lowcomms.c 46.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/******************************************************************************
*******************************************************************************
**
**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6
**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
**
**
*******************************************************************************
******************************************************************************/

/*
 * lowcomms.c
 *
 * This is the "low-level" comms layer.
 *
 * It is responsible for sending/receiving messages
 * from other nodes in the cluster.
 *
 * Cluster nodes are referred to by their nodeids. nodeids are
 * simply 32 bit numbers to the locking module - if they need to
J
Joe Perches 已提交
22
 * be expanded for the cluster infrastructure then that is its
23 24 25 26 27 28 29 30 31 32 33 34 35 36
 * responsibility. It is this layer's
 * responsibility to resolve these into IP address or
 * whatever it needs for inter-node communication.
 *
 * The comms level is two kernel threads that deal mainly with
 * the receiving of messages from other nodes and passing them
 * up to the mid-level comms layer (which understands the
 * message format) for execution by the locking core, and
 * a send thread which does all the setting up of connections
 * to remote nodes and the sending of data. Threads are not allowed
 * to send their own data because it may cause them to wait in times
 * of high load. Also, this way, the sending thread can collect together
 * messages bound for one node and send them in one block.
 *
J
Joe Perches 已提交
37
 * lowcomms will choose to use either TCP or SCTP as its transport layer
38
 * depending on the configuration variable 'protocol'. This should be set
J
Joe Perches 已提交
39
 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 41
 * cluster-wide mechanism as it must be the same on all nodes of the cluster
 * for the DLM to function.
42 43 44 45 46 47 48
 *
 */

#include <asm/ioctls.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <linux/pagemap.h>
49
#include <linux/file.h>
50
#include <linux/mutex.h>
51
#include <linux/sctp.h>
52
#include <linux/slab.h>
53
#include <net/sctp/sctp.h>
J
Joe Perches 已提交
54
#include <net/ipv6.h>
55

A
Alexander Aring 已提交
56 57
#include <trace/events/dlm.h>

58 59 60 61 62
#include "dlm_internal.h"
#include "lowcomms.h"
#include "midcomms.h"
#include "config.h"

63 64
#define NEEDED_RMEM (4*1024*1024)

65 66
/* Number of messages to send before rescheduling */
#define MAX_SEND_MSG_COUNT 25
67
#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
68

69 70 71
struct connection {
	struct socket *sock;	/* NULL if not connected */
	uint32_t nodeid;	/* So we know who we are in the list */
72
	struct mutex sock_mutex;
73
	unsigned long flags;
74
#define CF_READ_PENDING 1
75
#define CF_WRITE_PENDING 2
76 77
#define CF_INIT_PENDING 4
#define CF_IS_OTHERCON 5
78
#define CF_CLOSE 6
79
#define CF_APP_LIMITED 7
80
#define CF_CLOSING 8
81
#define CF_SHUTDOWN 9
82
#define CF_CONNECTED 10
83 84
#define CF_RECONNECT 11
#define CF_DELAY_CONNECT 12
85
#define CF_EOF 13
P
Patrick Caulfield 已提交
86
	struct list_head writequeue;  /* List of outgoing writequeue_entries */
87
	spinlock_t writequeue_lock;
88
	atomic_t writequeue_cnt;
89
	struct mutex wq_alloc;
90 91
	int retries;
#define MAX_CONNECT_RETRIES 3
92
	struct hlist_node list;
93
	struct connection *othercon;
94
	struct connection *sendcon;
95 96
	struct work_struct rwork; /* Receive workqueue */
	struct work_struct swork; /* Send workqueue */
97
	wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
98 99 100
	unsigned char *rx_buf;
	int rx_buflen;
	int rx_leftover;
101
	struct rcu_head rcu;
102 103 104
};
#define sock2con(x) ((struct connection *)(x)->sk_user_data)

105 106 107 108 109
struct listen_connection {
	struct socket *sock;
	struct work_struct rwork;
};

110 111 112
#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)

113 114 115 116 117 118 119 120
/* An entry waiting to be sent */
struct writequeue_entry {
	struct list_head list;
	struct page *page;
	int offset;
	int len;
	int end;
	int users;
121
	bool dirty;
122
	struct connection *con;
123 124 125 126 127 128
	struct list_head msgs;
	struct kref ref;
};

struct dlm_msg {
	struct writequeue_entry *entry;
129 130
	struct dlm_msg *orig_msg;
	bool retransmit;
131 132 133 134 135 136
	void *ppc;
	int len;
	int idx; /* new()/commit() idx exchange */

	struct list_head list;
	struct kref ref;
137 138
};

139 140 141
struct dlm_node_addr {
	struct list_head list;
	int nodeid;
142
	int mark;
143
	int addr_count;
144
	int curr_addr_index;
145 146 147
	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
};

148
struct dlm_proto_ops {
A
Alexander Aring 已提交
149
	bool try_new_addr;
150 151 152
	const char *name;
	int proto;

A
Alexander Aring 已提交
153 154 155 156
	int (*connect)(struct connection *con, struct socket *sock,
		       struct sockaddr *addr, int addr_len);
	void (*sockopts)(struct socket *sock);
	int (*bind)(struct socket *sock);
157 158 159
	int (*listen_validate)(void);
	void (*listen_sockopts)(struct socket *sock);
	int (*listen_bind)(struct socket *sock);
160 161 162 163 164 165
	/* What to do to shutdown */
	void (*shutdown_action)(struct connection *con);
	/* What to do to eof check */
	bool (*eof_condition)(struct connection *con);
};

B
Bob Peterson 已提交
166 167 168 169 170 171 172
static struct listen_sock_callbacks {
	void (*sk_error_report)(struct sock *);
	void (*sk_data_ready)(struct sock *);
	void (*sk_state_change)(struct sock *);
	void (*sk_write_space)(struct sock *);
} listen_sock;

173 174 175
static LIST_HEAD(dlm_node_addrs);
static DEFINE_SPINLOCK(dlm_node_addrs_spin);

176
static struct listen_connection listen_con;
177 178
static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
static int dlm_local_count;
179
int dlm_allow_conn;
180

181 182 183
/* Work queues */
static struct workqueue_struct *recv_workqueue;
static struct workqueue_struct *send_workqueue;
184

185
static struct hlist_head connection_hash[CONN_HASH_SIZE];
186 187
static DEFINE_SPINLOCK(connections_lock);
DEFINE_STATIC_SRCU(connections_srcu);
188

189 190
static const struct dlm_proto_ops *dlm_proto_ops;

191 192
static void process_recv_sockets(struct work_struct *work);
static void process_send_sockets(struct work_struct *work);
193

194 195 196 197 198 199 200 201 202 203
/* need to held writequeue_lock */
static struct writequeue_entry *con_next_wq(struct connection *con)
{
	struct writequeue_entry *e;

	if (list_empty(&con->writequeue))
		return NULL;

	e = list_first_entry(&con->writequeue, struct writequeue_entry,
			     list);
204 205 206 207
	/* if len is zero nothing is to send, if there are users filling
	 * buffers we wait until the users are done so we can send more.
	 */
	if (e->users || e->len == 0)
208 209 210 211 212
		return NULL;

	return e;
}

213
static struct connection *__find_con(int nodeid, int r)
214 215 216
{
	struct connection *con;

217
	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
218
		if (con->nodeid == nodeid)
219 220
			return con;
	}
221

222 223 224
	return NULL;
}

225 226 227 228 229
static bool tcp_eof_condition(struct connection *con)
{
	return atomic_read(&con->writequeue_cnt);
}

230
static int dlm_con_init(struct connection *con, int nodeid)
231
{
232 233
	con->rx_buflen = dlm_config.ci_buffer_size;
	con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
234 235
	if (!con->rx_buf)
		return -ENOMEM;
236

237 238 239 240
	con->nodeid = nodeid;
	mutex_init(&con->sock_mutex);
	INIT_LIST_HEAD(&con->writequeue);
	spin_lock_init(&con->writequeue_lock);
241
	atomic_set(&con->writequeue_cnt, 0);
242 243
	INIT_WORK(&con->swork, process_send_sockets);
	INIT_WORK(&con->rwork, process_recv_sockets);
244
	init_waitqueue_head(&con->shutdown_wait);
245

246 247 248 249 250 251 252 253 254 255 256 257
	return 0;
}

/*
 * If 'allocation' is zero then we don't attempt to create a new
 * connection structure for this node.
 */
static struct connection *nodeid2con(int nodeid, gfp_t alloc)
{
	struct connection *con, *tmp;
	int r, ret;

258 259
	r = nodeid_hash(nodeid);
	con = __find_con(nodeid, r);
260 261 262 263 264 265 266 267 268 269 270 271 272
	if (con || !alloc)
		return con;

	con = kzalloc(sizeof(*con), alloc);
	if (!con)
		return NULL;

	ret = dlm_con_init(con, nodeid);
	if (ret) {
		kfree(con);
		return NULL;
	}

273 274
	mutex_init(&con->wq_alloc);

275
	spin_lock(&connections_lock);
A
Alexander Aring 已提交
276 277 278 279 280 281
	/* Because multiple workqueues/threads calls this function it can
	 * race on multiple cpu's. Instead of locking hot path __find_con()
	 * we just check in rare cases of recently added nodes again
	 * under protection of connections_lock. If this is the case we
	 * abort our connection creation and return the existing connection.
	 */
282
	tmp = __find_con(nodeid, r);
A
Alexander Aring 已提交
283 284 285 286 287 288 289
	if (tmp) {
		spin_unlock(&connections_lock);
		kfree(con->rx_buf);
		kfree(con);
		return tmp;
	}

290 291 292
	hlist_add_head_rcu(&con->list, &connection_hash[r]);
	spin_unlock(&connections_lock);

293 294 295
	return con;
}

296 297 298
/* Loop round all connections */
static void foreach_conn(void (*conn_func)(struct connection *c))
{
299
	int i;
300 301 302
	struct connection *con;

	for (i = 0; i < CONN_HASH_SIZE; i++) {
303
		hlist_for_each_entry_rcu(con, &connection_hash[i], list)
304 305
			conn_func(con);
	}
306 307
}

308 309 310 311 312 313 314 315 316 317 318
static struct dlm_node_addr *find_node_addr(int nodeid)
{
	struct dlm_node_addr *na;

	list_for_each_entry(na, &dlm_node_addrs, list) {
		if (na->nodeid == nodeid)
			return na;
	}
	return NULL;
}

A
Alexander Aring 已提交
319 320
static int addr_compare(const struct sockaddr_storage *x,
			const struct sockaddr_storage *y)
321
{
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	switch (x->ss_family) {
	case AF_INET: {
		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
		struct sockaddr_in *siny = (struct sockaddr_in *)y;
		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
			return 0;
		if (sinx->sin_port != siny->sin_port)
			return 0;
		break;
	}
	case AF_INET6: {
		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
			return 0;
		if (sinx->sin6_port != siny->sin6_port)
			return 0;
		break;
	}
	default:
		return 0;
	}
	return 1;
}

static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
348 349
			  struct sockaddr *sa_out, bool try_new_addr,
			  unsigned int *mark)
350 351 352
{
	struct sockaddr_storage sas;
	struct dlm_node_addr *na;
353 354 355 356

	if (!dlm_local_count)
		return -1;

357 358
	spin_lock(&dlm_node_addrs_spin);
	na = find_node_addr(nodeid);
359
	if (na && na->addr_count) {
360 361 362
		memcpy(&sas, na->addr[na->curr_addr_index],
		       sizeof(struct sockaddr_storage));

363 364 365 366 367 368
		if (try_new_addr) {
			na->curr_addr_index++;
			if (na->curr_addr_index == na->addr_count)
				na->curr_addr_index = 0;
		}
	}
369 370 371 372 373 374 375 376
	spin_unlock(&dlm_node_addrs_spin);

	if (!na)
		return -EEXIST;

	if (!na->addr_count)
		return -ENOENT;

377 378
	*mark = na->mark;

379 380 381 382 383
	if (sas_out)
		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));

	if (!sa_out)
		return 0;
384 385

	if (dlm_local_addr[0]->ss_family == AF_INET) {
386 387
		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
388 389
		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
	} else {
390 391
		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
A
Alexey Dobriyan 已提交
392
		ret6->sin6_addr = in6->sin6_addr;
393 394 395 396 397
	}

	return 0;
}

398 399
static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
			  unsigned int *mark)
400 401 402
{
	struct dlm_node_addr *na;
	int rv = -EEXIST;
403
	int addr_i;
404 405 406 407 408 409

	spin_lock(&dlm_node_addrs_spin);
	list_for_each_entry(na, &dlm_node_addrs, list) {
		if (!na->addr_count)
			continue;

410 411 412
		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
			if (addr_compare(na->addr[addr_i], addr)) {
				*nodeid = na->nodeid;
413
				*mark = na->mark;
414 415 416 417
				rv = 0;
				goto unlock;
			}
		}
418
	}
419
unlock:
420 421 422 423
	spin_unlock(&dlm_node_addrs_spin);
	return rv;
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437
/* caller need to held dlm_node_addrs_spin lock */
static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na,
				     const struct sockaddr_storage *addr)
{
	int i;

	for (i = 0; i < na->addr_count; i++) {
		if (addr_compare(na->addr[i], addr))
			return true;
	}

	return false;
}

438 439 440 441
int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
{
	struct sockaddr_storage *new_addr;
	struct dlm_node_addr *new_node, *na;
442
	bool ret;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
	if (!new_node)
		return -ENOMEM;

	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
	if (!new_addr) {
		kfree(new_node);
		return -ENOMEM;
	}

	memcpy(new_addr, addr, len);

	spin_lock(&dlm_node_addrs_spin);
	na = find_node_addr(nodeid);
	if (!na) {
		new_node->nodeid = nodeid;
		new_node->addr[0] = new_addr;
		new_node->addr_count = 1;
462
		new_node->mark = dlm_config.ci_mark;
463 464 465 466 467
		list_add(&new_node->list, &dlm_node_addrs);
		spin_unlock(&dlm_node_addrs_spin);
		return 0;
	}

468 469 470 471 472 473 474 475
	ret = dlm_lowcomms_na_has_addr(na, addr);
	if (ret) {
		spin_unlock(&dlm_node_addrs_spin);
		kfree(new_addr);
		kfree(new_node);
		return -EEXIST;
	}

476 477 478 479 480 481 482 483 484 485 486 487 488
	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
		spin_unlock(&dlm_node_addrs_spin);
		kfree(new_addr);
		kfree(new_node);
		return -ENOSPC;
	}

	na->addr[na->addr_count++] = new_addr;
	spin_unlock(&dlm_node_addrs_spin);
	kfree(new_node);
	return 0;
}

489
/* Data available on socket or listen socket received a connect */
490
static void lowcomms_data_ready(struct sock *sk)
491
{
492 493 494
	struct connection *con;

	con = sock2con(sk);
P
Patrick Caulfield 已提交
495
	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
496
		queue_work(recv_workqueue, &con->rwork);
497 498
}

499 500
static void lowcomms_listen_data_ready(struct sock *sk)
{
A
Alexander Aring 已提交
501 502 503
	if (!dlm_allow_conn)
		return;

504 505 506
	queue_work(recv_workqueue, &listen_con.rwork);
}

507 508
static void lowcomms_write_space(struct sock *sk)
{
509
	struct connection *con;
510

511
	con = sock2con(sk);
512
	if (!con)
513
		return;
514

515 516 517
	if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
		log_print("successful connected to node %d", con->nodeid);
		queue_work(send_workqueue, &con->swork);
518
		return;
519 520
	}

521 522 523 524
	clear_bit(SOCK_NOSPACE, &con->sock->flags);

	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
		con->sock->sk->sk_write_pending--;
525
		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
526 527
	}

528
	queue_work(send_workqueue, &con->swork);
529 530 531 532
}

static inline void lowcomms_connect_sock(struct connection *con)
{
533 534
	if (test_bit(CF_CLOSE, &con->flags))
		return;
535 536
	queue_work(send_workqueue, &con->swork);
	cond_resched();
537 538 539 540
}

static void lowcomms_state_change(struct sock *sk)
{
541 542 543 544 545 546 547 548 549
	/* SCTP layer is not calling sk_data_ready when the connection
	 * is done, so we catch the signal through here. Also, it
	 * doesn't switch socket state when entering shutdown, so we
	 * skip the write in that case.
	 */
	if (sk->sk_shutdown) {
		if (sk->sk_shutdown == RCV_SHUTDOWN)
			lowcomms_data_ready(sk);
	} else if (sk->sk_state == TCP_ESTABLISHED) {
550
		lowcomms_write_space(sk);
551
	}
552 553
}

554 555 556
int dlm_lowcomms_connect_node(int nodeid)
{
	struct connection *con;
557
	int idx;
558 559 560 561

	if (nodeid == dlm_our_nodeid())
		return 0;

562
	idx = srcu_read_lock(&connections_srcu);
563
	con = nodeid2con(nodeid, GFP_NOFS);
564 565
	if (!con) {
		srcu_read_unlock(&connections_srcu, idx);
566
		return -ENOMEM;
567 568
	}

569
	lowcomms_connect_sock(con);
570 571
	srcu_read_unlock(&connections_srcu, idx);

572 573 574
	return 0;
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
{
	struct dlm_node_addr *na;

	spin_lock(&dlm_node_addrs_spin);
	na = find_node_addr(nodeid);
	if (!na) {
		spin_unlock(&dlm_node_addrs_spin);
		return -ENOENT;
	}

	na->mark = mark;
	spin_unlock(&dlm_node_addrs_spin);

	return 0;
}

592 593
static void lowcomms_error_report(struct sock *sk)
{
594 595
	struct connection *con;
	void (*orig_report)(struct sock *) = NULL;
596
	struct inet_sock *inet;
597

598 599 600 601
	con = sock2con(sk);
	if (con == NULL)
		goto out;

B
Bob Peterson 已提交
602
	orig_report = listen_sock.sk_error_report;
603

604 605 606
	inet = inet_sk(sk);
	switch (sk->sk_family) {
	case AF_INET:
607
		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
608
				   "sending to node %d at %pI4, dport %d, "
609
				   "sk_err=%d/%d\n", dlm_our_nodeid(),
610 611
				   con->nodeid, &inet->inet_daddr,
				   ntohs(inet->inet_dport), sk->sk_err,
612
				   sk->sk_err_soft);
613
		break;
614
#if IS_ENABLED(CONFIG_IPV6)
615
	case AF_INET6:
616
		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
617 618 619 620
				   "sending to node %d at %pI6c, "
				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
				   con->nodeid, &sk->sk_v6_daddr,
				   ntohs(inet->inet_dport), sk->sk_err,
621
				   sk->sk_err_soft);
622
		break;
623
#endif
624 625 626 627 628 629
	default:
		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
				   "invalid socket family %d set, "
				   "sk_err=%d/%d\n", dlm_our_nodeid(),
				   sk->sk_family, sk->sk_err, sk->sk_err_soft);
		goto out;
630
	}
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

	/* below sendcon only handling */
	if (test_bit(CF_IS_OTHERCON, &con->flags))
		con = con->sendcon;

	switch (sk->sk_err) {
	case ECONNREFUSED:
		set_bit(CF_DELAY_CONNECT, &con->flags);
		break;
	default:
		break;
	}

	if (!test_and_set_bit(CF_RECONNECT, &con->flags))
		queue_work(send_workqueue, &con->swork);

647 648 649 650 651 652
out:
	if (orig_report)
		orig_report(sk);
}

/* Note: sk_callback_lock must be locked before calling this function. */
B
Bob Peterson 已提交
653
static void save_listen_callbacks(struct socket *sock)
654
{
B
Bob Peterson 已提交
655 656 657 658 659 660
	struct sock *sk = sock->sk;

	listen_sock.sk_data_ready = sk->sk_data_ready;
	listen_sock.sk_state_change = sk->sk_state_change;
	listen_sock.sk_write_space = sk->sk_write_space;
	listen_sock.sk_error_report = sk->sk_error_report;
661 662
}

B
Bob Peterson 已提交
663
static void restore_callbacks(struct socket *sock)
664
{
B
Bob Peterson 已提交
665 666
	struct sock *sk = sock->sk;

667
	lock_sock(sk);
668
	sk->sk_user_data = NULL;
B
Bob Peterson 已提交
669 670 671 672
	sk->sk_data_ready = listen_sock.sk_data_ready;
	sk->sk_state_change = listen_sock.sk_state_change;
	sk->sk_write_space = listen_sock.sk_write_space;
	sk->sk_error_report = listen_sock.sk_error_report;
673
	release_sock(sk);
674 675
}

676 677 678 679
static void add_listen_sock(struct socket *sock, struct listen_connection *con)
{
	struct sock *sk = sock->sk;

680
	lock_sock(sk);
681 682 683 684 685 686 687
	save_listen_callbacks(sock);
	con->sock = sock;

	sk->sk_user_data = con;
	sk->sk_allocation = GFP_NOFS;
	/* Install a data_ready callback */
	sk->sk_data_ready = lowcomms_listen_data_ready;
688
	release_sock(sk);
689 690
}

691
/* Make a socket active */
692
static void add_sock(struct socket *sock, struct connection *con)
693
{
694 695
	struct sock *sk = sock->sk;

696
	lock_sock(sk);
697 698
	con->sock = sock;

699
	sk->sk_user_data = con;
700
	/* Install a data_ready callback */
701 702 703 704 705
	sk->sk_data_ready = lowcomms_data_ready;
	sk->sk_write_space = lowcomms_write_space;
	sk->sk_state_change = lowcomms_state_change;
	sk->sk_allocation = GFP_NOFS;
	sk->sk_error_report = lowcomms_error_report;
706
	release_sock(sk);
707 708
}

709
/* Add the port number to an IPv6 or 4 sockaddr and return the address
710 711 712 713
   length */
static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
			  int *addr_len)
{
714
	saddr->ss_family =  dlm_local_addr[0]->ss_family;
P
Patrick Caulfield 已提交
715
	if (saddr->ss_family == AF_INET) {
716 717 718
		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
		in4_addr->sin_port = cpu_to_be16(port);
		*addr_len = sizeof(struct sockaddr_in);
719
		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
P
Patrick Caulfield 已提交
720
	} else {
721 722 723 724
		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
		in6_addr->sin6_port = cpu_to_be16(port);
		*addr_len = sizeof(struct sockaddr_in6);
	}
725
	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
726 727
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
static void dlm_page_release(struct kref *kref)
{
	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
						  ref);

	__free_page(e->page);
	kfree(e);
}

static void dlm_msg_release(struct kref *kref)
{
	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);

	kref_put(&msg->entry->ref, dlm_page_release);
	kfree(msg);
}

static void free_entry(struct writequeue_entry *e)
{
	struct dlm_msg *msg, *tmp;

	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
		if (msg->orig_msg) {
			msg->orig_msg->retransmit = false;
			kref_put(&msg->orig_msg->ref, dlm_msg_release);
		}

		list_del(&msg->list);
		kref_put(&msg->ref, dlm_msg_release);
	}

	list_del(&e->list);
	atomic_dec(&e->con->writequeue_cnt);
	kref_put(&e->ref, dlm_page_release);
}

764 765 766 767 768 769 770 771 772
static void dlm_close_sock(struct socket **sock)
{
	if (*sock) {
		restore_callbacks(*sock);
		sock_release(*sock);
		*sock = NULL;
	}
}

773
/* Close a remote connection and tidy up */
774 775
static void close_connection(struct connection *con, bool and_other,
			     bool tx, bool rx)
776
{
777
	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
778
	struct writequeue_entry *e;
779

780
	if (tx && !closing && cancel_work_sync(&con->swork)) {
781
		log_print("canceled swork for node %d", con->nodeid);
782 783 784
		clear_bit(CF_WRITE_PENDING, &con->flags);
	}
	if (rx && !closing && cancel_work_sync(&con->rwork)) {
785
		log_print("canceled rwork for node %d", con->nodeid);
786 787
		clear_bit(CF_READ_PENDING, &con->flags);
	}
788

789
	mutex_lock(&con->sock_mutex);
790 791
	dlm_close_sock(&con->sock);

792
	if (con->othercon && and_other) {
P
Patrick Caulfield 已提交
793
		/* Will only re-enter once. */
794
		close_connection(con->othercon, false, tx, rx);
795
	}
P
Patrick Caulfield 已提交
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	/* if we send a writequeue entry only a half way, we drop the
	 * whole entry because reconnection and that we not start of the
	 * middle of a msg which will confuse the other end.
	 *
	 * we can always drop messages because retransmits, but what we
	 * cannot allow is to transmit half messages which may be processed
	 * at the other side.
	 *
	 * our policy is to start on a clean state when disconnects, we don't
	 * know what's send/received on transport layer in this case.
	 */
	spin_lock(&con->writequeue_lock);
	if (!list_empty(&con->writequeue)) {
		e = list_first_entry(&con->writequeue, struct writequeue_entry,
				     list);
		if (e->dirty)
			free_entry(e);
	}
	spin_unlock(&con->writequeue_lock);

817
	con->rx_leftover = 0;
818
	con->retries = 0;
819
	clear_bit(CF_APP_LIMITED, &con->flags);
820
	clear_bit(CF_CONNECTED, &con->flags);
821 822
	clear_bit(CF_DELAY_CONNECT, &con->flags);
	clear_bit(CF_RECONNECT, &con->flags);
823
	clear_bit(CF_EOF, &con->flags);
824
	mutex_unlock(&con->sock_mutex);
825
	clear_bit(CF_CLOSING, &con->flags);
826 827
}

828 829 830 831
static void shutdown_connection(struct connection *con)
{
	int ret;

832
	flush_work(&con->swork);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

	mutex_lock(&con->sock_mutex);
	/* nothing to shutdown */
	if (!con->sock) {
		mutex_unlock(&con->sock_mutex);
		return;
	}

	set_bit(CF_SHUTDOWN, &con->flags);
	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
	mutex_unlock(&con->sock_mutex);
	if (ret) {
		log_print("Connection %p failed to shutdown: %d will force close",
			  con, ret);
		goto force_close;
	} else {
		ret = wait_event_timeout(con->shutdown_wait,
					 !test_bit(CF_SHUTDOWN, &con->flags),
					 DLM_SHUTDOWN_WAIT_TIMEOUT);
		if (ret == 0) {
			log_print("Connection %p shutdown timed out, will force close",
				  con);
			goto force_close;
		}
	}

	return;

force_close:
	clear_bit(CF_SHUTDOWN, &con->flags);
	close_connection(con, false, true, true);
}

static void dlm_tcp_shutdown(struct connection *con)
{
	if (con->othercon)
		shutdown_connection(con->othercon);
	shutdown_connection(con);
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
static int con_realloc_receive_buf(struct connection *con, int newlen)
{
	unsigned char *newbuf;

	newbuf = kmalloc(newlen, GFP_NOFS);
	if (!newbuf)
		return -ENOMEM;

	/* copy any leftover from last receive */
	if (con->rx_leftover)
		memmove(newbuf, con->rx_buf, con->rx_leftover);

	/* swap to new buffer space */
	kfree(con->rx_buf);
	con->rx_buflen = newlen;
	con->rx_buf = newbuf;

	return 0;
}

893 894 895
/* Data received from remote end */
static int receive_from_sock(struct connection *con)
{
896 897 898
	struct msghdr msg;
	struct kvec iov;
	int ret, buflen;
899

900
	mutex_lock(&con->sock_mutex);
901

902 903 904 905
	if (con->sock == NULL) {
		ret = -EAGAIN;
		goto out_close;
	}
906 907 908 909 910 911

	/* realloc if we get new buffer size to read out */
	buflen = dlm_config.ci_buffer_size;
	if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
		ret = con_realloc_receive_buf(con, buflen);
		if (ret < 0)
912 913 914
			goto out_resched;
	}

915 916 917 918 919 920 921 922 923 924 925
	for (;;) {
		/* calculate new buffer parameter regarding last receive and
		 * possible leftover bytes
		 */
		iov.iov_base = con->rx_buf + con->rx_leftover;
		iov.iov_len = con->rx_buflen - con->rx_leftover;

		memset(&msg, 0, sizeof(msg));
		msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
		ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
				     msg.msg_flags);
A
Alexander Aring 已提交
926
		trace_dlm_recv(con->nodeid, ret);
927 928 929 930
		if (ret == -EAGAIN)
			break;
		else if (ret <= 0)
			goto out_close;
931

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
		/* new buflen according readed bytes and leftover from last receive */
		buflen = ret + con->rx_leftover;
		ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
		if (ret < 0)
			goto out_close;

		/* calculate leftover bytes from process and put it into begin of
		 * the receive buffer, so next receive we have the full message
		 * at the start address of the receive buffer.
		 */
		con->rx_leftover = buflen - ret;
		if (con->rx_leftover) {
			memmove(con->rx_buf, con->rx_buf + ret,
				con->rx_leftover);
		}
947 948
	}

949
	dlm_midcomms_receive_done(con->nodeid);
950
	mutex_unlock(&con->sock_mutex);
P
Patrick Caulfield 已提交
951
	return 0;
952

P
Patrick Caulfield 已提交
953
out_resched:
954 955
	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
		queue_work(recv_workqueue, &con->rwork);
956
	mutex_unlock(&con->sock_mutex);
P
Patrick Caulfield 已提交
957
	return -EAGAIN;
958

P
Patrick Caulfield 已提交
959
out_close:
960 961 962
	if (ret == 0) {
		log_print("connection %p got EOF from %d",
			  con, con->nodeid);
963

964 965
		if (dlm_proto_ops->eof_condition &&
		    dlm_proto_ops->eof_condition(con)) {
966 967 968 969 970 971 972 973 974 975 976
			set_bit(CF_EOF, &con->flags);
			mutex_unlock(&con->sock_mutex);
		} else {
			mutex_unlock(&con->sock_mutex);
			close_connection(con, false, true, false);

			/* handling for tcp shutdown */
			clear_bit(CF_SHUTDOWN, &con->flags);
			wake_up(&con->shutdown_wait);
		}

977 978
		/* signal to breaking receive worker */
		ret = -1;
979 980
	} else {
		mutex_unlock(&con->sock_mutex);
981 982 983 984 985
	}
	return ret;
}

/* Listening socket is busy, accept a connection */
986
static int accept_from_sock(struct listen_connection *con)
987 988 989 990
{
	int result;
	struct sockaddr_storage peeraddr;
	struct socket *newsock;
991
	int len, idx;
992 993
	int nodeid;
	struct connection *newcon;
P
Patrick Caulfield 已提交
994
	struct connection *addcon;
995
	unsigned int mark;
996

997
	if (!con->sock)
998
		return -ENOTCONN;
999

1000
	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
1001 1002 1003 1004 1005
	if (result < 0)
		goto accept_err;

	/* Get the connected socket's peer */
	memset(&peeraddr, 0, sizeof(peeraddr));
1006 1007
	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
	if (len < 0) {
1008 1009 1010 1011 1012 1013
		result = -ECONNABORTED;
		goto accept_err;
	}

	/* Get the new node's NODEID */
	make_sockaddr(&peeraddr, 0, &len);
1014
	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1015
		unsigned char *b=(unsigned char *)&peeraddr;
D
David Teigland 已提交
1016
		log_print("connect from non cluster node");
1017 1018
		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
				     b, sizeof(struct sockaddr_storage));
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		sock_release(newsock);
		return -1;
	}

	log_print("got connection from %d", nodeid);

	/*  Check to see if we already have a connection to this node. This
	 *  could happen if the two nodes initiate a connection at roughly
	 *  the same time and the connections cross on the wire.
	 *  In this case we store the incoming one in "othercon"
	 */
1030
	idx = srcu_read_lock(&connections_srcu);
D
David Teigland 已提交
1031
	newcon = nodeid2con(nodeid, GFP_NOFS);
1032
	if (!newcon) {
1033
		srcu_read_unlock(&connections_srcu, idx);
1034 1035 1036
		result = -ENOMEM;
		goto accept_err;
	}
1037

1038 1039
	sock_set_mark(newsock->sk, mark);

1040
	mutex_lock(&newcon->sock_mutex);
1041
	if (newcon->sock) {
P
Patrick Caulfield 已提交
1042
		struct connection *othercon = newcon->othercon;
1043 1044

		if (!othercon) {
1045
			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1046
			if (!othercon) {
D
David Teigland 已提交
1047
				log_print("failed to allocate incoming socket");
1048
				mutex_unlock(&newcon->sock_mutex);
1049
				srcu_read_unlock(&connections_srcu, idx);
1050 1051 1052
				result = -ENOMEM;
				goto accept_err;
			}
1053

1054 1055
			result = dlm_con_init(othercon, nodeid);
			if (result < 0) {
1056
				kfree(othercon);
1057
				mutex_unlock(&newcon->sock_mutex);
1058
				srcu_read_unlock(&connections_srcu, idx);
1059 1060 1061
				goto accept_err;
			}

1062
			lockdep_set_subclass(&othercon->sock_mutex, 1);
A
Alexander Aring 已提交
1063
			set_bit(CF_IS_OTHERCON, &othercon->flags);
1064
			newcon->othercon = othercon;
1065
			othercon->sendcon = newcon;
1066 1067 1068
		} else {
			/* close other sock con if we have something new */
			close_connection(othercon, false, true, false);
1069
		}
1070

1071
		mutex_lock(&othercon->sock_mutex);
1072 1073 1074
		add_sock(newsock, othercon);
		addcon = othercon;
		mutex_unlock(&othercon->sock_mutex);
1075 1076
	}
	else {
1077 1078 1079
		/* accept copies the sk after we've saved the callbacks, so we
		   don't want to save them a second time or comm errors will
		   result in calling sk_error_report recursively. */
1080
		add_sock(newsock, newcon);
P
Patrick Caulfield 已提交
1081
		addcon = newcon;
1082 1083
	}

1084
	set_bit(CF_CONNECTED, &addcon->flags);
1085
	mutex_unlock(&newcon->sock_mutex);
1086 1087 1088

	/*
	 * Add it to the active queue in case we got data
L
Lucas De Marchi 已提交
1089
	 * between processing the accept adding the socket
1090 1091
	 * to the read_sockets list
	 */
P
Patrick Caulfield 已提交
1092 1093
	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
		queue_work(recv_workqueue, &addcon->rwork);
1094

1095 1096
	srcu_read_unlock(&connections_srcu, idx);

1097 1098
	return 0;

P
Patrick Caulfield 已提交
1099
accept_err:
1100 1101
	if (newsock)
		sock_release(newsock);
1102 1103

	if (result != -EAGAIN)
D
David Teigland 已提交
1104
		log_print("error accepting connection from node: %d", result);
1105 1106 1107
	return result;
}

M
Mike Christie 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/*
 * writequeue_entry_complete - try to delete and free write queue entry
 * @e: write queue entry to try to delete
 * @completed: bytes completed
 *
 * writequeue_lock must be held.
 */
static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
{
	e->offset += completed;
	e->len -= completed;
1119 1120
	/* signal that page was half way transmitted */
	e->dirty = true;
M
Mike Christie 已提交
1121

1122
	if (e->len == 0 && e->users == 0)
M
Mike Christie 已提交
1123 1124 1125
		free_entry(e);
}

1126 1127 1128
/*
 * sctp_bind_addrs - bind a SCTP socket to all our addresses
 */
1129
static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1130 1131
{
	struct sockaddr_storage localaddr;
1132
	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1133 1134 1135 1136 1137 1138 1139
	int i, addr_len, result = 0;

	for (i = 0; i < dlm_local_count; i++) {
		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
		make_sockaddr(&localaddr, port, &addr_len);

		if (!i)
1140
			result = kernel_bind(sock, addr, addr_len);
1141
		else
1142
			result = sock_bind_add(sock->sk, addr, addr_len);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

		if (result < 0) {
			log_print("Can't bind to %d addr number %d, %d.\n",
				  port, i + 1, result);
			break;
		}
	}
	return result;
}

1153 1154 1155 1156 1157 1158
/* Get local addresses */
static void init_local(void)
{
	struct sockaddr_storage sas, *addr;
	int i;

1159
	dlm_local_count = 0;
1160
	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1161 1162 1163
		if (dlm_our_addr(&sas, i))
			break;

1164
		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1165 1166 1167 1168 1169 1170
		if (!addr)
			break;
		dlm_local_addr[dlm_local_count++] = addr;
	}
}

1171 1172 1173 1174 1175 1176 1177 1178
static void deinit_local(void)
{
	int i;

	for (i = 0; i < dlm_local_count; i++)
		kfree(dlm_local_addr[i]);
}

1179 1180 1181 1182 1183
static struct writequeue_entry *new_writequeue_entry(struct connection *con,
						     gfp_t allocation)
{
	struct writequeue_entry *entry;

1184
	entry = kzalloc(sizeof(*entry), allocation);
1185 1186 1187
	if (!entry)
		return NULL;

1188
	entry->page = alloc_page(allocation | __GFP_ZERO);
1189 1190 1191 1192 1193 1194
	if (!entry->page) {
		kfree(entry);
		return NULL;
	}

	entry->con = con;
1195
	entry->users = 1;
1196 1197
	kref_init(&entry->ref);
	INIT_LIST_HEAD(&entry->msgs);
1198 1199 1200 1201

	return entry;
}

1202
static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1203
					     gfp_t allocation, char **ppc,
1204
					     void (*cb)(void *data), void *data)
1205 1206 1207 1208 1209 1210 1211
{
	struct writequeue_entry *e;

	spin_lock(&con->writequeue_lock);
	if (!list_empty(&con->writequeue)) {
		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1212 1213
			kref_get(&e->ref);

1214
			*ppc = page_address(e->page) + e->end;
1215
			if (cb)
1216
				cb(data);
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			e->end += len;
			e->users++;
			spin_unlock(&con->writequeue_lock);

			return e;
		}
	}
	spin_unlock(&con->writequeue_lock);

	e = new_writequeue_entry(con, allocation);
	if (!e)
		return NULL;

1231
	kref_get(&e->ref);
1232 1233
	*ppc = page_address(e->page);
	e->end += len;
1234
	atomic_inc(&con->writequeue_cnt);
1235 1236

	spin_lock(&con->writequeue_lock);
1237
	if (cb)
1238
		cb(data);
1239

1240 1241 1242 1243 1244 1245
	list_add_tail(&e->list, &con->writequeue);
	spin_unlock(&con->writequeue_lock);

	return e;
};

1246 1247
static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
						gfp_t allocation, char **ppc,
1248 1249
						void (*cb)(void *data),
						void *data)
1250 1251 1252
{
	struct writequeue_entry *e;
	struct dlm_msg *msg;
1253
	bool sleepable;
1254 1255 1256 1257 1258

	msg = kzalloc(sizeof(*msg), allocation);
	if (!msg)
		return NULL;

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	/* this mutex is being used as a wait to avoid multiple "fast"
	 * new writequeue page list entry allocs in new_wq_entry in
	 * normal operation which is sleepable context. Without it
	 * we could end in multiple writequeue entries with one
	 * dlm message because multiple callers were waiting at
	 * the writequeue_lock in new_wq_entry().
	 */
	sleepable = gfpflags_normal_context(allocation);
	if (sleepable)
		mutex_lock(&con->wq_alloc);

1270 1271
	kref_init(&msg->ref);

1272
	e = new_wq_entry(con, len, allocation, ppc, cb, data);
1273
	if (!e) {
1274 1275 1276
		if (sleepable)
			mutex_unlock(&con->wq_alloc);

1277 1278 1279 1280
		kfree(msg);
		return NULL;
	}

1281 1282 1283
	if (sleepable)
		mutex_unlock(&con->wq_alloc);

1284 1285 1286 1287 1288 1289 1290
	msg->ppc = *ppc;
	msg->len = len;
	msg->entry = e;

	return msg;
}

1291
struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1292 1293
				     char **ppc, void (*cb)(void *data),
				     void *data)
1294 1295
{
	struct connection *con;
1296
	struct dlm_msg *msg;
1297
	int idx;
1298

1299
	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1300
	    len < sizeof(struct dlm_header)) {
1301
		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1302
		log_print("failed to allocate a buffer of size %d", len);
1303
		WARN_ON(1);
1304 1305 1306
		return NULL;
	}

1307
	idx = srcu_read_lock(&connections_srcu);
1308
	con = nodeid2con(nodeid, allocation);
1309 1310
	if (!con) {
		srcu_read_unlock(&connections_srcu, idx);
1311
		return NULL;
1312 1313
	}

1314
	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1315 1316 1317 1318 1319
	if (!msg) {
		srcu_read_unlock(&connections_srcu, idx);
		return NULL;
	}

1320
	/* we assume if successful commit must called */
1321 1322
	msg->idx = idx;
	return msg;
1323 1324
}

1325
static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1326
{
1327
	struct writequeue_entry *e = msg->entry;
1328 1329 1330
	struct connection *con = e->con;
	int users;

1331
	spin_lock(&con->writequeue_lock);
1332 1333 1334
	kref_get(&msg->ref);
	list_add(&msg->list, &e->msgs);

1335 1336 1337
	users = --e->users;
	if (users)
		goto out;
1338 1339

	e->len = DLM_WQ_LENGTH_BYTES(e);
1340 1341
	spin_unlock(&con->writequeue_lock);

1342
	queue_work(send_workqueue, &con->swork);
1343 1344
	return;

P
Patrick Caulfield 已提交
1345
out:
1346 1347 1348 1349
	spin_unlock(&con->writequeue_lock);
	return;
}

1350 1351 1352 1353 1354 1355
void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
{
	_dlm_lowcomms_commit_msg(msg);
	srcu_read_unlock(&connections_srcu, msg->idx);
}

1356 1357 1358 1359 1360
void dlm_lowcomms_put_msg(struct dlm_msg *msg)
{
	kref_put(&msg->ref, dlm_msg_release);
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/* does not held connections_srcu, usage workqueue only */
int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
{
	struct dlm_msg *msg_resend;
	char *ppc;

	if (msg->retransmit)
		return 1;

	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
					      GFP_ATOMIC, &ppc, NULL, NULL);
	if (!msg_resend)
		return -ENOMEM;

	msg->retransmit = true;
	kref_get(&msg->ref);
	msg_resend->orig_msg = msg;

	memcpy(ppc, msg->ppc, msg->len);
	_dlm_lowcomms_commit_msg(msg_resend);
	dlm_lowcomms_put_msg(msg_resend);

	return 0;
}

1386
/* Send a message */
P
Patrick Caulfield 已提交
1387
static void send_to_sock(struct connection *con)
1388 1389 1390
{
	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
	struct writequeue_entry *e;
1391
	int len, offset, ret;
1392
	int count = 0;
1393

1394
	mutex_lock(&con->sock_mutex);
1395 1396 1397 1398 1399
	if (con->sock == NULL)
		goto out_connect;

	spin_lock(&con->writequeue_lock);
	for (;;) {
1400 1401
		e = con_next_wq(con);
		if (!e)
1402 1403 1404 1405 1406 1407 1408
			break;

		len = e->len;
		offset = e->offset;
		BUG_ON(len == 0 && e->users == 0);
		spin_unlock(&con->writequeue_lock);

1409 1410
		ret = kernel_sendpage(con->sock, e->page, offset, len,
				      msg_flags);
A
Alexander Aring 已提交
1411
		trace_dlm_send(con->nodeid, ret);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		if (ret == -EAGAIN || ret == 0) {
			if (ret == -EAGAIN &&
			    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
			    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
				/* Notify TCP that we're limited by the
				 * application window size.
				 */
				set_bit(SOCK_NOSPACE, &con->sock->flags);
				con->sock->sk->sk_write_pending++;
			}
			cond_resched();
			goto out;
		} else if (ret < 0)
			goto out;
1426 1427 1428

		/* Don't starve people filling buffers */
		if (++count >= MAX_SEND_MSG_COUNT) {
P
Patrick Caulfield 已提交
1429
			cond_resched();
1430 1431
			count = 0;
		}
1432 1433

		spin_lock(&con->writequeue_lock);
M
Mike Christie 已提交
1434
		writequeue_entry_complete(e, ret);
1435 1436
	}
	spin_unlock(&con->writequeue_lock);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	/* close if we got EOF */
	if (test_and_clear_bit(CF_EOF, &con->flags)) {
		mutex_unlock(&con->sock_mutex);
		close_connection(con, false, false, true);

		/* handling for tcp shutdown */
		clear_bit(CF_SHUTDOWN, &con->flags);
		wake_up(&con->shutdown_wait);
	} else {
		mutex_unlock(&con->sock_mutex);
	}

	return;

P
Patrick Caulfield 已提交
1452
out:
1453
	mutex_unlock(&con->sock_mutex);
P
Patrick Caulfield 已提交
1454
	return;
1455

P
Patrick Caulfield 已提交
1456
out_connect:
1457
	mutex_unlock(&con->sock_mutex);
1458 1459
	queue_work(send_workqueue, &con->swork);
	cond_resched();
1460 1461 1462 1463
}

static void clean_one_writequeue(struct connection *con)
{
1464
	struct writequeue_entry *e, *safe;
1465 1466

	spin_lock(&con->writequeue_lock);
1467
	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		free_entry(e);
	}
	spin_unlock(&con->writequeue_lock);
}

/* Called from recovery when it knows that a node has
   left the cluster */
int dlm_lowcomms_close(int nodeid)
{
	struct connection *con;
1478
	struct dlm_node_addr *na;
1479
	int idx;
1480 1481

	log_print("closing connection to node %d", nodeid);
1482
	idx = srcu_read_lock(&connections_srcu);
1483 1484
	con = nodeid2con(nodeid, 0);
	if (con) {
1485
		set_bit(CF_CLOSE, &con->flags);
1486
		close_connection(con, true, true, true);
1487
		clean_one_writequeue(con);
A
Alexander Aring 已提交
1488 1489
		if (con->othercon)
			clean_one_writequeue(con->othercon);
1490
	}
1491
	srcu_read_unlock(&connections_srcu, idx);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	spin_lock(&dlm_node_addrs_spin);
	na = find_node_addr(nodeid);
	if (na) {
		list_del(&na->list);
		while (na->addr_count--)
			kfree(na->addr[na->addr_count]);
		kfree(na);
	}
	spin_unlock(&dlm_node_addrs_spin);

1503 1504 1505
	return 0;
}

1506
/* Receive workqueue function */
1507
static void process_recv_sockets(struct work_struct *work)
1508
{
1509
	struct connection *con = container_of(work, struct connection, rwork);
1510

1511
	clear_bit(CF_READ_PENDING, &con->flags);
1512
	receive_from_sock(con);
1513 1514
}

1515 1516 1517 1518 1519
static void process_listen_recv_socket(struct work_struct *work)
{
	accept_from_sock(&listen_con);
}

A
Alexander Aring 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static void dlm_connect(struct connection *con)
{
	struct sockaddr_storage addr;
	int result, addr_len;
	struct socket *sock;
	unsigned int mark;

	/* Some odd races can cause double-connects, ignore them */
	if (con->retries++ > MAX_CONNECT_RETRIES)
		return;

	if (con->sock) {
		log_print("node %d already connected.", con->nodeid);
		return;
	}

	memset(&addr, 0, sizeof(addr));
	result = nodeid_to_addr(con->nodeid, &addr, NULL,
				dlm_proto_ops->try_new_addr, &mark);
	if (result < 0) {
		log_print("no address for nodeid %d", con->nodeid);
		return;
	}

	/* Create a socket to communicate with */
	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
	if (result < 0)
		goto socket_err;

	sock_set_mark(sock->sk, mark);
	dlm_proto_ops->sockopts(sock);

	add_sock(sock, con);

	result = dlm_proto_ops->bind(sock);
	if (result < 0)
		goto add_sock_err;

	log_print_ratelimited("connecting to %d", con->nodeid);
	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
					addr_len);
	if (result < 0)
		goto add_sock_err;

	return;

add_sock_err:
	dlm_close_sock(&con->sock);

socket_err:
	/*
	 * Some errors are fatal and this list might need adjusting. For other
	 * errors we try again until the max number of retries is reached.
	 */
	if (result != -EHOSTUNREACH &&
	    result != -ENETUNREACH &&
	    result != -ENETDOWN &&
	    result != -EINVAL &&
	    result != -EPROTONOSUPPORT) {
		log_print("connect %d try %d error %d", con->nodeid,
			  con->retries, result);
		msleep(1000);
		lowcomms_connect_sock(con);
	}
}

1588
/* Send workqueue function */
1589
static void process_send_sockets(struct work_struct *work)
1590
{
1591
	struct connection *con = container_of(work, struct connection, swork);
1592

A
Alexander Aring 已提交
1593 1594
	WARN_ON(test_bit(CF_IS_OTHERCON, &con->flags));

1595
	clear_bit(CF_WRITE_PENDING, &con->flags);
1596

1597
	if (test_and_clear_bit(CF_RECONNECT, &con->flags)) {
1598
		close_connection(con, false, false, true);
1599 1600
		dlm_midcomms_unack_msg_resend(con->nodeid);
	}
1601

A
Alexander Aring 已提交
1602
	if (con->sock == NULL) {
1603 1604
		if (test_and_clear_bit(CF_DELAY_CONNECT, &con->flags))
			msleep(1000);
A
Alexander Aring 已提交
1605 1606 1607 1608

		mutex_lock(&con->sock_mutex);
		dlm_connect(con);
		mutex_unlock(&con->sock_mutex);
1609
	}
A
Alexander Aring 已提交
1610

1611
	if (!list_empty(&con->writequeue))
1612
		send_to_sock(con);
1613 1614
}

1615
static void work_stop(void)
1616
{
1617
	if (recv_workqueue) {
1618
		destroy_workqueue(recv_workqueue);
1619 1620 1621 1622
		recv_workqueue = NULL;
	}

	if (send_workqueue) {
1623
		destroy_workqueue(send_workqueue);
1624 1625
		send_workqueue = NULL;
	}
1626 1627
}

1628
static int work_start(void)
1629
{
1630
	recv_workqueue = alloc_ordered_workqueue("dlm_recv", WQ_MEM_RECLAIM);
1631 1632 1633
	if (!recv_workqueue) {
		log_print("can't start dlm_recv");
		return -ENOMEM;
1634 1635
	}

1636
	send_workqueue = alloc_ordered_workqueue("dlm_send", WQ_MEM_RECLAIM);
1637 1638
	if (!send_workqueue) {
		log_print("can't start dlm_send");
1639
		destroy_workqueue(recv_workqueue);
1640
		recv_workqueue = NULL;
1641
		return -ENOMEM;
1642 1643 1644 1645 1646
	}

	return 0;
}

A
Alexander Aring 已提交
1647 1648
static void shutdown_conn(struct connection *con)
{
1649 1650
	if (dlm_proto_ops->shutdown_action)
		dlm_proto_ops->shutdown_action(con);
A
Alexander Aring 已提交
1651 1652 1653 1654
}

void dlm_lowcomms_shutdown(void)
{
1655 1656
	int idx;

A
Alexander Aring 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/* Set all the flags to prevent any
	 * socket activity.
	 */
	dlm_allow_conn = 0;

	if (recv_workqueue)
		flush_workqueue(recv_workqueue);
	if (send_workqueue)
		flush_workqueue(send_workqueue);

	dlm_close_sock(&listen_con.sock);

1669
	idx = srcu_read_lock(&connections_srcu);
A
Alexander Aring 已提交
1670
	foreach_conn(shutdown_conn);
1671
	srcu_read_unlock(&connections_srcu, idx);
A
Alexander Aring 已提交
1672 1673
}

1674
static void _stop_conn(struct connection *con, bool and_other)
1675
{
1676
	mutex_lock(&con->sock_mutex);
1677
	set_bit(CF_CLOSE, &con->flags);
1678
	set_bit(CF_READ_PENDING, &con->flags);
1679
	set_bit(CF_WRITE_PENDING, &con->flags);
1680
	if (con->sock && con->sock->sk) {
1681
		lock_sock(con->sock->sk);
1682
		con->sock->sk->sk_user_data = NULL;
1683
		release_sock(con->sock->sk);
1684
	}
1685 1686 1687 1688 1689 1690 1691 1692
	if (con->othercon && and_other)
		_stop_conn(con->othercon, false);
	mutex_unlock(&con->sock_mutex);
}

static void stop_conn(struct connection *con)
{
	_stop_conn(con, true);
1693
}
1694

1695 1696 1697 1698 1699 1700 1701 1702
static void connection_release(struct rcu_head *rcu)
{
	struct connection *con = container_of(rcu, struct connection, rcu);

	kfree(con->rx_buf);
	kfree(con);
}

1703 1704
static void free_conn(struct connection *con)
{
1705
	close_connection(con, true, true, true);
1706 1707 1708
	spin_lock(&connections_lock);
	hlist_del_rcu(&con->list);
	spin_unlock(&connections_lock);
1709 1710
	if (con->othercon) {
		clean_one_writequeue(con->othercon);
1711 1712
		call_srcu(&connections_srcu, &con->othercon->rcu,
			  connection_release);
1713
	}
1714
	clean_one_writequeue(con);
1715
	call_srcu(&connections_srcu, &con->rcu, connection_release);
1716 1717
}

1718 1719
static void work_flush(void)
{
1720
	int ok;
1721 1722 1723 1724 1725 1726
	int i;
	struct connection *con;

	do {
		ok = 1;
		foreach_conn(stop_conn);
1727 1728 1729 1730
		if (recv_workqueue)
			flush_workqueue(recv_workqueue);
		if (send_workqueue)
			flush_workqueue(send_workqueue);
1731
		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1732 1733
			hlist_for_each_entry_rcu(con, &connection_hash[i],
						 list) {
1734
				ok &= test_bit(CF_READ_PENDING, &con->flags);
1735 1736
				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
				if (con->othercon) {
1737 1738
					ok &= test_bit(CF_READ_PENDING,
						       &con->othercon->flags);
1739 1740 1741
					ok &= test_bit(CF_WRITE_PENDING,
						       &con->othercon->flags);
				}
1742 1743 1744 1745 1746
			}
		}
	} while (!ok);
}

1747 1748
void dlm_lowcomms_stop(void)
{
1749 1750 1751
	int idx;

	idx = srcu_read_lock(&connections_srcu);
1752
	work_flush();
1753
	foreach_conn(free_conn);
1754
	srcu_read_unlock(&connections_srcu, idx);
1755
	work_stop();
1756
	deinit_local();
1757 1758

	dlm_proto_ops = NULL;
1759 1760
}

1761 1762 1763 1764 1765 1766 1767 1768
static int dlm_listen_for_all(void)
{
	struct socket *sock;
	int result;

	log_print("Using %s for communications",
		  dlm_proto_ops->name);

A
Alexander Aring 已提交
1769 1770 1771
	result = dlm_proto_ops->listen_validate();
	if (result < 0)
		return result;
1772 1773 1774 1775

	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
	if (result < 0) {
1776
		log_print("Can't create comms socket: %d", result);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
		goto out;
	}

	sock_set_mark(sock->sk, dlm_config.ci_mark);
	dlm_proto_ops->listen_sockopts(sock);

	result = dlm_proto_ops->listen_bind(sock);
	if (result < 0)
		goto out;

	save_listen_callbacks(sock);
	add_listen_sock(sock, &listen_con);

	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
	result = sock->ops->listen(sock, 5);
	if (result < 0) {
		dlm_close_sock(&listen_con.sock);
		goto out;
	}

	return 0;

out:
	sock_release(sock);
	return result;
}

A
Alexander Aring 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static int dlm_tcp_bind(struct socket *sock)
{
	struct sockaddr_storage src_addr;
	int result, addr_len;

	/* Bind to our cluster-known address connecting to avoid
	 * routing problems.
	 */
	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
	make_sockaddr(&src_addr, 0, &addr_len);

	result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
				 addr_len);
	if (result < 0) {
		/* This *may* not indicate a critical error */
		log_print("could not bind for connect: %d", result);
	}

	return 0;
}

static int dlm_tcp_connect(struct connection *con, struct socket *sock,
			   struct sockaddr *addr, int addr_len)
{
	int ret;

	ret = sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
	switch (ret) {
	case -EINPROGRESS:
		fallthrough;
	case 0:
		return 0;
	}

	return ret;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static int dlm_tcp_listen_validate(void)
{
	/* We don't support multi-homed hosts */
	if (dlm_local_count > 1) {
		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
		return -EINVAL;
	}

	return 0;
}

static void dlm_tcp_sockopts(struct socket *sock)
{
	/* Turn off Nagle's algorithm */
	tcp_sock_set_nodelay(sock->sk);
}

static void dlm_tcp_listen_sockopts(struct socket *sock)
{
	dlm_tcp_sockopts(sock);
	sock_set_reuseaddr(sock->sk);
}

static int dlm_tcp_listen_bind(struct socket *sock)
{
	int addr_len;

	/* Bind to our port */
	make_sockaddr(dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
	return sock->ops->bind(sock, (struct sockaddr *)dlm_local_addr[0],
			       addr_len);
}

1874
static const struct dlm_proto_ops dlm_tcp_ops = {
1875 1876
	.name = "TCP",
	.proto = IPPROTO_TCP,
A
Alexander Aring 已提交
1877 1878 1879
	.connect = dlm_tcp_connect,
	.sockopts = dlm_tcp_sockopts,
	.bind = dlm_tcp_bind,
1880 1881 1882
	.listen_validate = dlm_tcp_listen_validate,
	.listen_sockopts = dlm_tcp_listen_sockopts,
	.listen_bind = dlm_tcp_listen_bind,
1883 1884 1885 1886
	.shutdown_action = dlm_tcp_shutdown,
	.eof_condition = tcp_eof_condition,
};

A
Alexander Aring 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static int dlm_sctp_bind(struct socket *sock)
{
	return sctp_bind_addrs(sock, 0);
}

static int dlm_sctp_connect(struct connection *con, struct socket *sock,
			    struct sockaddr *addr, int addr_len)
{
	int ret;

	/*
	 * Make sock->ops->connect() function return in specified time,
	 * since O_NONBLOCK argument in connect() function does not work here,
	 * then, we should restore the default value of this attribute.
	 */
	sock_set_sndtimeo(sock->sk, 5);
	ret = sock->ops->connect(sock, addr, addr_len, 0);
	sock_set_sndtimeo(sock->sk, 0);
	if (ret < 0)
		return ret;

	if (!test_and_set_bit(CF_CONNECTED, &con->flags))
		log_print("successful connected to node %d", con->nodeid);

	return 0;
}

A
Alexander Aring 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static int dlm_sctp_listen_validate(void)
{
	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
		log_print("SCTP is not enabled by this kernel");
		return -EOPNOTSUPP;
	}

	request_module("sctp");
	return 0;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static int dlm_sctp_bind_listen(struct socket *sock)
{
	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
}

static void dlm_sctp_sockopts(struct socket *sock)
{
	/* Turn off Nagle's algorithm */
	sctp_sock_set_nodelay(sock->sk);
	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
}

1937
static const struct dlm_proto_ops dlm_sctp_ops = {
1938 1939
	.name = "SCTP",
	.proto = IPPROTO_SCTP,
A
Alexander Aring 已提交
1940 1941 1942 1943
	.try_new_addr = true,
	.connect = dlm_sctp_connect,
	.sockopts = dlm_sctp_sockopts,
	.bind = dlm_sctp_bind,
A
Alexander Aring 已提交
1944
	.listen_validate = dlm_sctp_listen_validate,
1945 1946
	.listen_sockopts = dlm_sctp_sockopts,
	.listen_bind = dlm_sctp_bind_listen,
1947 1948
};

1949 1950
int dlm_lowcomms_start(void)
{
1951
	int error = -EINVAL;
1952 1953 1954 1955
	int i;

	for (i = 0; i < CONN_HASH_SIZE; i++)
		INIT_HLIST_HEAD(&connection_hash[i]);
1956

1957 1958
	init_local();
	if (!dlm_local_count) {
D
David Teigland 已提交
1959
		error = -ENOTCONN;
1960
		log_print("no local IP address has been set");
1961
		goto fail;
1962 1963
	}

1964 1965
	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);

1966 1967
	error = work_start();
	if (error)
1968
		goto fail_local;
1969 1970

	dlm_allow_conn = 1;
1971 1972

	/* Start listening */
1973 1974
	switch (dlm_config.ci_protocol) {
	case DLM_PROTO_TCP:
1975
		dlm_proto_ops = &dlm_tcp_ops;
1976 1977
		break;
	case DLM_PROTO_SCTP:
1978
		dlm_proto_ops = &dlm_sctp_ops;
1979 1980 1981 1982 1983
		break;
	default:
		log_print("Invalid protocol identifier %d set",
			  dlm_config.ci_protocol);
		error = -EINVAL;
1984
		goto fail_proto_ops;
1985
	}
1986 1987

	error = dlm_listen_for_all();
1988
	if (error)
1989
		goto fail_listen;
1990 1991 1992

	return 0;

1993 1994 1995
fail_listen:
	dlm_proto_ops = NULL;
fail_proto_ops:
1996
	dlm_allow_conn = 0;
1997
	dlm_close_sock(&listen_con.sock);
1998 1999 2000
	work_stop();
fail_local:
	deinit_local();
2001
fail:
2002 2003
	return error;
}
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

void dlm_lowcomms_exit(void)
{
	struct dlm_node_addr *na, *safe;

	spin_lock(&dlm_node_addrs_spin);
	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
		list_del(&na->list);
		while (na->addr_count--)
			kfree(na->addr[na->addr_count]);
		kfree(na);
	}
	spin_unlock(&dlm_node_addrs_spin);
}