

	new_members = entry->old_members | BIT(entry->port) |
		      BIT(MT7530_CPU_PORT);

	/* Validate the entry with independent learning, create egress tag per
	 * VLAN and joining the port as one of the port members.
	 */
	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
	mt7530_write(priv, MT7530_VAWD1, val);

	/* Decide whether adding tag or not for those outgoing packets from the
	 * port inside the VLAN.
	 */
	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
				MT7530_VLAN_EGRESS_TAG;
	mt7530_rmw(priv, MT7530_VAWD2,
		   ETAG_CTRL_P_MASK(entry->port),
		   ETAG_CTRL_P(entry->port, val));

	/* CPU port is always taken as a tagged port for serving more than one
	 * VLANs across and also being applied with egress type stack mode for
	 * that VLAN tags would be appended after hardware special tag used as
	 * DSA tag.
	 */
	mt7530_rmw(priv, MT7530_VAWD2,
		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
		   ETAG_CTRL_P(MT7530_CPU_PORT,
			       MT7530_VLAN_EGRESS_STACK));
}

static void
mt7530_hw_vlan_del(struct mt7530_priv *priv,
		   struct mt7530_hw_vlan_entry *entry)
{
	u8 new_members;
	u32 val;

	new_members = entry->old_members & ~BIT(entry->port);

	val = mt7530_read(priv, MT7530_VAWD1);
	if (!(val & VLAN_VALID)) {
		dev_err(priv->dev,
			"Cannot be deleted due to invalid entry\n");
		return;
	}

	/* If certain member apart from CPU port is still alive in the VLAN,
	 * the entry would be kept valid. Otherwise, the entry is got to be
	 * disabled.
	 */
	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
		      VLAN_VALID;
		mt7530_write(priv, MT7530_VAWD1, val);
	} else {
		mt7530_write(priv, MT7530_VAWD1, 0);
		mt7530_write(priv, MT7530_VAWD2, 0);
	}
}

static void
mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
		      struct mt7530_hw_vlan_entry *entry,
		      mt7530_vlan_op vlan_op)
{
	u32 val;

	/* Fetch entry */
	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);

	val = mt7530_read(priv, MT7530_VAWD1);

	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;

	/* Manipulate entry */
	vlan_op(priv, entry);

	/* Flush result to hardware */
	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
}

static void
mt7530_port_vlan_add(struct dsa_switch *ds, int port,
		     const struct switchdev_obj_port_vlan *vlan)
{
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	struct mt7530_hw_vlan_entry new_entry;
	struct mt7530_priv *priv = ds->priv;
	u16 vid;

	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
	 * being set.
	 */
1168
	if (!dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		return;

	mutex_lock(&priv->reg_mutex);

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
		mt7530_hw_vlan_update(priv, vid, &new_entry,
				      mt7530_hw_vlan_add);
	}

	if (pvid) {
		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
			   G0_PORT_VID(vlan->vid_end));
		priv->ports[port].pvid = vlan->vid_end;
	}

	mutex_unlock(&priv->reg_mutex);
}

static int
mt7530_port_vlan_del(struct dsa_switch *ds, int port,
		     const struct switchdev_obj_port_vlan *vlan)
{
	struct mt7530_hw_vlan_entry target_entry;
	struct mt7530_priv *priv = ds->priv;
	u16 vid, pvid;

	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
	 * being set.
	 */
1199
	if (!dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		return 0;

	mutex_lock(&priv->reg_mutex);

	pvid = priv->ports[port].pvid;
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
		mt7530_hw_vlan_update(priv, vid, &target_entry,
				      mt7530_hw_vlan_del);

		/* PVID is being restored to the default whenever the PVID port
		 * is being removed from the VLAN.
		 */
		if (pvid == vid)
			pvid = G0_PORT_VID_DEF;
	}

	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
	priv->ports[port].pvid = pvid;

	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1225
static enum dsa_tag_protocol
1226 1227
mtk_get_tag_protocol(struct dsa_switch *ds, int port,
		     enum dsa_tag_protocol mp)
1228 1229 1230
{
	struct mt7530_priv *priv = ds->priv;

1231
	if (port != MT7530_CPU_PORT) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		dev_warn(priv->dev,
			 "port not matched with tagging CPU port\n");
		return DSA_TAG_PROTO_NONE;
	} else {
		return DSA_TAG_PROTO_MTK;
	}
}

static int
mt7530_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;
1244 1245
	struct device_node *phy_node;
	struct device_node *mac_np;
1246
	struct mt7530_dummy_poll p;
1247
	phy_interface_t interface;
1248 1249 1250
	struct device_node *dn;
	u32 id, val;
	int ret, i;
1251

1252
	/* The parent node of master netdev which holds the common system
1253 1254 1255
	 * controller also is the container for two GMACs nodes representing
	 * as two netdev instances.
	 */
1256
	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (priv->id == ID_MT7530) {
		priv->ethernet = syscon_node_to_regmap(dn);
		if (IS_ERR(priv->ethernet))
			return PTR_ERR(priv->ethernet);

		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
		ret = regulator_enable(priv->core_pwr);
		if (ret < 0) {
			dev_err(priv->dev,
				"Failed to enable core power: %d\n", ret);
			return ret;
		}
1270

1271 1272 1273 1274 1275 1276 1277
		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
		ret = regulator_enable(priv->io_pwr);
		if (ret < 0) {
			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
				ret);
			return ret;
		}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	}

	/* Reset whole chip through gpio pin or memory-mapped registers for
	 * different type of hardware
	 */
	if (priv->mcm) {
		reset_control_assert(priv->rstc);
		usleep_range(1000, 1100);
		reset_control_deassert(priv->rstc);
	} else {
		gpiod_set_value_cansleep(priv->reset, 0);
		usleep_range(1000, 1100);
		gpiod_set_value_cansleep(priv->reset, 1);
	}

	/* Waiting for MT7530 got to stable */
	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
				 20, 1000000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	id = mt7530_read(priv, MT7530_CREV);
	id >>= CHIP_NAME_SHIFT;
	if (id != MT7530_ID) {
		dev_err(priv->dev, "chip %x can't be supported\n", id);
		return -ENODEV;
	}

	/* Reset the switch through internal reset */
	mt7530_write(priv, MT7530_SYS_CTRL,
		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
		     SYS_CTRL_REG_RST);

	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
	val = mt7530_read(priv, MT7530_MHWTRAP);
	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
	val |= MHWTRAP_MANUAL;
	mt7530_write(priv, MT7530_MHWTRAP, val);

1320 1321
	priv->p6_interface = PHY_INTERFACE_MODE_NA;

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	/* Enable and reset MIB counters */
	mt7530_mib_reset(ds);

	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Disable forwarding by default on all ports */
		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
			   PCR_MATRIX_CLR);

		if (dsa_is_cpu_port(ds, i))
			mt7530_cpu_port_enable(priv, i);
		else
1335
			mt7530_port_disable(ds, i);
1336 1337
	}

1338 1339 1340 1341 1342 1343
	/* Setup port 5 */
	priv->p5_intf_sel = P5_DISABLED;
	interface = PHY_INTERFACE_MODE_NA;

	if (!dsa_is_unused_port(ds, 5)) {
		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1344 1345 1346
		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
		if (ret && ret != -ENODEV)
			return ret;
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	} else {
		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
		for_each_child_of_node(dn, mac_np) {
			if (!of_device_is_compatible(mac_np,
						     "mediatek,eth-mac"))
				continue;

			ret = of_property_read_u32(mac_np, "reg", &id);
			if (ret < 0 || id != 1)
				continue;

			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
			if (phy_node->parent == priv->dev->of_node->parent) {
1360 1361 1362
				ret = of_get_phy_mode(mac_np, &interface);
				if (ret && ret != -ENODEV)
					return ret;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
				id = of_mdio_parse_addr(ds->dev, phy_node);
				if (id == 0)
					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
				if (id == 4)
					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
			}
			of_node_put(phy_node);
			break;
		}
	}

	mt7530_setup_port5(ds, interface);

1376
	/* Flush the FDB table */
1377
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1378 1379 1380 1381 1382 1383
	if (ret < 0)
		return ret;

	return 0;
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void mt7530_phylink_mac_config(struct dsa_switch *ds, int port,
				      unsigned int mode,
				      const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 mcr_cur, mcr_new;

	switch (port) {
	case 0: /* Internal phy */
	case 1:
	case 2:
	case 3:
	case 4:
		if (state->interface != PHY_INTERFACE_MODE_GMII)
			return;
		break;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
		if (priv->p5_interface == state->interface)
			break;
		if (!phy_interface_mode_is_rgmii(state->interface) &&
		    state->interface != PHY_INTERFACE_MODE_MII &&
		    state->interface != PHY_INTERFACE_MODE_GMII)
			return;

		mt7530_setup_port5(ds, state->interface);
		break;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	case 6: /* 1st cpu port */
		if (priv->p6_interface == state->interface)
			break;

		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
		    state->interface != PHY_INTERFACE_MODE_TRGMII)
			return;

		/* Setup TX circuit incluing relevant PAD and driving */
		mt7530_pad_clk_setup(ds, state->interface);

		if (priv->id == ID_MT7530) {
			/* Setup RX circuit, relevant PAD and driving on the
			 * host which must be placed after the setup on the
			 * device side is all finished.
			 */
			mt7623_pad_clk_setup(ds);
		}

		priv->p6_interface = state->interface;
		break;
	default:
		dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port);
		return;
	}

	if (phylink_autoneg_inband(mode)) {
		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
			__func__);
		return;
	}

	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
	mcr_new = mcr_cur;
	mcr_new &= ~(PMCR_FORCE_SPEED_1000 | PMCR_FORCE_SPEED_100 |
		     PMCR_FORCE_FDX | PMCR_TX_FC_EN | PMCR_RX_FC_EN);
	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
1447
		   PMCR_BACKPR_EN | PMCR_FORCE_MODE;
1448

1449 1450 1451 1452
	/* Are we connected to external phy */
	if (port == 5 && dsa_is_user_port(ds, 5))
		mcr_new |= PMCR_EXT_PHY;

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	switch (state->speed) {
	case SPEED_1000:
		mcr_new |= PMCR_FORCE_SPEED_1000;
		break;
	case SPEED_100:
		mcr_new |= PMCR_FORCE_SPEED_100;
		break;
	}
	if (state->duplex == DUPLEX_FULL) {
		mcr_new |= PMCR_FORCE_FDX;
		if (state->pause & MLO_PAUSE_TX)
			mcr_new |= PMCR_TX_FC_EN;
		if (state->pause & MLO_PAUSE_RX)
			mcr_new |= PMCR_RX_FC_EN;
	}

	if (mcr_new != mcr_cur)
		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
}

static void mt7530_phylink_mac_link_down(struct dsa_switch *ds, int port,
					 unsigned int mode,
					 phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;

	mt7530_port_set_status(priv, port, 0);
}

static void mt7530_phylink_mac_link_up(struct dsa_switch *ds, int port,
				       unsigned int mode,
				       phy_interface_t interface,
				       struct phy_device *phydev)
{
	struct mt7530_priv *priv = ds->priv;

	mt7530_port_set_status(priv, port, 1);
}

static void mt7530_phylink_validate(struct dsa_switch *ds, int port,
				    unsigned long *supported,
				    struct phylink_link_state *state)
{
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };

	switch (port) {
	case 0: /* Internal phy */
	case 1:
	case 2:
	case 3:
	case 4:
		if (state->interface != PHY_INTERFACE_MODE_NA &&
		    state->interface != PHY_INTERFACE_MODE_GMII)
			goto unsupported;
		break;
1508 1509 1510 1511 1512 1513 1514
	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
		if (state->interface != PHY_INTERFACE_MODE_NA &&
		    !phy_interface_mode_is_rgmii(state->interface) &&
		    state->interface != PHY_INTERFACE_MODE_MII &&
		    state->interface != PHY_INTERFACE_MODE_GMII)
			goto unsupported;
		break;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	case 6: /* 1st cpu port */
		if (state->interface != PHY_INTERFACE_MODE_NA &&
		    state->interface != PHY_INTERFACE_MODE_RGMII &&
		    state->interface != PHY_INTERFACE_MODE_TRGMII)
			goto unsupported;
		break;
	default:
		dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port);
unsupported:
		linkmode_zero(supported);
		return;
	}

	phylink_set_port_modes(mask);
	phylink_set(mask, Autoneg);

1531 1532 1533
	if (state->interface == PHY_INTERFACE_MODE_TRGMII) {
		phylink_set(mask, 1000baseT_Full);
	} else {
1534 1535 1536 1537 1538
		phylink_set(mask, 10baseT_Half);
		phylink_set(mask, 10baseT_Full);
		phylink_set(mask, 100baseT_Half);
		phylink_set(mask, 100baseT_Full);

1539 1540 1541 1542 1543 1544 1545
		if (state->interface != PHY_INTERFACE_MODE_MII) {
			phylink_set(mask, 1000baseT_Half);
			phylink_set(mask, 1000baseT_Full);
			if (port == 5)
				phylink_set(mask, 1000baseX_Full);
		}
	}
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	phylink_set(mask, Pause);
	phylink_set(mask, Asym_Pause);

	linkmode_and(supported, supported, mask);
	linkmode_and(state->advertising, state->advertising, mask);
}

static int
mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
			      struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 pmsr;

	if (port < 0 || port >= MT7530_NUM_PORTS)
		return -EINVAL;

	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));

	state->link = (pmsr & PMSR_LINK);
	state->an_complete = state->link;
	state->duplex = !!(pmsr & PMSR_DPX);

	switch (pmsr & PMSR_SPEED_MASK) {
	case PMSR_SPEED_10:
		state->speed = SPEED_10;
		break;
	case PMSR_SPEED_100:
		state->speed = SPEED_100;
		break;
	case PMSR_SPEED_1000:
		state->speed = SPEED_1000;
		break;
	default:
		state->speed = SPEED_UNKNOWN;
		break;
	}

	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
	if (pmsr & PMSR_RX_FC)
		state->pause |= MLO_PAUSE_RX;
	if (pmsr & PMSR_TX_FC)
		state->pause |= MLO_PAUSE_TX;

	return 1;
}

1594
static const struct dsa_switch_ops mt7530_switch_ops = {
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	.get_tag_protocol	= mtk_get_tag_protocol,
	.setup			= mt7530_setup,
	.get_strings		= mt7530_get_strings,
	.phy_read		= mt7530_phy_read,
	.phy_write		= mt7530_phy_write,
	.get_ethtool_stats	= mt7530_get_ethtool_stats,
	.get_sset_count		= mt7530_get_sset_count,
	.port_enable		= mt7530_port_enable,
	.port_disable		= mt7530_port_disable,
	.port_stp_state_set	= mt7530_stp_state_set,
	.port_bridge_join	= mt7530_port_bridge_join,
	.port_bridge_leave	= mt7530_port_bridge_leave,
	.port_fdb_add		= mt7530_port_fdb_add,
	.port_fdb_del		= mt7530_port_fdb_del,
	.port_fdb_dump		= mt7530_port_fdb_dump,
1610 1611 1612 1613
	.port_vlan_filtering	= mt7530_port_vlan_filtering,
	.port_vlan_prepare	= mt7530_port_vlan_prepare,
	.port_vlan_add		= mt7530_port_vlan_add,
	.port_vlan_del		= mt7530_port_vlan_del,
1614 1615 1616 1617 1618
	.phylink_validate	= mt7530_phylink_validate,
	.phylink_mac_link_state = mt7530_phylink_mac_link_state,
	.phylink_mac_config	= mt7530_phylink_mac_config,
	.phylink_mac_link_down	= mt7530_phylink_mac_link_down,
	.phylink_mac_link_up	= mt7530_phylink_mac_link_up,
1619 1620
};

1621 1622 1623 1624 1625 1626 1627
static const struct of_device_id mt7530_of_match[] = {
	{ .compatible = "mediatek,mt7621", .data = (void *)ID_MT7621, },
	{ .compatible = "mediatek,mt7530", .data = (void *)ID_MT7530, },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mt7530_of_match);

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static int
mt7530_probe(struct mdio_device *mdiodev)
{
	struct mt7530_priv *priv;
	struct device_node *dn;

	dn = mdiodev->dev.of_node;

	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

1640
	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
1641 1642 1643
	if (!priv->ds)
		return -ENOMEM;

1644 1645 1646
	priv->ds->dev = &mdiodev->dev;
	priv->ds->num_ports = DSA_MAX_PORTS;

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	/* Use medatek,mcm property to distinguish hardware type that would
	 * casues a little bit differences on power-on sequence.
	 */
	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
	if (priv->mcm) {
		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");

		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
		if (IS_ERR(priv->rstc)) {
			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
			return PTR_ERR(priv->rstc);
		}
	}

1661 1662 1663 1664 1665
	/* Get the hardware identifier from the devicetree node.
	 * We will need it for some of the clock and regulator setup.
	 */
	priv->id = (unsigned int)(unsigned long)
		of_device_get_match_data(&mdiodev->dev);
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675
	if (priv->id == ID_MT7530) {
		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
		if (IS_ERR(priv->core_pwr))
			return PTR_ERR(priv->core_pwr);

		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
		if (IS_ERR(priv->io_pwr))
			return PTR_ERR(priv->io_pwr);
	}
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	/* Not MCM that indicates switch works as the remote standalone
	 * integrated circuit so the GPIO pin would be used to complete
	 * the reset, otherwise memory-mapped register accessing used
	 * through syscon provides in the case of MCM.
	 */
	if (!priv->mcm) {
		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
						      GPIOD_OUT_LOW);
		if (IS_ERR(priv->reset)) {
			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
			return PTR_ERR(priv->reset);
		}
	}

	priv->bus = mdiodev->bus;
	priv->dev = &mdiodev->dev;
	priv->ds->priv = priv;
	priv->ds->ops = &mt7530_switch_ops;
	mutex_init(&priv->reg_mutex);
	dev_set_drvdata(&mdiodev->dev, priv);

1698
	return dsa_register_switch(priv->ds);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
}

static void
mt7530_remove(struct mdio_device *mdiodev)
{
	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
	int ret = 0;

	ret = regulator_disable(priv->core_pwr);
	if (ret < 0)
		dev_err(priv->dev,
			"Failed to disable core power: %d\n", ret);

	ret = regulator_disable(priv->io_pwr);
	if (ret < 0)
		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
			ret);

	dsa_unregister_switch(priv->ds);
	mutex_destroy(&priv->reg_mutex);
}

static struct mdio_driver mt7530_mdio_driver = {
	.probe  = mt7530_probe,
	.remove = mt7530_remove,
	.mdiodrv.driver = {
		.name = "mt7530",
		.of_match_table = mt7530_of_match,
	},
};

mdio_module_driver(mt7530_mdio_driver);

MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
MODULE_LICENSE("GPL");